
ARTICLE

Mutational signatures are markers of drug
sensitivity of cancer cells
Jurica Levatić1, Marina Salvadores 1, Francisco Fuster-Tormo1,3 & Fran Supek 1,2✉

Genomic analyses have revealed mutational footprints associated with DNA maintenance

gone awry, or with mutagen exposures. Because cancer therapeutics often target DNA

synthesis or repair, we asked if mutational signatures make useful markers of drug sensitivity.

We detect mutational signatures in cancer cell line exomes (where matched healthy tissues

are not available) by adjusting for the confounding germline mutation spectra across

ancestries. We identify robust associations between various mutational signatures and drug

activity across cancer cell lines; these are as numerous as associations with established

genetic markers such as driver gene alterations. Signatures of prior exposures to DNA

damaging agents – including chemotherapy – tend to associate with drug resistance, while

signatures of deficiencies in DNA repair tend to predict sensitivity towards particular ther-

apeutics. Replication analyses across independent drug and CRISPR genetic screening data

sets reveal hundreds of robust associations, which are provided as a resource for drug

repurposing guided by mutational signature markers.
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Cancer precision medicine draws on the presence of
somatically acquired changes in the tumor, which serve as
predictive markers of response to drugs and other thera-

pies. Commonly these markers are individual genetic changes,
such as driver mutations affecting oncogenes or tumor suppressor
genes, or copy-number alterations thereof. Many commonly
employed cancer drugs act by interfering with DNA synthesis or
maintenance or by damaging DNA. Therefore, the altered capa-
city of cancer cells to repair and/or replicate DNA is the basis of
many classical therapies, such as platinum-based agents, and also
recently introduced or upcoming therapies, such as PARP inhi-
bitors or ATR inhibitors (reviewed in refs. 1–3). It is paramount to
identify predictive markers that are associated with failures of
DNA maintenance in cancer cells.

However, while DNA repair is often deficient in tumors, many
DNA repair genes such asMLH1,MGMT, BRCA1, or ATM do not
commonly bear somatic mutations. Instead, they are commonly
inactivated epigenetically4–6, or by alterations in trans-acting
factors7, and so their deficiencies are difficult to predict from the
gene sequence. Additionally, germline cancer-predisposing variants
commonly affect DNA repair genes8–10, however, pathogenicity of
such variants is often challenging to predict. Because of the above,
other types of molecular markers may be more useful to infer
about failed DNA repair. This is exemplified in ”BRCAness” – a
gene expression signature that suggests a deficient homologous
recombination (HR) pathway, even in the absence of deleterious
genetic variants in the BRCA1/2 genes.

In addition to gene expression, mutational signatures–readouts
of genome instability–can characterize DNA repair deficiencies.
One common type of signature describes relative frequencies of
somatic single-nucleotide variants (SNV) across different trinu-
cleotide contexts. Certain mutational signatures were found to be
associated with failures in DNA mismatch repair (MMR) and HR
pathways11 as well as DNA polymerase proofreading12,13 and
base excision repair (BER)14–16 and nucleotide excision repair
(NER)17 failures. Inducing DNA repair deficiencies in cancer cell
lines is able to reproduce some of these signatures18–21. Other
types of mutation signatures based on small insertions and
deletions (indels)9 and on structural variants22 are also starting to
be introduced.

Because mutational signatures describe the state of the DNA
repair machinery of a cancer cell, they may be able to serve as a
drug sensitivity marker. This is exemplified by a mutational sig-
nature associated with pathogenic variants in BRCA1 and BRCA2
genes11,23, thus identifying HR deficient tumors. The signature is
common in ovarian and breast cancers, but genomic analyses
have detected it across other cancer types24,25, suggesting the
potential for broad use of drugs that target HR-deficient cells,
such as PARP inhibitors. To this end, genomics-based predictors
that draw on mutational signatures of HR deficiency have been
developed26,27. We propose that this principle may extend to
other types of mutational processes, potentially revealing tumor
vulnerabilities.

Human cancer cell line panels provide an experimental model
for the diversity in tumor biology that is amenable to scaling-up.
Drug screens and genetic screens on large cell line panels28,29

have identified correlations between the sensitivity to a drug (or
to a genetic perturbation), and the genetic, epigenetic, or tran-
scriptomic markers in the cell lines. Encouragingly, genetic
markers known to have clinical utility (e.g. BRAF mutations
for vemurafenib, EGFR mutations for gefitinib, BCR-ABL
fusion for imatinib sensitivity) are also evident in cell line panel
data analyses30, suggesting potential for discovery of further
useful genomic markers.

Here, we used large-scale cell line data to investigate the
hypothesis that mutational signatures in cancer genomes

constitute markers of drug sensitivity. Quantifying somatic
mutational signatures in cell line genomes is however difficult,
because a matched normal tissue from the same individual is
typically not available and thus cannot be used to remove the
abundant germline variation. After filtering the known germline
variants listed in population genomic databases31,32, somatic
mutations are still greatly outnumbered by the residual germline
variants (Fig. 1a, b), which may confound downstream analyses
such as the inference of mutational signatures. We introduce a
method to infer somatic mutational spectra from cancer genomes
without a matched control sample, while adjusting for the resi-
dual germline variation. We apply this to infer trinucleotide
mutation signatures in cancer cell line exomes, and identify
associations with sensitivity to drugs and to genetic perturbation
across cell line panels. Replication analyses across independent
data sets indicated that mutational signatures are broadly
applicable markers of drug sensitivity, matching or exceeding
common genomic markers such as oncogenic driver mutations or
copy number alterations.

Results
An ancestry-matching approach removes subpopulation-
specific trinucleotide spectra to accurately infer mutation
signatures. A substantial amount of the germline variation in a
cell line exome cannot be removed by filtering based on minor
variant frequency in population databases (Fig. 1b). Therefore we
devised an approach to measure the somatic trinucleotide
mutation spectrum – the input for the inference of mutational
signatures33 – while rigorously adjusting for the contamination
by the residual germline mutation spectrum.

Because mutational processes differ across human
populations34, there is potential for this to confound analyses of
the somatic mutation spectrum. Given the high number of
residual germline variants post-filtering (Fig. 1b), even slight
differences in the germline spectrum can cause large deviations in
the observed spectrum, which is a mix of somatic and germline
variation.

To address this, we implemented an ancestry-matching
procedure, looking up the individuals with a similar ancestry to
each cell line’s ancestry. In particular, we clustered the cell line
exomes together with germline exome samples from the TCGA
data set, grouping by principal components derived from
common germline variation (Fig. 1e; Methods section). The
TCGA individuals clustered with a cell line provided a base-
line germline mutational spectrum, which can be subtracted from
the observed mutation spectrum to estimate the somatic mutation
spectrum.

