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Paramagnetic encoding of molecules
Jan Kretschmer1,2, Tomáš David 1, Martin Dračínský 1, Ondřej Socha 1, Daniel Jirak 3,4, Martin Vít 3,5,

Radek Jurok6,7, Martin Kuchař 6,8, Ivana Císařová 9 & Miloslav Polasek 1✉

Contactless digital tags are increasingly penetrating into many areas of human activities.

Digitalization of our environment requires an ever growing number of objects to be identified

and tracked with machine-readable labels. Molecules offer immense potential to serve for

this purpose, but our ability to write, read, and communicate molecular code with current

technology remains limited. Here we show that magnetic patterns can be synthetically

encoded into stable molecular scaffolds with paramagnetic lanthanide ions to write digital

code into molecules and their mixtures. Owing to the directional character of magnetic

susceptibility tensors, each sequence of lanthanides built into one molecule produces a

unique magnetic outcome. Multiplexing of the encoded molecules provides a high number of

codes that grows double-exponentially with the number of available paramagnetic ions. The

codes are readable by nuclear magnetic resonance in the radiofrequency (RF) spectrum,

analogously to the macroscopic technology of RF identification. A prototype molecular sys-

tem capable of 16-bit (65,535 codes) encoding is presented. Future optimized systems can

conceivably provide 64-bit (~10^19 codes) or higher encoding to cover the labelling needs in

drug discovery, anti-counterfeiting and other areas.
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Managing digital information is crucial not only for our
civilization but for the existence of life itself. All known
life forms depend on nucleic acids, which are in essence

digital medium. The information capacity of molecules is enor-
mous and very tempting for technological applications. Indeed,
humans learned to hack the system of nucleic acids for the
purpose of encoding data1–7. However, the principle of molecular
recognition that works well within a biological microenvironment
is difficult to connect with technology built primarily around the
electromagnetism of inorganic materials and RF communication.
Thus, alternative synthetic polymers have been proposed for
information encoding8–12. Unfortunately, the current methods of
reading often result in the destruction of the molecules. In con-
trast, modern civilization demands to communicate information
wirelessly and repeatably, in an effort to identify and track
objects13,14, monitor health15,16, and eventually merge the digital
with the living17,18. To achieve this at the molecular level will
require adapting the molecular systems to be more compatible
with macroscopic information technologies.

Writing (encoding) information at the molecular level can be
achieved with either (i) sequences of monomers concatenated
within one molecular string7–12 or with (ii) mixtures of indivi-
dual, unique compounds19–23. For both, there is a trade-off
between synthetic difficulty, material demands, and information
capacity. Long sequences can be made from a few monomers, but
synthetic writing is difficult, slow, and prone to errors7–9. On the
other hand, mixtures are easy to make but require a high number
of uniquely distinguishable components, which eventually
become a limiting factor19–23. Theoretically, an alternative
approach, better balancing the need to generate many codes with
a small number of components and synthetic steps, is (iii) to first
synthesize short sequences and then use them as unique com-
ponents in mixtures. Although this approach is conceptually well-
understood21, the difficulty of decoding mixed sequences is
prohibitive.

Reading (decoding) nongenomic molecular codes currently
heavily relies on mass spectrometry (MS), which can decode
sequences as well as complex mixtures with high
sensitivity8–10,19–21. However, mixtures of sequences containing
permutations of the same monomers have the same molecular
weight and are nearly impossible to decode. In addition, MS is a
destructive method that does not allow for repeated readings that
are desirable for long-term tracking and monitoring. On the other
hand, spectroscopic methods which are capable of this can typi-
cally only detect individual components (monomers) but cannot
distinguish their order in sequences12,24. Another challenge for
spectroscopic methods are signal overlaps that limit the number
of distinguishable codes. For example, fluorescent labels, as one of
the most important tools for interrogation of biological systems,
provide relatively broad signals within a narrow spectral
window23–26. Up to ten different fluorescent tags can be dis-
tinguished from mixtures with advanced computational methods,
but this still amounts only to 210 – 1= 1023 codes26. This lim-
itation cannot be overcome without expanding the size along at
least one dimension23,27. Indeed, various microscale particles
have been proposed as barcodes, based on tuneable luminescent
materials combined to generate the code28–31. However, the
information capacity per mass is much lower for particles com-
pared to molecules. A potential way out of this dilemma is to use
non-optical methods of reading. For example, the spectral win-
dow of nuclear magnetic resonance (NMR) spectroscopy can
accommodate much higher number of distinguishable signals
usable for information encoding22.