We benchmarked our ancestry-matching procedure for
the accuracy of reconstructing the correct somatic mutation
spectrum in a cancer cell line exome. To this end, we used SNV
calls from TCGA cancer exomes where the matched normal was
ignored, thus simulating the mutation calls that would be
obtained from cell line genomes (see Methods section). We then
compared the reconstructed somatic SNV mutation spectrum
to the true somatic spectrum, obtained by contrasting tumor
exomes with the matched healthy tissue exomes from the same
individuals.

Ancestry-matching improves over the commonly used strategy,
that is simply filtering out known germline variants according to
population genomic databases (Fig. 1c, 1d and Supplementary
Fig. 1d); error in somatic trinucleotide frequency spectrum
(Methods section) is 68.8 versus 124.1 across all tissues, while for
comparison, the error expected by ‘self-similarity’ via a bootstrap-
resampling of mutations from the same tumor samples would be
67.5, close to that obtained via ancestry-matching.
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We considered various numbers of population clusters
according to the error in reconstruction of the correct somatic
trinucleotide spectrum. Selecting three clusters, expectedly,
recovers the major ethnicity groups (European, Asian and
African, Supplementary Fig. 1a) and further increasing the
number of clusters to 13 minimizes the error in reconstructing
true somatic trinucleotide mutation spectra (Fig. 1c; error is 68.8

for 13, versus 71.5 for 3 clusters; this improvement is modest and
so the 3-cluster solution may also provide a satisfactory baseline
for downstream mutational spectra analyses).

Encouragingly, comparing the 13 ancestry clusters sorted by
self-reported ethnicity (Supplementary Fig. 1b), intra-ethnicity
trinucleotide mutational profiles are more similar than the inter-
ethnicity profiles (Supplementary Fig. 1c), and a PC analysis of

Fig. 1 Evaluation of the ancestry-matching method to infer somatic mutation spectra on exomes without a matched normal control. a, b Germline
variants greatly outnumber somatic mutations in exomes of various tumor types (n= 52 BRCA, 33 KIRC, 53 GBM, 19 BLCA, 15 LUSC, and 67 LUAD cancer
exomes) (a), also after attempting to filter out germline variants according to the minor allele frequency (MAF) of variants listed in the gnomAD database
(n= 450 cancer exomes) (b). The center line of box plots denotes medians of data points and the box hinges correspond to the 1st and 3rd quartiles, while
whiskers extend to 1.5× IQR from the hinges. Data points beyond the end of the whiskers are shown individually. c Error between the real somatic 96 tri-
nucleotide profiles and the profiles obtained with the ancestry-matching procedure, after various numbers of clusters (based on principal components of
common germline variants; see Methods) are considered (n= 450 cancer exomes). d Comparison of the ancestry-matching method (with the number of
clusters set to 13), the baseline procedure (variant filtering by population MAF<0.001%), regressing out mutational signatures reported as related to
germline variants (signatures 1 and 5, and SNP signature31,110), and the error expected by chance (estimated by bootstrapping mutations). P-values by two-
sided Wilcoxon rank-sum test (n= 450 cancer exomes). e A schematic representation of the ‘ancestry matching’ procedure. For compactness, the X-axes
on the mutation spectra illustrations list only a subset of mutation types. PCA, principal components analysis. Error bars in panels b–d are the standard
error of the mean. Source data are provided as a Source Data file.
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the trinucleotide spectra of the rare variants separates the major
ethnicity groups (Supplementary Fig. 1d). This is consistent with
reports of differential mutagenic processes in the human germline
across ancestral groups – for example, the HCC>HTC (H = not
G) variants were reported to be increased in Europeans,
NCG>NTG mutations in Native Americans and NAC>NCN
and TAT>TTT in some East Asians34–36. These reports, together
with our benchmarking using simulations, support the use of
ancestry-specific baselines in inferring somatic mutational spectra
of unmatched cancer genomes, such as cell line genomes.

We applied the ancestry-matching methodology (Fig. 1e) to
exome sequencing data of 1071 cancer cell lines37, yielding their
somatic trinucleotide spectra. On this data, we performed de novo
discovery using an NMF approach, broadly as described by
Alexandrov et al.33 (with certain modifications, see Methods
section), where we extracted those NMF solutions that resembled
previously reported tumor mutational signatures9 of single base
substitutions (SBS). We tested a number of variations on the data
filtering and the mutation extraction methodology (Supplemen-
tary Data S1) to improve agreement with the known set of SBS
signatures9 and their known distribution across tissues, as well to
improve power of the set of mutational signatures to predict drug
responses in the cell lines (Methods section; Supplementary
Data S1). To further demonstrate the utility of the ancestry
matching approach in combination with NMF signature extrac-
tion, we again used the set of simulated cell line exomes as above,
where the true somatic mutation signatures are known because
the matched-normal was available. The ancestry-matching
significantly improves the cosine similarities towards true NMF
signature spectra, compared with the usual approach of filtering
population variants (p= 0.021, Wilcoxon test; Supplementary
Fig. 1g) and similarly so for the signature exposures (p= 0.017;
Supplementary Fig. 1g). We conclude that our implementation of
ancestry-matching benefits NMF mutation signature extraction in
unmatched cancer samples; we recognize that future variations on
this methodology might bring improvements.

We jointly inferred trinucleotide (or SBS) signatures together
with a set of indel mutational features. Examining the SBS part of
the spectrum, this yielded 30 cell line mutational signatures that
very closely match (at a cosine similarity cutoff ≥0.95) the known
tumor SBS signatures, and a further 22 cell line signatures that
match known SBS tumor signatures (at a stringent cosine
similarity ≥0.85 and <0.95; a randomization test estimated that
a ≥0.85 cosine threshold corresponds to a 1.8% FDR in matching
the correct SBS, Supplementary Fig. 4b).

The former group was labeled with the name of the
corresponding SBS signature, while the latter similarly so plus
the suffix “L” (for “like”). In some cases, our cell line signatures
were similar to more than one previous tumor SBS (Supplemen-
tary Fig. 4a) and they were named such as to make this evident,
for instance our SBS26/12L matches the DNA mismatch repair
(MMR) failure signature SBS26 and a possible MMR failure
signature SBS1238 (more similar signature listed first). Note that a
comparable degree of ambiguity is also observed among some of
the known tumor SBS mutational signatures (Supplementary
Fig. 5). The full set of 52 mutational signatures we inferred
and their ‘exposures’ across cell types are visualized in
Supplementary Figs. 2 and 3, and corresponding data is provided
as Supplementary Data S2 and S3.

Additionally, there were five mutational signatures that appeared
specific to cell lines (SBS-CL), meaning they did not closely match
one of the signatures from current tumor catalogs (Supplementary
Fig. 2 and Supplementary Data S2). These mutational processes
may be evident only in rare tumor types or they may be active
predominantly in cultured cells rather than in tumors. Some might
originate from the incomplete separation of other signatures

(Supplementary Fig. 6 shows examples). Finally, some SBS-CL may
reflect contamination with residual germline variation, as well as
with sequencing artifacts, similarly as was recently reported for
many SBS signatures recovered from tumor genomes9.

Mutational signatures predict cell line drug response more
accurately than oncogenic mutations or copy number altera-
tions. Genetic and epigenetic alterations in cancer cell lines are
often investigated as markers of sensitivity to chemical
compounds29,30. We hypothesized that mutational signatures in a
cell line genome can serve as similarly informative markers of
drug sensitivity or resistance. We compared their predictive
ability to that of the markers commonly used to predict drug
response in cell lines: oncogenic mutations (in 470 cancer driver
genes30), recurrent focal copy number alterations (CNAs at 425
genes30), and DNA methylation data at informative CpG islands
(HypMet at 378 genes30). Additionally, we examined gene
expression patterns (mRNA levels of 1564 genes that are either
represented in the L1000 assay39 or are known drug target
genes40), because gene expression can be highly predictive of drug
response30,41, possibly because it reflects differences between
various cancer types and subtypes.

We predicted the sensitivity (log IC50 concentration) of a
panel of 930 cell lines (separately for 29 cancer types that had a
sufficient number of cell lines available) to a set of 518 drugs from
the GDSC database37. In particular, we used Random Forest (RF)
regression applied to the complete set of genetic or epigenetic
markers (listed above) in an individual cell line as features
(Fig. 2a). In addition to mutational signatures inferred herein, we
also considered the cell line mutational signatures reported by
two recent studies31,32, obtained using approaches that did not
account for ancestry and that have moreover fit the data to pre-
existing sets of SBS signatures, rather than extracting signatures
de novo from cell line genomes (see Methods section).

Firstly, mutational signatures predicted drug sensitivity
significantly better than all other tested types of alterations:
the increase in accuracy of RF models over CNAs, DNA
hypermethylation, and oncogenic mutation features is significant
(at p < 0.05, by corrected Friedman test followed by the post-hoc
Nemenyi test on ranks; Fig. 2b; Methods section; average rank for
mutational signatures was 3.75 while for other types of (epi)
genetic features it was 4.20–4.49, considering all RF models).
Secondly, mutational signatures found by our ‘ancestry matching’
approach perform significantly better than other cell line
signatures recently reported31,32, comparing across the set of cell
lines that overlap between the publications (Fig. 2b, c). Moreover,
these previous sets of cell line mutational signature exposures
were less predictive of drug sensitivity than were CNAs,
oncogenic mutations and DNA methylation, suggesting the
utility of adjustment for germline spectra contamination prior
to mutational signature inference (Fig. 2b–d).

Next, we applied a different test that considers the average error
in predicting the drug sensitivity profile (relative RMSE of a RF
model in crossvalidation; Fig. 2a), averaged across all drugs in a
given tissue. In most cancer types, the mutational signatures
obtained herein were better predictors of drug response, than all
the usual genomic and epigenomic features (13 out of 16 tested
cancer types compared with DNA hypermethylation, 10 out of 16
for CNAs, and 10 out of 16 for oncogenic mutations). Also, in
most cancer types (Fig. 2a) our cell line signatures significantly
outperformed recent methods to infer mutational signatures31,32,42

naive to germline mutational spectra (in 22 and 25 out of 27 cancer
types for the two previous methods that used the same set of cell
lines, Fig. 2a, and in 11 out of 16 cancer types on a set of
overlapping cell lines for a third method (Supplementary Fig. 7a);
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p < 0.0001, p < 0.0001, and p= 0.041, respectively, Wilcoxon test
for decrease of relative RMSE).

Gene expression was overall very highly predictive of drug
response, (Fig. 2b–d), consistent with recent reports30,41. We
asked if the predictive power of gene expression can be
complemented by additionally including mutational signatures
and/or various sets of genetic markers. We predicted the drug
response profile in RF models as above (Fig. 2a), but here by
using combinations of marker types with gene expression, and
tallying the predictive RF models (drug-tissue pairs with better-
than-baseline RRMSE in crossvalidation; Methods section).
Notably, gene expression is complemented by mutational
signatures and also by other types of features, yielding a higher

percentage of predictive RF models when markers are combined
than with gene expression alone (Fig. 2d, e). If gene expression
markers are unavailable, the mutational signatures were still
complementary to oncogenic mutations, CNAs, or DNA
methylation (Fig. 2d).

Next, we considered the complementarity analyses at the level
of individual drugs, asking if the profile of drug sensitivity that
can be predicted by a combined RF model (e.g. gene expression
and mutational signatures) could also have been predicted by the
two RF models drawing on the individual sets of features – on
gene expression only, or on mutational signatures only (Fig. 2e).
The number of RF models where gene expression by itself is not
predictive but mutational signatures are predictive is substantial
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Fig. 2 Prediction of drug response with mutational signatures and other molecular data types. a Predictive performance (RRMSE, relative root-mean-
square error) of drug response prediction with mutational signatures (“MSigs") reported here and previously31,32 and other data types (oncogenic
mutations (“Mut”), copy number alterations (“CNAs”) and DNA hypermethylation (“HypMet”)). P-values of paired one-sided Wilcoxon signed rank test
are reported on the plots. Dashed line denotes the diagonal. Bottom right panel shows a schematic of how RRMSE for each tissue was estimated, where
“Sig” is mutational signature or other marker (CNA etc.), “Cell” is cell line, “XV” is crossvalidation, and “Predict” implies a Random Forest model. b Average
rank diagrams for the performance (RRMSE) of the drug response prediction from various sets of markers, using Random Forest. “This work” refers to the
mutational signatures inferred here, while “ref. 31.” and “ref. 32.” refers to prior sets of mutational signatures. Each graph shows: the ranking among the
different marker sets (those at the left-hand side are the best performing) and the significant differences between pairs of marker sets (if their ranks are at
least critical distance (CD) apart, the difference in predictive performance is statistically significant at p < 0.05, by the Nemenyi post-hoc test, two-sided).
The groups of marker sets for which there is no significant difference are connected by black lines. c Tests shown separately for four tissues-of-origin with
the highest number of cell lines in our panels. d The percentage of the Random Forest models that are predictive of drug response, defined as having a
predictive error lower than the one of an uninformative default model (predicts the average log IC50 for every cell line). Expressed relative to the total
number of testable drug-tissue pairs. e The percentage of models that are predictive with gene expression but not another feature type (“exp_only”), by
other feature type but not with gene expression (“other_only”), by either model (“either”), or only by a combination of both (“combination”). Source data
are provided as a Source Data file.
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(891 drug-tissue pairs, plus 432 where only a combination of
signatures and expression is predictive). This is higher than the
number of drug-tissue pairs where gene expression is not
predictive but driver mutations are (563 plus 352), and similarly
so for CNA (633 plus 347). In addition to gene expression, using
DNA methylation as a baseline also supports that response
profiles for many drug-tissue combinations can be predicted
only by mutational signatures (Supplementary Fig. 7b). This
suggests that the predictive signal in mutational signatures
does not simply reflect cancer subtype or cell-of-origin, at least
to the extent that subtype can be identified via gene expression or
DNA methylation patterns. Overall, mutational signatures,
considered collectively, can complement gene expression and
other types of markers in predicting drug sensitivity profiles of
cancer cells.