In the same way that magnetic media accelerated modern
information technologies, it is recognized that molecular mag-
netism could be a major breakthrough for future technologies at

the molecular scale. Alas, single-molecule magnets so far function
only at impractically low temperatures32. The next best magnetic
alternative that works at the molecular level and over a broad
temperature range simultaneously is paramagnetism. When
placed within an external magnetic field, unpaired electrons of a
paramagnetic metal ion generate their own local field described
by a magnetic susceptibility tensor. This tensor has specific radial
and angular dependencies dictated by the particular element and
its coordination environment, and strongly influences the NMR
frequencies of nearby nuclei33–35, an effect exploited in protein
structure elucidation36. Lanthanides are ideally suited for this
purpose, as they provide a range of chemically similar but mag-
netically different Ln3+ ions amenable to stable incorporation
into organic molecules via coordination35,37. While distinguish-
able NMR signals can be obtained from chemically different
diamagnetic molecules and formulations38–42, introducing para-
magnetic lanthanides allows for decoupling of the NMR shifts
from chemical properties. This principle has been previously used
to create chemically nearly identical molecules that could be
spectrally resolved with magnetic resonance imaging (MRI)43–45.
However, with one lanthanide ion per molecule, the number of
distinguishable signals remains limited to 12 usable lanthanides
(excluding Pm, Gd; including 1 diamagnetic). So far, only a few
works have investigated the possibility of combining para-
magnetic effects of multiple lanthanides within one molecule46,47,
presumably due to the difficulty in synthesizing well-defined
multimetallic compounds24,48,49. We speculated that two or more
lanthanide ions arranged in sequence within one molecule should
combine their magnetic susceptibility tensors to produce a unique
NMR-readable outcome for each permutation of the elements.
This greatly increases the number of signals and molecular codes
that can be generated with a limited number of elements (Fig. 1).

In this work, we present a prototype of paramagnetically
encodable molecular architecture, demonstrate the encoding and
decoding principles, provide practical examples of information
encoding, and outline the possible future capabilities. The num-
ber of unique codes that can be generated in this way from a few
chemical building blocks is compatible with the foreseeable needs
in drug discovery1,2 and anti-counterfeiting13 applications. This
work provides an alternative direction toward programmable
digital molecular information systems.

Results
Design of building blocks. Combining magnetic susceptibility
tensors of lanthanide ions requires their placement in close
proximity within one molecule, preferably in a modular way to
enable encoding of specific sequences. Conformational freedom
and isomerism must be limited, so that the metal ion positions are
well defined and there is no averaging or multiplication of NMR
signals. Peptides can offer the desired modular synthetic
approach, provided that a suitable building block is available to
act simultaneously as amino acid and a strong chelator for Ln3+

ions. Several amino acid/chelator building blocks have been
described previously, but none were suitable for the task, falling
short of the required control over conformations and/or iso-
merism (Fig. 2)24,49–51. Learning from these examples, we
developed a family of building blocks collectively named DO3A-
Hyp, where the chelator is based on macrocyclic DO3A (1,4,7,10-
tetraazacyclododecane-1,4,7-triacetic acid) and the amino acid is
derived from hydroxyproline (Hyp). Here, we present two
members of the family, building blocks L1 and L2 (Fig. 2 and
synthetic scheme in Fig. 3), that differ in the configuration of
chiral centers in the Hyp moiety. The DO3A-Hyp family is
structurally related to the chelator HP-DO3A that is clinically
used in the MRI contrast agent Gadoteridol37. Although knowing
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the exact structure of the chelates was not necessary for the
purpose of paramagnetic encoding, we found with X-ray dif-
fraction on a [Dy(L1)] crystal that inversion (2S→2R,3S,4S)
occurred in Hyp during synthesis of L1 (Fig. 4A and Supple-
mentary Figs. 1–3). We explain this by deprotonation of the
epoxide 5 during its reaction with basic cyclen (suggested
mechanism in Supplementary Fig. 4). The same reaction step also
opened a path to the isomer L2, though with a much lower yield
(9:1 ratio L1: L2). The crystal structure of [Dy(L2)] confirmed
2S,3R,4S configuration of Hyp in L2 (Fig. 4B and Supplementary
Figs. 5–7). In both solid-state structures, the Hyp moiety coor-
dinated with the 2R- or 2S-carboxyl, respectively, rather than with
the 4S-hydroxyl group. Nevertheless, the 2R-carboxyl of [Ln(L1)]
chelates was reactive in peptide coupling reactions (in contrast to
unreactive coordinated acetate arms), indicating coordination
competition with 4S-hydroxyl in solution (Supplementary Fig. 8).
Coordination of 4S-hydroxyl is therefore considered in figures to
respect this reactivity. Our assumption was that the chiral Hyp
moiety would impose a preference for one of several possible