Associations with drug response that replicate in independent
data sets. Because of reproducibility concerns in large-scale drug
screens43–45 that might stem from technical reasons or from
cancer cell line evolution during culture, we asked if the asso-
ciations between mutational signatures and drug responses
replicate across data sets. To this end, we tested for associations
involving various markers, with the additional condition that
the associations also replicate in an independent data set. We
implemented a randomization-based procedure that tests that the
smallest effect size (Cohen’s d statistic) across both datasets is
above chance (Fig. 3a; Methods section). A value of d ≥ 1, typi-
cally considered a large effect size, implies that a difference in
mean drug sensitivity (log IC50) between the cell lines positive for
a marker and those negative for a marker is greater than the
pooled standard deviation (of the log IC50) of the two sets of cell
lines. These replication tests were performed on binarized
mutational signatures i.e. the signature present/absent indicator
variables (Supplementary Fig. 15b), considering different cancer
types individually (Supplementary Data S4). Additionally the
same tests were performed on the usual markers in cell line
screening analyses, including oncogenic driver mutations
(Fig. 3b–e), CNAs (Fig. 3e), and promoter DNA methylation30.

We considered three different types of replication analyses: an
external replication in an independent drug screening data set,
internal replication with multiple drugs affecting the same target,
and an external replication using CRISPR/Cas9 gene knockout
fitness screening data. Randomization p-values from these three
replication methods (across various tissues) were rarely inflated
for mutational signatures, and in fact commonly exhibited
deflation (mean lambda across tissues 0.68–1 for different
replication methods, Supplementary Fig. 8) suggesting an over-
all conservative bias in the replication test as implemented.
The few tissue-method combinations that did exhibit inflation in
p-values (lambda >1.3; Supplementary Fig. 8) were omitted from
further analyses of the associations; the full set of associations
are nonetheless included in the Supplementary data, for
completeness.

Firstly, we performed a replication analysis where the drug
association data from the GDSC was tested against another drug
screening data set: PRISM (derived from an experimental
methodology based on pooled barcoded screens46; 348 cell lines
and 178 drugs overlap with the GDSC set). In total, 290 drug-
mutation signature associations were robustly supported across
both GDSC and PRISM (d ≥ 0.5 and same direction of effect in
both datasets and additionally requiring randomization test
FDR<15%; adjustment using the q-value method47), observed
across diverse tissues and diverse signatures (Fig. 4a, b and
Supplementary Fig. 12a, b). This exceeds the number of drug
associations replicated in PRISM involving driver mutations (37),

copy-number changes (55), or DNA methylation (64) in the same
test. We list the associations in Supplementary Data S5.

Given that the amount of cell lines available to the replication
analysis is reduced and thus statistical power is limiting,
particularly for some tissues (Supplementary Fig. 13b), we suggest
that some associations at permissive thresholds (here, nominal
p < 0.005) might be of interest for use as supporting evidence,
corroborating other associations (see below).

Secondly, we performed an internal replication analysis within
GDSC, enforcing that associations must be detected with two or
more drugs that share the same molecular target. In total, 228
drugs in the GDSC data could be tested in this “same-target”
analysis. Effectively, multiple drugs serve as pseudoreplicates, and
additionally this test may help discard associations due to off-
target effects, which are more likely to differ between two drugs
than their on-target effects. Here, we identified 971 significant
associations for mutational signatures, 206 for driver mutations,
288 for copy-number changes, and 762 for promoter DNA
methylation (at effect size d > 1 and FDR < 15%) (Fig. 4a, b; data
in Supplementary Data S7 and S8 for the associations between the
default FDR<15% threshold, and the permissive threshold at
p < 0.005, respectively).

Some associations overlapped between the same-target and the
GDSC-PRISM replication analyses, suggesting more robustness:
Supplementary Data S8 contains those replicated associations
that were seen either across multiple cancer types, and/or across
multiple drugs that target the same pathway, and/or across
different replication methods (including also CRISPR genetic
screens, see below). We suggest that this ‘silver set’ of 3911
associations, where each replication at a FDR < 25% is further
supported by one or more additional replications at a suggestive
(nominal p < 0.005) threshold, to be potentially suitable for
further analyses or follow-up.

Integrating drug screening data with genetic screening data to
obtain robust associations. As a third type of replication ana-
lysis, we prioritized cancer vulnerabilities by intersecting the drug
sensitivity data with genetic screening data sets. Our rationale was
that a biological process may be targeted similarly by pharma-
cological inhibition of a protein, or by editing the genes that
encode the corresponding protein. In specific, we examined
sensitivity to CRISPR/Cas9-mediated knockouts that target the
protein-coding genes, across a panel of 517 cell lines48 that
overlapped the GDSC cell lines. We identified many associations
(at effect size d > 0.5 and FDR<15%) with conventional markers –
oncogenic driver mutations (n= 123), copy number alterations
(n= 100), and DNA methylation (n= 86) – that replicated across
drug and genetic data (Supplementary Data S6, Figs. 4 and 3e,
and Supplementary Fig. 9b, c).

Demonstrating the utility of this test, we recovered well-known
examples of the oncogene addiction paradigm, such as the breast
and esophageal/gastric cell lines with ERBB2 (HER2) amplifica-
tion being sensitive to inhibitors of EGFR and ERBB2 (afatinib
and 4 other drugs), and also to the ERBB2 gene knockout
(replication FDRs all <15%). Similarly, we recapitulated the
known associations between amplifications of a chromosomal
segment 7q31 including the MET oncogene, and sensitivity of
esophageal/gastric cancer to crizotinib49,50 and also 3 other MET
inhibitors (FDRs < 6%; Fig. 3E). The BRAF mutations in skin and
colorectal cancer likewise sensitize to different BRAF inhibitors in
both the GDSC and PRISM drug data, and also to BRAF gene
disruption (Fig. 3b and Supplementary Fig. 9d). Conversely, we
note that some oncogene mutations can also confer drug
resistance e.g. NRAS-mutant leukemia cells (Supplementary
Fig. 10, n= 38 hits in Fig. 4a), consistent with prior reports
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Fig. 3 Detecting robust associations between genetic or epigenetic markers and drug sensitivity by replication across measurements. a A schematic of
the randomization test methodology to detect replicating associations using three different tests: (i) consistent effects of a drug between two screening
assays (GDSC/PRISM), (ii) effects of a drug consistent with effects of knockout of the target gene (GDSC/PSCORE), and (iii) effects consistent across
different drugs that share the same molecular target (GDSC/GDSC or “same target”). Box plots and scatterplot are illustrative. b–d Examples of replicated
associations of a known example of oncogene addiction (to BRAF, b) and of additional cancer vulnerabilities associated with mutations in tumor suppressor
genes (ARID1A, c; TP53 d). Y-axes show a Z-score derived from either the ln IC50 value (i.e. drug sensitivity, in columns labeled “GDSC” or “PRISM”) or
from the CRISPR essentiality score (in the column labeled “PSCORE”). Horizontal brackets show FDR for replicated significant difference between wild-type
and mutant genotypes, obtained via a randomization test in panel a, where color denotes the type of the replication test (“GDSC”, “PRISM” or “PSCORE”).
The center line of box plots denotes medians and the hinges correspond to the 1st and 3rd quartiles, while whiskers extend to 1.5× IQR from the hinges. e,
Effect sizes of markers that associate with drug response in the GDSC drug screen (X-axes) and with response drug target gene knock-out in the Project
SCORE genetic screen (Y-axes), shown separately for copy number alterations (CNA) and mutations in cancer genes (Muts). Gray points represent all
tested associations, while colored points denote the statistically significant associations that also meet an effect size threshold. Blue lines are the contours
of the 2D kernel density estimates. Representative points are labeled. Drug names on grouped labels (“Muts” sub-panel) are ordered by their appearance
on the plot from left to right. Source data are provided as a Source Data file.
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(discussed in Supplementary Note 1). These and other striking
associations with gene mutations, CNA, and promoter DNA
methylation that replicated in the genetic screening data are
highlighted in the global data overview in Fig. 3e and
Supplementary Fig. 9c.

In addition to oncogene addiction, replicated associations
can suggest ways to target mutated tumor suppressor genes via
synthetic lethality. One example is a CDKN2A deletion that
sensitizes brain cancer cells to palbociclib (a CDK4/6 inhibitor)
and to knockouts in CDK4 and CDK6 genes. In contrast, RB1
mutations were associated with resistance, consistent with the

biological roles of these genes, as well as prior preclinical studies
(details in Supplementary Note 1). This demonstrates the power
of the joint analyses of drug and genetic screening data here and
elsewhere51, suggesting that the other associations we identified
here (Supplementary Data S6) provide cancer dependencies
promising for follow-up. For example, our analysis identifies
vulnerabilities of TP53-mutant cells to manipulating the activity
of the CHK2/CDC25A/CDK2 axis across five different cancer
types (Fig. 3d and Supplementary Fig. 9e), echoing prior work on
therapeutic interventions on CHKs in TP53-deficient cells
(Supplementary Note 1). These examples also illustrate how an
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Fig. 4 Tally of the significantly replicated associations of drug sensitivity or resistance with mutation signatures and other markers. a Comparison of
the number of statistically significant associations (FDR<15% by randomization test, additionally requiring an effect size d > 0.5 for GDSC/PRISM and
GDSC/PSCORE tests, and d > 1 for the GDSC/GDSC (same-target) test) per feature, among mutational signatures (“Signatures”), oncogenic
mutations (“Muts”) and copy number alterations (“CNAs”) in the three types of replication tests (see Fig. 3a). Features are ranked by the total number of
significant associations, either for drug sensitivity (negative side of X-axis) or resistance (positive side of X-axis). b The number of different mutational
signatures that have statistically significant associations across various cancer types (at FDR<15%; we consider signatures that have >1 significant
association per cancer type), in the three replication tests. Source data are provided as a Source Data file.
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integrated analysis of drug screening data with genetic screening
data can reveal drug effects exerted via secondary drug targets
(e.g. likely CHK2 for the MK-8776 inhibitor of CHK1; Fig. 3d, see
discussion in Supplementary Note 1).

We highlight a robustly supported synthetic lethality example
involving mutations in the ARID1A tumor suppressor gene and
the inhibition of the AKT2 gene or protein (Fig. 3c). In particular,
ARID1A mutant colorectal cell lines are more sensitive to the
knock-out of the AKT2 gene by CRISPR, as well as to the pan-
AKT inhibitors GSK690693 and capivasertib/AZD5363 (FDR =
6% and 12% in the replication test, respectively). The same is
observed in ovarian cancer cell lines, again involving AKT2
knockout and the same two inhibitors (at FDR= 9% and 12%,
respectively). This is supported by additional AKT inhibitor
drugs: afuresertib (FDR=6%), AKT inhibitor VIII (FDR= 21%),
and uprosertib (FDR= 5%) in colon, and MK-2206 (FDR= 9%)
in ovary (Supplementary Data S6). Further evidence for an
interaction between these genes is found in tumor genomic
analysis. The AKT2 oncogene can be amplified in ovarian,
endometrial, pancreatic and other cancer types, while the ARID1
tumor suppressor commonly bears truncating mutations in many
cancers. In tumor genomes, AKT2 alterations significantly co-
occur with ARID1A alterations (OR= 2.0, FDR<0.1% in MSK-
IMPACT cohort of 10,945 samples;52 replicated at OR= 1.4,
FDR<0.1% in an independent TCGA pan-cancer cohort of
10,967 samples; analysis via cBioPortal53). These genomic
associations support that the AKT2 amplifications may bring a
selective benefit to ARID1A-mutant tumors. Overall, our analyses
solidify the notion that the PI3K/AKT/MTOR signaling inhibi-
tion is a vulnerability of ARID1A-mutant cells54–57, as reported
before for individual examples of cell lines sensitized to AKTi
drugs upon silencing of ARID1A56, and we further suggest
specifically AKT2 as an opportune point of intervention.

Next, we applied this same statistical methodology (Fig. 3a;
Methods section) to identify replicated drug sensitivity associa-
tions involving mutational signatures in cell line genomes.