coordination isomers typical for macrocyclic chelators and thus
manage the problem of isomeric speciation36,52,53. Indeed, only
one dominant species was found with NMR spectroscopy in
solution for all tested lanthanides (see the next section).

Encodable molecular framework. Having the suitable building
blocks, we designed a prototype of an encodable molecular fra-
mework. Tripeptide 1 (TP1) consists of two L1 units, one at each
terminus, and a middle amino acid bearing a reporter CF3 group.
Analogous tripeptide 2 (TP2) molecule contains L2 unit at the
C-terminus. This construction allows the reporter to perceive
magnetic fields from two metal ions simultaneously in M1M2-
TP1 or M1M2-TP2 molecules (Fig. 5). We selected the CF3
reporter for the high sensitivity and negligible natural background
of the 19F nucleus, which facilitate observation and interpretation
of signals in the RF NMR channel40,41,53,54.

The chemical shifts induced by paramagnetic lanthanide ions
are difficult to predict from theory with confidence35, especially if
the structure in solution is not precisely known. Therefore, to
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gain a quick overview, we used a metal-free TP1 for post-
synthetic complexation of equimolar binary lanthanide mixtures
to obtain statistical mixtures of four M1M2-TP1 compounds in
1:1:1:1 molar ratio (Fig. 5B). In all studied cases, 19F NMR spectra
showed four major singlets, mostly free of overlaps, shifted and
broadened by the paramagnetic action of the respective Ln3+ ions
(Supplementary Fig. 9). We selected the Dy3+/Ho3+ combination
for further detailed study because of a good balance between
chemical shift and NMR signal broadening (Fig. 6A). Specific

M1M2 sequences were encoded into M1M2-TP1 compounds via
controlled synthesis using several different strategies, some of
which also included direct peptide coupling with metal-preloaded
derivatives of L1 (Supplementary Figs. 64–86). Each of the well-
defined M1M2-TP1 compounds matched one of the four major
19F NMR peaks observed in the statistical Dy3+/Ho3+ mixture,
confirming that each M1M2 sequence generates a unique signal
(Fig. 6B). Some minor peaks detected in the 19F NMR spectra of
(purified) M1M2-TP1 compounds could be attributed to low-
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abundance forms of the same compound (conformers or
isomers), because most of them coalesced with the main peak
at elevated temperatures (Supplementary Fig. 10). Nevertheless,
these minor peaks presented no obstacle in further analysis of the
NMR data. As expected, the induced chemical shifts strongly
depended also on the precise coordination environment and
mutual arrangement of the two metal centers. The molecular
system of M1M2-TP2, despite its (deceptive) similarity to M1M2-
TP1, provided dramatically different chemical shifts with the
same metal ion sequences (Fig. 6C and Supplementary Fig. 11).
Furthermore, to investigate the importance of rigid and compact
molecular design on paramagnetic encoding, we performed a
control experiment using an alternative architecture. The same
Dy3+/Ho3+ sequences were encoded into a tripeptide TP3 that
was constructed with the previously described DOTA-K building
block49,50 containing a flexible sidechain linker (Supplementary
Fig. 12). Conformational flexibility, in this case, resulted in metal
ion position averaging, diminishing the paramagnetic shifts, and
consequently the TP3 system failed to produce distinguishable
signals for different M1M2 sequences (Fig. 6D and Supplementary
Fig. 13). Moreover, the signals appeared split, likely due to the
cis–trans isomerism of the coordinated amide moiety noted
previously for similar compounds36. This problem was not
observed with the TP1 and TP2 systems using the DO3A-Hyp
family building blocks, demonstrating that a rigid and stereo-
chemically well-defined molecular framework is essential for the
purpose of paramagnetic encoding.

Rules of paramagnetic encoding. Various molecular systems
have been previously explored that used a single lanthanide ion
per molecule to generate discernible NMR shifts, primarily for
imaging applications43–45. However, the way that magnetic sus-
ceptibility tensors of multiple lanthanide ions combine within one
molecule is a rarely studied phenomenon46,47. We, therefore,

examined the rules of this in theM1M2-TP1 system in detail. Our
hypothesis was that the observed 19F chemical shift (δF) was a
sum of three independent parameters:

δF ¼ δ 1
p þ δ 2

p þ δd; ð1Þ

where δp1 and δp2 are individual pseudocontact paramagnetic
shifts generated by metal M in a given position (1 or 2, as defined
in Fig. 1), and δd is a constant diamagnetic contribution.

To test this hypothesis, we first analyzed a limited dataset
comprised of Dy3+/Ho3+, Dy3+/Y3+ and Ho3+/Y3+ statistical
mixtures of M1M2-TP1 compounds. The diamagnetic Y3+ ion
was included to anchor the δd component. The assignment of
peaks to specific M1M2 sequences was already partially known
(Fig. 6B) and the rest was inferred or determined by trial and
error. A multiparametric least-square fit according to Eq. (1)
converged to a single set of δp1, δp2, δd values. An independent
dataset of Dy3+/Tm3+, Dy3+/Lu3+, Tm3+/Lu3+ mixtures
provided similar δp1, δp2 values for Dy3+ that was present in
both datasets and nearly identical δd (Supplementary Fig. 14).
These results demonstrated that the contributions of individual
paramagnetic centers were independent and additive, confirming
the hypothesis. Knowing the parameters for Dy3+, Ho3+, and
Tm3+ allowed us to decipher δp1, δp2 values for the remaining
tested lanthanides. Final global fit provided very good agreement
between the calculated and measured shifts, with residual
differences not exceeding 0.34 ppm within a 38.8 ppm overall
range (Supplementary Fig. 15). Because paramagnetic shifts are
very sensitive to changes in molecular structure, this agreement
demonstrates that the M1M2-TP1 compounds were practically
isostructural regardless of the inserted lanthanide ions. For each
element, the δp1, δp2 values were of opposite signs (Supplemen-
tary Fig. 15B), indicating substantial mutual rotation of the two
magnetic susceptibility tensors inM1M2-TP1 molecule35. The δp1

and δp2 values roughly followed tabulated Bleaney constants33,
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thus showing a reasonable agreement with theory (Supplemen-
tary Fig. 16), although the accuracy of Bleaney’s theoretical model
has recently been questioned35. Limited synthetic yields pre-
vented us from performing a similar extensive analysis on the
M1M2-TP2 system, but from the comparison in Fig. 6, it is clear
that the δp1, δp2 values must be very different from M1M2-TP1.

Alterations to the structure of the building blocks present an
opportunity to optimize future molecular designs to achieve
better spaced-out NMR signals with fewer overlaps.

Sequence decoding. Current strategies to decode sequences of
nongenomic oligomers mostly rely on their sequential degrada-
tion (e.g., Edman degradation) or fragmentation with tandem MS
techniques8–10, resulting in the destruction of the molecules.
Non-destructive spectroscopic methods typically cannot read
sequences of monomer units. This is different for paramagnetic
metal ions, where the magnetic susceptibility tensors bring
directionality. Metal ion sequences in the M1M2-TP1 system can
be decoded from one-dimensional NMR spectra, provided that
the δp1, δp2 components are known and the δF shifts are uniquely
distinguishable. The latter condition is somewhat limiting, but,
nevertheless, suitable sets of elements can be identified. We found
by simulation that Tb3+, Dy3+, Ho3+, and Yb3+ can be freely
combined within the M1M2-TP1 system, with a minimum peak
distance of 0.36 ppm (Supplementary Fig. 17). Moreover, a par-
ticularly important property of paramagnetic encoding is that the
basic parameters of the system (i.e., δp1, δp2, δd values in the case
of M1M2-TP1) can be obtained from limited experimental data
and then used to reliably simulate and identify sequences that
were not yet encountered. This is significant for the design of
advanced future systems, where the number of combinations may
be too high to be comprehensively explored by experimentation.
We tested the reliability of the predictions and sequence decoding
on the sub-system of M1M2-TP1 compounds encoded with
Tb3+/Dy3+/Ho3+/Yb3+ ions. To ensure that we erased prior
knowledge, we excluded from the experimental data all cases
where these elements were combined in statistical mixtures. An
unbiased set of δp1, δp2, δd values was fitted from this reduced
dataset (Supplementary Fig. 18). Using these parameters, we
simulated shifts for all 16 permutations. The best match between
the experimental δF and simulated simδF shifts confidently iden-
tified all 12 heteronuclear M1M2 sequences (Supplementary
Fig. 19), none of which was used to obtain the δp1, δp2, δd values
that allowed prediction of the simδF.