Mutational signatures associated with sensitivity both to
pharmacological and genetic perturbations. As a positive con-
trol in a study of mutational signatures as markers, we considered
a recently reported vulnerability of cell lines that are
microsatellite-instable (MSI) and therefore deficient in the DNA
mismatch repair (MMR) pathway, which do not tolerate the loss
of the WRN gene48,58–60. MMR deficiencies in tumors are known
to associate with MSI and with trinucleotide mutational sig-
natures SBS6, 15, 21, 26, and 449 (and additionally SBS14 and 20
which result from MMR failure concurrent with deficiencies in
replicative DNA polymerases). In a joint analysis of MSI-prone
cancer types (colorectal, ovary, stomach, uterus), we found links
between the MMR SBS signatures that we inferred in the cell line
exomes and the sensitivity to WRN knockout. However, levels of
statistical support were variable across the MMR signatures
(FDRs <0.01%,<0.01%, <0.01%, 11%, 18%, 21%, and n.s.
[associated with resistance]) for SBS20, 15, 6, 26/12L, 14, 21, and
44L, respectively; Supplementary Fig. 11a). Additionally, we
noted some additional signatures with a high weight on the indel
components – and thus might be MMR-related: SBS33L, SBS54,
and SBS-CL1 (Supplementary Fig. 2) – also predicted sensitivity
to WRN loss (Supplementary Fig. 11), in case of SBS33L with a
high effect size. Thus, some MMR-associated signatures are more
robust markers for WRN inhibition (particularly the C > T-rich
SBS15 and SBS6, as well as SBS20) than the other MMR failure-
associated signatures (such as the T > C rich 26, 21, or 44).
Conceivably, this might be because these signatures reflect dif-
ferent types of MMR failure that confer differential requirements

for WRN activity. Overall, the ability to recover the known WRN
dependencies of MMR-deficient cell lines estimated via trinu-
cleotide mutational signatures supports the utility of our meth-
odology to infer mutational signatures in cell line genomes.

Beyond WRN disruption, the MMR signatures as well as other
mutation signatures can predict sensitivity to many perturbations,
including those that the MSI status nor the other genetic markers
would not predict (Supplementary Fig. 9a; we note that the
converse is also true, at least for the few cancer types where MSI
labels are available).

Next, we systematically examined all mutational signatures for
the overlap between associations in the GDSC drug screen and
Project SCORE genetic screen. This yielded 130 associations (at a
randomization FDR < 15%, and additionally requiring an effect
size of d > 0.5 in both the genetic and the drug screens) that
replicated across data sets – a higher number than for oncogenic
driver mutations, CNAs, and DNA methylation (123, 100, and 86,
respectively, at the same FDR threshold). These associations
(Fig. 4, Supplementary Fig. 12c; full list in Supplementary
Data S6) involved k.o. in 64 different genes, indicating that
mutational signatures associate with a variety of target genes and
suggesting potential points of intervention for follow-up. The
number of replicated associations involving mutational signatures
highly ranked by this replication analysis (such as the
chemotherapy-associated SBS25L, the haloalkane exposure-
associated SBS42L, and the signature possibly related to NER
deficiency61 SBS8L/4L; Fig. 4b, Supplementary Fig. 12a; n= 12, 8,
and 7 replicated associations at FDR 15%, respectively) broadly
matches the number of replicated associations involving common
driver mutations such as EGFR or TP53 or KRAS (n= 18, 17, and
13, respectively), or known copy number change events such as
ERBB2 gain (n= 17 replicated associations in Project SCORE)
(Fig. 4a and Supplementary Data S6). We also show the tally of
associations at a more permissive 25% FDR in Supplementary
Fig. 12, further supporting how mutational signatures provide
markers as commonly associated with drug response as the usual
markers based on driver mutations and CNA.

We note that in this and further analyses we have,
conservatively, stratified colorectal cancer cell lines into MSI
and MSS (association counts without stratification are in
Supplementary Fig. 13a and Supplementary Data S9), based on
MSI being common in colorectal cell lines, and MSI status being
strongly associated with mutational signatures9,38,62.

Robust associations involving mutational signatures replicate
across multiple cancer types. We next focused on those drug
associations involving mutational signatures that recurrently
replicated across more than one replication method (see Fig. 3a)
and/or more than one cancer type (‘silver set’, Supplementary
Data S10). We noted that some associations in this set recurred in
three or more methods and/or tissues, thus we introduced a more
stringent tier of hits, with a higher priority for follow-up. These
‘golden set’ hits recurred in at least three different tissues or in
three different tests with effect size d > 0.5 and significant at
p < 0.005, and at least once at FDR < 25%. This resulted in 995
higher-priority associations (tallying both mutational signature
associations, and the driver mutation and CNA associations;
Supplementary Data S8).

A common occurrence in this higher-confidence association
set was involvement of mutational signatures that were associated
with DNA repair failures in previous analyses of tumor genomes.
This included: MMR failures (various SBS; listed in Fig. 5a, b),
BER failures (SBS36/56L15,63,64, SBS30L/7bL/11L14,65), likely
NER failures (SBS8L/4L) and replicative DNA polymerase failures
(particularly SBS14 and SBS20; additionally SBS56/10aL/36L may

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30582-3 ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:2926 | https://doi.org/10.1038/s41467-022-30582-3 | www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


be in this group). As tentatively DNA repair-associated
signatures, here we additionally considered6,9,66 SBS18/36L based
on the similarity of the spectrum to the SBS36/18 and because it
was found in MUTYH-variant patients63,67, and additionally
SBS33L, SBS54, and SBS-CL1 because they have prominent indel
components and were associated with sensitivity to WRN loss
(Supplementary Fig. 11). Those DNA repair-associated signatures
encompass 278 of 701 associations involving mutational signa-
tures in this high-priority set; some individual examples are
discussed below. Therefore, mutational signatures resulting from
DNA repair failures often result in drug vulnerabilities.

When inspecting the overall balance of sensitivity versus
resistance associations, we noted that driver mutations and CNA
present a mix of sensitizing and resistance associations. These
may be unevenly distributed across genes: see NRAS example
mentioned above, biased towards resistance, while EGFR is biased
towards sensitivity (perhaps because mutant EGFR is a target for
many approved drugs).

By analogy to this, we also identified two opposing trends in
the mutational signatures association tally. Firstly, the signatures
associated with DNA repair failures, as listed above, tend to be
more often sensitizing (considering relative frequencies of
sensitivity to resistance associations shown in Fig. 5c; also see
top of the plot in Supplementary Fig. 12a for breakdown by type
of test).