Multiplexing and combinatorial implications. Multiplexing is a
way to encode information by combining unique signals into
composite patterns that can be received through a single
channel and decoded back to the original components. Che-
mical compounds are usable for this purpose by virtue of their
signals being detectable by analytical methods. For example,
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digital files have been encoded into mixtures of organic com-
pounds readable by mass spectrometry19,20 or fluorescence
spectroscopy23. Lanthanides were previously multiplexed to
generate molecular barcodes based on their unique isotope
mass55, luminescence24, or paramagnetic NMR shifts45. How-
ever, decoding of such chemical systems typically proceeds with
Boolean logic, considering only the presence/absence of each
component, and ignoring their repetition and order. This
severely limits the number of codes that can be generated,
especially when the number of basic components itself is limited
(e.g., chemical elements). For example, two elements can pro-
vide only three unique codes readable by luminescence or mass
(Fig. 7A). Notably, this applies also to multiplexing NMR sig-
nals of molecules that carry a single lanthanide ion45. Para-
magnetic encoding based on multiple lanthanides within each
molecule improves the combinatorics by inserting permutations
into the process. First, two elements combine into a codon,
where repetitions and order are recognized, resulting in 4 per-
mutations with unique signals. In the second step, these codons
are multiplexed, providing 15 unique codes (Fig. 7B). A com-
prehensive physical realization of this two-level encoding is
demonstrated in Fig. 7C with the M1M2-TP1 system and Dy3+/
Ho3+ ions. Controlled synthesis was essential for the
whole encoding process to work. If uncontrolled post-synthetic

complexation was used instead, the system would revert to only
3 out of the 15 codes displayed in Fig. 7C: 0010 (Dy3+), 0100
(Ho3+) and 1111 (Dy3+/Ho3+ mixture). The combinatorial
implications of the two-level encoding are very significant, as
the number of unique codes grows with a double-exponential
dependency on the number of elements. Paramagnetic encoding
thus vastly outperforms encoding based on luminescence, mass,
or other methods that read signals directly from the basic
components (Fig. 7D). The current M1M2-TP1 prototype is
capable of at least 16-bit encoding (65,535 codes) with the
Tb3+/Dy3+/Ho3+/Yb3+ set discussed above that provides 16
distinguishable signals. Theoretically, the combinatorial power
can be further improved by increasing the codon size to 3
elements (Fig. 7D). The major limitation is the number of
spectroscopically distinguishable codons. However, the NMR
spectral window is large in comparison e.g., to optical
methods12,23,24 and can accommodate hundreds of signal peaks
at high magnetic fields. Moreover, even overlapping signals may
be distinguishable by computational methods such as decon-
volution, or thanks to different T1 or T2 relaxation times
induced by the paramagnetic ions53,54. With an optimized
molecular system and method of reading, 64-bit (~1019 codes)
or higher encoding is conceivable. This would be enough
to cover realistic needs for molecular barcodes1,2,13. For
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comparison, the current MAC (media access control) system
uses 48-bit addresses for the unique identification of all devices
connected to the Internet.

Digital information encoding and reading. To demonstrate a
practical example of information encoding, we employed the
system of M1M2-TP1 and Tb3+/Dy3+/Ho3+/Yb3+ ions. All 16
possible compounds were individually synthesized and provided
unique and distinguishable NMR signals (Supplementary Fig. 20).
With each signal representing one bit (present= 1, absent= 0), it
is possible to encode 16 bits of digital data by multiplexing the
compounds. Standard ASCII (American Standard Code for
Information Interchange) characters use 7 bits, so a single mix-
ture can carry two characters. That is not enough for practical
purposes. Therefore, we organized five different mixtures within a
capillary into layers that were spatially separated by an immiscible
signal-free solvent CCl4 (Fig. 8A). Thus, a composite NMR
sample was created with the capacity to store ten ASCII char-
acters, enough to encode a reasonably strong password. To read
back the information, we used z-resolved NMR spectroscopy to
acquire spectra of all layers simultaneously (Fig. 8B). After
referencing the chemical shifts in each layer to an internal stan-
dard (trifluoroacetic acid, TFA), the presence/absence of the
signals was evaluated (Fig. 8C) and converted to a binary code
(Fig. 8D). Due to the lower spectral resolution of z-resolved
NMR, we avoided the confusion of the two least-resolved peaks
(DyDy/YbTb, Fig. 8C) by shifting the beginning of the binary
code to one of them (DyDy), thus eliminating it by definition
(binary codes of all standard ASCII characters start with 0,
Fig. 8E). Conversion of the binary code to characters revealed the
encoded 10-character password (Fig. 8F, G). It is important to
note that multiple pairs of positional isomers (e.g., YbHo/HoYb)
present in the mixtures make the encoded information practically
unreadable with methods other than magnetic resonance since
the isomers are very difficult to distinguish by other means. This
is a very attractive feature especially for potential counterfeit
applications of such molecular codes.

Parallel reading with MRI. A key aspect of reading and com-
municating information is whether it proceeds in a sequential or
parallel way. Parallel systems offer higher and more scalable
throughput, which is also suitable for imaging applications. For
example, optical reading methods capture information simulta-
neously from many objects in the field of view, while MS can only
process one sample at a time. Magnetic resonance can provide
both spectroscopic and spatial information simultaneously, thus
allowing parallel reading and imaging. Spectrally resolved MRI
has been previously realized with various systems based on che-
mically different diamagnetic compounds38–41, host-guest
interactions42,45, and lanthanide-induced NMR shifts43–45. The
latter approach offers the advantage to select the NMR shifts
without changing the chemical properties, which is particularly
useful for in-vivo imaging applications43,44. However, previous
systems based on a single lanthanide per molecule offered only a
very limited choice. The programmable M1M2-TP1 system pro-
vides an advanced level of control to generate a higher number of
practically usable NMR signals. To demonstrate this, we used just
two lanthanide ions Dy3+/Ho3+ to encode the M1M2-TP1
molecules, which were then pipetted into a 7 × 5-well plate in
patterns to write one letter with each compound. Each well thus
contained a homogenous mixture of 0–4 compounds (Fig. 9A).
The whole well plate was imaged on a preclinical 4.7 T MRI
scanner with a 19F CSI (Chemical Shift Imaging) pulse sequence,
where two dimensions represent space coordinates and the third
is a frequency domain. The information contained in the 35 wells

was obtained simultaneously, the encoded molecules were dis-
tinguished owing to their different resonance frequencies
(Fig. 9B), and the four letters could be resolved and indepen-
dently displayed (Fig. 9C–F). A fly-through view of the MRI data
is provided in Supplementary Movie 1.

Limit of detection. NMR spectroscopy is typically not considered
as a method for reading molecular codes because of its relatively
low sensitivity compared to e.g., mass spectrometry. This
prompted us to investigate the limit of detection achievable with
M1M2-TP1 molecules encoded with Dy3+/Ho3+ ions. Previous
works have demonstrated that shortening of longitudinal
relaxation times (T1) induced by paramagnetic ions allows to use
a rapid scan rate and boost sensitivity by acquiring more signal
per time53,54. We took advantage of this effect in M1M2-TP1
compounds (Supplementary Fig. 21). The signal-to-noise ratio
(SNR) in NMR grows with the square root of the number of
scans, but there are practical limits to the experiment time. We
extrapolated the detection limit at 11.7 T and SNR= 3 to be 5.8
nmol with a short measurement time (1.6 s, 32 scans), or 123
pmol with a reasonably long measurement time (60 min,
72,000 scans). Paramagnetic codes are therefore conceivably
usable as identification tags in bead-based bioassays (a single 90-
μm TentaGel bead can hold 100 pmol). The detection limit could
be further lowered by technical as well as chemical means, e.g., by
optimization of the NMR hardware and pulse sequence, opti-
mizing the molecular system to provide narrower NMR signals
(higher SNR), or including a higher number of magnetically
equivalent 19F nuclei. Although the conventional NMR/MRI
technology is large and expensive, in principle it can be re-
designed for the purpose of reading paramagnetic molecular
codes. Downsizing using cost-efficient permanent magnets can
dramatically lower the cost and potentially improve the sensitivity
to match a particular application56,57.