Secondly, there is a group of mutational signatures tending
towards resistance associations; these signatures also exhibit a
higher overall number of associations (Fig. 5c; bottom of plot in
Supplementary Fig. 12a). In this group, 6 out of top-7 signatures
were previously linked to exposures of mutagenic chemicals:
SBS25L (unspecified chemotherapy), SBS18/36L (reactive oxygen
species), SBS42L (haloalkane exposure68), SBS11 (a DNA
methylating agent, the drug TMZ), SBS22L (an agent generating
bulky DNA adducts, aristolochic acid69), and SBS4/45L (mix of
agents from tobacco smoke, where the mutagenesis likely results
mainly from DNA adducts by polycyclic aromatic hydrocarbons).
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Fig. 5 Highlighted examples of robustly supported associations involving mutational signatures. a All tested associations between AKT inhibitors and
DNA mismatch repair mutational signatures, across all three replication tests (by the “two-way” randomization test, see Methods section). Each bar
represents a p-value of one association. For associations with effect size <0.2, p-values were not calculated in the randomization procedure and are here
shown as having p= 0.5. b Associations having p < 0.005 between AKT inhibitors and individual DNA mismatch repair signatures. c The tally of significant
associations at FDR < 25% across all three replication tests. The * and ° symbols denote groups of mutational signatures; see key embedded within the
panel. d The average log2 ratio of observed vs. expected frequencies of occurrence of drug target pathways in resistance associations (p-value < 0.005)
with signatures of chemical exposure, over the top 6 signatures by the number of resistance associations (SBS25L, SBS18/36L, SBS42L, SBS11, SBS22L, and
SBS4/45L). Source data are provided as a Source Data file.
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Of note, among these, the oxidative damage SBS18/36L does
show some sensitizing associations as well (Fig. 5c). These six
signatures of mutagen exposures associated with resistance to
various drugs, which are overall enriched in drugs targeting e.g.
chromatin histone modification, DNA replication, the p53
pathway, JNK and p38 signaling, and ABL signaling (Fig. 5d
and Supplementary Fig. 15 breakdown per signature). This data
suggests that, overall, mutational signatures of prior chemical
exposures in cancer cells commonly predict resistance to future
drug exposures.

Mutational signatures associated with various DNA repair
failures predict drug sensitivity. A manual curation of the sets of
robust associations (Supplementary Data S8) reveals that several
MMR signatures associate with sensitivity to AKT serine/threo-
nine kinase inhibitors (Fig. 5a, b). This is seen consistently across
many tissues: in colorectal, skin, lung (small cell), and brain
(associations at FDR<15%), and additionally in prostate, ovary,
and stomach/esophagus cancers (associations at permissive FDR
thresholds, all with p < 0.005); see Fig. 6a–c for examples invol-
ving SBS26/12L, SBS14, and SBS20, respectively. The associations

GDSC/GDSC (same target) GDSC/PRISM GDSC/PSCORE
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Fig. 6 Associations with drug sensitivity or resistance that replicate in independent datasets. a–f Examples of associations of mutational signatures with
drug sensitivity that replicated (using tests in Fig. 3a) multiple times, across different cancer types and/or different types of replication tests. Y-axes show
a Z-score derived from either the ln IC50 value (drug sensitivity: “GDSC” or “PRISM” columns) or from the CRISPR essentiality score (“PSCORE” columns).
Horizontal brackets show FDR for replicated associations with the presence/absence of a given mutational signature, obtained via a randomization test
(Fig. 3a), where color denotes the type of the test (see legend at top of plot). The center lines of box plots denote medians and the box hinges correspond
to the 1st and 3rd quartiles, while whiskers extend to 1.5 × IQR from the hinges. Source data are provided as a Source Data file.
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involve 9 different AKTi drugs including uprosertib, MK-2206,
and ipatasertib. Several of these drugs have undergone clinical
trials showing varying outcomes in unselected patients70,71,
highlighting the need for identifying predictive biomarkers of
response to AKT inhibitors. We considered the possibility that
different MMR signatures have varied utility as AKTi markers;
indeed, the MMR signature SBS26/12L most commonly asso-
ciated with sensitivity across different AKTi drugs, with a lower
utility of other signatures (Fig. 5a, b). These associations between
MMR signatures and AKTi sensitivity may be mechanistically
related to associations between ARID1A mutations and AKTi
sensitivity that we described above (Fig. 3c). Such a link would be
consistent with a reported loss of MMR activity in ARID1A-
mutant cells72, and with correlations between ARID1A loss in
tumors and MMR deficiencies reported in multiple cancer
types73–75.

In addition to MMR, signatures resulting from failures in other
DNA repair pathways may yield sensitivity associations (Fig. 6d–f
and Supplementary Fig. 14). An example is the signature SBS36/
56L, possibly indicating failed BER since SBS36 was previously
associated with loss-of-function in MUTYH. In five cancer types,
SBS36 was associated with sensitivity to inhibition of EGFR or of
ERBB2 via e.g. afatinib or AST-1306 drugs. These associations
were additionally supported in CRISPR k.o. of the EGFR or
ERBB2 genes in skin, liver, and head-and-neck cancer (Supple-
mentary Fig. 14c). The related signature SBS18/36L also predicts
sensitivity to these agents in three of the five cancer types
(Supplementary Fig. 14d). Overall statistical support for sensitiv-
ity associations with SBS36/56L and SBS18/36L was higher for
the EGFR-targeting drugs than for all other classes of drugs in
these cancer types (Supplementary Fig. 14e). Prior studies
suggested that EGFR activity can control various DNA repair
mechanisms76–78.

We further highlight an example involving a signature SBS18/
36L, associated with DNA damage by reactive oxygen species, and
possibly also with certain deficiencies in the BER pathway due
to the similarity of the spectrum with signature 36. This signature
was associated with sensitivity to two inhibitors of sirtuin (SIRT)
proteins, selisistat and tenovin-6, in pancreatic adenocarcinoma,
lung squamous cell carcinoma, sarcoma, and lymphoid leukemia
(all tissues at FDRs ≤ 30%; Fig. 6e). In three out of four tissues
the associations with SIRTi replicated in the CRISPR k.o.
phenotype of the SIRT1 gene (Fig. 6e). This adds confidence
that SIRT1 may be a promising vulnerability of tumor cells that
are undergoing and/or have previously undergone oxidative
damage to their DNA and/or have lowered ability to repair such
damage (the current analysis does not distinguish between these
scenarios).

Another example of a sensitizing mutational signature was
interesting due to its occurrence across multiple tissues. The
SBS30L/7bL/11L, which is ambiguous but possibly linked to base
excision repair failures (since the SBS30 was previously associated
with NTHL1 loss-of-function14,65), associates with sensitivity to
two related classes of drugs (Supplementary Fig. 14a, b) that
converge onto the cytoskeleton. Firstly, there are inhibitors of
Aurora kinase A, a protein regulating mitotic spindle assembly
and stability, including the drugs ZM447439, Genentech Cpd10,
and GSK1070916 (an Aurora B/C inhibitor with some Aurora A
activity). These associations are also replicated in the k.o. of the
AURKA gene (Supplementary Fig. 14a). Secondly, this signature
SBS30L/7bL/11L associates with sensitivity to the vinca alkaloids
vinblastine, vincristine, and vinorelbine that interfere with
assembly of microtubules and forming of the mitotic spindle
(Supplementary Fig. 14b). These associations were observed
across AML and CML leukemia and liver cancer at FDR ≤ 30%, as
well as in colorectal cancer and multiple myeloma at more

permissive FDR thresholds (with notable effect sizes, however;
Supplementary Fig. 14a, b).