Discussion
Properties of paramagnetically encoded molecules depart from
typical chemical systems and approach macroscopic hardware and
software. As the encoded information is hidden in chemically
inaccessible f-electrons of lanthanides, the hardware (molecule)
remains physically unchanged (isostructural) when loaded with
different software (metal ion sequence). Simple and clear program-
ming rules, which can be calibrated from a small number of syn-
thesized examples, provide predictable behavior of the molecular
code. Reading in the RF spectrum draws parallels with the tech-
nology of radiofrequency identification (RFID) tags by being
repeatable and non-destructive, and by working through space
without a direct line of sight. The paramagnetic codes presented here
are nearly chemically identical, based on elements with negligible
biological background (lanthanides, fluorine), and structurally rela-
ted to clinically approved MRI contrast agents. These are favorable
qualities for tagging biological objects or artificial objects in the
biological milieu. We refer to the M1M2-TP1 and M1M2-TP2 sys-
tems as prototypes, because many aspects of their modular con-
struction can be further optimized to build more advanced systems
with enhanced functionality. The major roadblock to immediate
practical use is the low sensitivity of reading with conventional NMR
technology. However, rapid advancements in quantum sensors may
soon make the detection of single molecules a routine reality58,59,
opening the door to as-yet unforeseen applications.

Methods
Synthesis of building blocks, tripeptides, and their metal chelates. Detailed
synthetic strategies and procedures, including the conditions for the separation of
isomers and characterization of all products, are provided in Supplementary Infor-
mation. All syntheses proceeded in solution. Some lanthanide ions were excluded
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from testing for various reasons (La3+: redundant diamagnetic, Ce3+: 3+ /4+ redox
chemistry, Pm3+: radioactive, Gd3+: inducing no paramagnetic shift). Concentra-
tions of Ln3+ ions in stock solutions for synthesis and in solutions of M1M2-TP1,
M1M2-TP2, and M1M2-TP3 compounds were determined with ICP-AES.

X-ray crystallography. Detailed procedures for preparation of the single crystals
of [Dy(L1)]·3.5H2O and [Dy(L2)]·3H2O, details of structure solving and

refinement, as well as additional details of the obtained structures are provided
in Supplementary Information (Supplementary Methods and Supplementary
Figs. 1–3, 5–7, 65, 97).

19F NMR spectroscopy. Measurements of all 19F NMR spectra were done on
Avance IIITM HD 500MHz spectrometer (Bruker, 470.4MHz for 19F) equipped with
a broad-band cryo-probe with ATM module (5 mm CPBBO BB-1H/19F/15N/D Z-
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GRD). Solutions of samples were prepared in MOPS/NaOH buffer (pH= 7) and
placed into an insert capillary that was inserted into a 5-mm NMR tube containing
D2O (used for NMR frequency lock). The volume of solution in the insert observable
by the spectrometer probe was ~50 µL. Longitudinal relaxation times (T1) were
obtained by inversion recovery sequence. Spectra of statistical mixtures or indivi-
dually synthesized M1M2-TP1 and M1M2-TP2 compounds were measured with
these parameters: 90° observation pulse, pre-acquisition delay= 1 s, acquisition
time= 0.58 s and 512 or 4096 scans. Measurements of SNR were performed on a
sample containing a mixture of HoDy-TP1, DyDy-TP1, HoHo-TP1, and DyHo-
TP1 compounds, each at molar amount of 0.18 μmol in the volume observable by the
NMR probe (50 µL). Parameters for SNR measurements were: pre-acquisition
delay= 0, acquisition time= 50ms, receiver gain maximum value= 203. The SNR
values were obtained usingMestReNova software (version 12.0.3) after the application
of an exponential window function of 1 Hz. The limit of detection (SNR= 3) was
extrapolated from SNR measured with 32 scans (1.6 s total time), considering that
SNR scales linearly with the analyte concentration and with the square root of the
number of scans. Further details for SNR measurements are provided in Supple-
mentary Fig. 21. 19F z-resolved NMR spectrum was acquired using a phase encoding
pulse sequence with resolution 2048 × 64 points at 20mm field of view, number of
scans= 32 K, acquisition time= 18ms, relaxation delay= 100 μs (for technical rea-
sons). The excitation pulse was ~31°, which was the result of optimization aiming to
enhance the SNR of weaker (broader) signals, sacrificing the SNR of sharper peaks.
This was possible due to the differences in T1 relaxation times. The total experimental
time was ~12 h. For subsequent processing, only 700 × 64 raw points were used in
order to reduce the noise. Data were apodized using QSINEwindow functions in both
F2 (SSB= 10) and F1 (SSB= 1) dimensions and zero-filled to 8192 × 128 points.
Processing was done in Bruker TopSpin 3.5 software. Spectra were visualized using the
NumPy and Matplotlib Python libraries.

Magnetic resonance imaging. Stock solutions of individually synthesizedHoDy-TP1,
DyDy-TP1, HoHo-TP1, and DyHo-TP1 compounds in 0.5M MOPS/NaOH buffer
(pH= 7.0) were pipetted into a 7 × 5-well plate (cut out of standard 384-well plate) and
the volume in each well was completed with water to 75 μL to reach compound con-
centrations ∼0.36mM each. The well plate was covered with plastic tape and imaged on
4.7 T scanner Bruker Biospec 47/20 (Bruker BioSpin, Ettlingen, Germany) with a custom-
built dual 1H/19F RF surface coil. First, 1H MRI was performed in all three planes (axial,
coronal, and sagittal) for localization of the sample. Then, 19F NMR spectra were acquired
by 90° single pulse sequence to precisely determine resonance frequencies of the

compounds. 19F MRI images were obtained using a CSI sequence (120,000 scans, repe-
tition time= 700ms, field of view= 50 × 50mm; slice thickness= 10mm, matrix of
acquired image= 16 × 16 × 512, matrix of reconstructed image= 64 × 64 × 512, acquisi-
tion time= 23 h 20min, resonance frequency= 188,630,130Hz, bandwidth= 9843Hz/
52.18 ppm). Images for display were prepared in Matlab software. First, the data in the
Bruker format were imported toMatlab using read_2dseq function (by Cecil Yen (2021),
https://www.mathworks.com/matlabcentral/fileexchange/69177-read_2dseq-quickly-
reads-bruker-s-2dseq-mri-images). Maximum intensity projection along the frequency
axis was used to find the peaks of the respective samples. Background signal (outside of
main peaks) was calculated as an average of 41 slices (# 10–50 perpendicular to the
frequency axis) and subtracted from each slice of the original data. Then, the intensity was
normalized to 1 for the highest intensity. The final images displayed in Fig. 9 were obtained
by averaging 15 slices (perpendicular to the frequency axis) around themaximum for each
peak, andmapping the image intensity to specific color maps. SupplementaryMovie 1 was
created analogously, with each frame showing a floating average of 15 slices.

Data fitting. Fitting of experimental shifts δF from statistical mixtures of M1M2-
TP1 compounds to obtain δp1, δp2, δd contributions was done according to Eq. (1)
with the method of least squares using the Solver function in Microsoft Excel.
Sequences of Dy3+/Ho3+ synthesized as individual compounds were the starting
point for the assignment of δF to particular M1M2 sequences. Next, homonuclear
sequences were identified based on their repeated occurrences between mixtures
containing the particular element. The assignment of heteronuclear sequences then
proceeded simultaneously with the fitting, one statistical mixture at a time. If a
satisfactory fit could not be obtained, it indicated that the assignment was wrong
and the positions in M1M2 sequences were exchanged. This was continued until
consensus was reached across all data in a final global fit. The paramagnetic shift
contributions of the Sm3+ ion were too small to be obtained simultaneously with
the other lanthanide ions. Therefore, δp1, δp2 parameters for Sm3+ were fitted
separately from the Sm3+/Y3+ statistical mixture of M1M2-TP1 compounds and
were then used as fixed parameters in the global fit.

Data availability
The crystallographic data for the structures reported in this study have been deposited at
the Cambridge Crystallographic Data Centre (CCDC) under deposition number 2072548
for [Dy(L1)]·3.5H2O and 2143481 for [Dy(L2)]·3H2O and can be obtained free of charge
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from the Centre via its website (www.ccdc.cam.ac.uk/getstructures). All other data
supporting the findings in this study are available within the article and
its Supplementary Information, as well as from the corresponding author upon request.

Code availability
No custom computer code was used in this study.
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