Some associations were found involving mutational signatures
recovered from cell line genomes that did not closely match a
known SBS spectrum from tumor genomes. An interesting
example are associations of the SBS-CL1, an indel-rich signature
seen in various cancer types (Supplementary Figs. 2 and 3). Our
analysis suggests this associates with sensitivity to DNA damage
signaling drugs. Firstly, we identified associations of exposure of
SBS-CL1 with sensitivity toward PARP inhibitors olaparib,
rucaparib, veliparib, and PARP1 gene k.o., observed across three
cancer types (Fig. 6d). Secondly, we identified associations with
sensitivity to ATR inhibitors AZD6738, VE-822, VE-821 or k.o.
of the ATR gene in four cancer types (Fig. 6f). This example
suggests the utility of indel signatures in predicting drug response,
in this case to a category of DNA repair drugs that are trialed in
the clinic, the ATRi.

Additional associations were recurrently observed across
multiple cancer types. Some examples highlighted by a manual
curation of these ‘golden set’ associations include: the SBS17aL
signature and the ZSTK474 drug and PIK3CA/PIK3CB genes;
SBS3L signature and fedratinib and JAK2 gene; SBS8L and
midostaurin; SBS17b and fludarabine (and possibly more
generally DNA antimetabolites). These associations are some
representatives among many other examples with a similar degree
of confidence (based on the FDRs, and on recurrence across
independent tissues/replication tests) in the ‘golden set’ of
associations (Supplementary Data S8). In addition to our manual
curation, we also provide a prioritization based on a pooled
p-value across tissues and different replication tests to highlight
the top 10 associations with mutational signatures, and
additionally with driver mutations/CNA/DNA hypermethylation,
in Supplementary Data S11.

Discussion
A classical way to treat tumors is to employ DNA damaging drugs
and ionizing radiation to target the lessened or overwhelmed
capacity for DNA repair in cancer. Since this may manifest as a
mutator phenotype, we asked if mutational signatures observed in
cancer cells can serve as markers for treatment by drugs or
by gene editing. This systematic study generalizes over the
known individual examples of mutational patterns stemming
from deficient HR24,26,27 or MMR, which can guide therapeutic
strategies58–60.

Cancer cell line panels that were screened for drug
response37,79 and for gene loss effects48,80 provided a resource to
test our hypothesis. However, the lack of matched healthy tissues
means that extracting somatic mutational signatures using
existing methods31,32,42 is a challenge. Since germline variation is
abundant compared to somatic mutations, even slight variations
of germline spectra between populations34,36 can affect the tri-
nucleotide context mutation tally. We thus subtracted the
expected germline spectrum given the ancestry, and further
integrated indel features into mutational signature inference from
the cell line WES. Future refinements in the methodology, as well
as availability of WGS of cancer cell lines, will improve its
accuracy. For instance, this will permit a more detailed set of
indel descriptors, as applied in the recent tumor WGS mutation
signature studies9, in contrast to the limited set of only four indel
features we were able to apply in our WES study.

Among mutational signatures that we inferred, the number of
associations with drug response was comparable to that of other
types of commonly used genomic markers. Hundreds of such
associations significantly replicated in independent data and
across multiple tissues. Thus mutational signatures appear to be
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similarly robust predictors as driver mutations or CNA markers.
We note that the associations we identified could not have
resulted from tissue-specific variation in drug response, since
tissues were considered individually in the association analyses
(the only exception was merging of some cancer types known to
be similar genomically, such as esophagus with stomach cancer,
and glioma with glioblastoma).

An important caveat to our study is that the discovered asso-
ciations do not necessarily imply a causal relationship: the
mutational signature-generating process and the drug phenotype
may be only indirectly associated. In other words, the mutational
signature might serve as a marker for another alteration (e.g. a
driver mutation), which may be the proximal cause of the drug
sensitivity or resistance. This is similarly possible with mutational
signatures as with other genetic markers (mutations or CNA in
cancer genes), and also with gene expression markers. Because
these various sets of genomic/transcriptomic features can corre-
late across tumors, prioritizing the likely causal relations for
further follow-up is a challenge that remains to be addressed;
larger cell line panels will be helpful, as well as use of isogenic cell
panels.

Furthermore, another issue are false negatives in identifying
associations – again similarly so with mutational signatures as
with other markers – due to sparse data, where often only few cell
lines from a cancer type bear each marker. Thus, statistical power
may be limited for many markers in current cell line screens.
Additionally, because drug sensitivity measurements can be noisy
(as evidenced in less-than-ideal agreement between different
screening data sets43–45) replication analyses across diverse
datasets will be conservatively biased. It bears mentioning that
absence of a significant association in our lists does not imply
there is not an association of that marker with that drug, but
might rather mean that the analysis at current sample sizes may
be underpowered to detect the association (see e.g. Supplemen-
tary Fig. 13b).

A key question to be addressed in future work is the clinical
relevance of the mutational signature drug markers, which we
here identified in cancer cell line panel data. Performing asso-
ciation studies on tumor genomic datasets (for which the clinical
data about treatments and patient response are sometimes
available) is complicated by the diversity of therapeutic regimes:
most patients are treated with multiple overlapping sets of drugs
and possibly radiotherapy, which makes it challenging to identify
effects of individual drugs by retrospective analysis. Additionally,
the drug assignment may be confounded by demographics and by
cancer stage/grade or subtype, further complicating analysis.
Large controlled randomized trials with treatment and control
arms, for which the tumor genomic data is also available, would
facilitate identifying various types of genomic markers (muta-
tional signatures or otherwise) relevant to drug response and
patient survival.

With respect to mechanistic insight, future improvements in
methodology will refine the mutation signature markers and
clarify the underlying mechanisms. For instance, a known lim-
itation of various mutational signature extraction methods –
including ours – is the difficulty of discerning the ‘featureless’
signatures such as SBS3, SBS5, and SBS881. A further issue that
merits attention is timing: a genomic analysis of cell lines31

suggested that the activity of some mutational processes is vari-
able in time. While a genome sequence reflects a record of
mutagenic activity in the past, it may or may not reflect current
mutagenic activity, which is presumably more relevant for drug
sensitivity phenotypes. Occurrence of recently active signatures is
difficult to identify from bulk DNA sequencing from cell culture,
as the recent mutations may not rise to sufficient allele fre-
quencies to be detected, and may conservatively bias the results of

an association analysis such as ours. We note that a related issue
could affect also the more established markers i.e. driver muta-
tions or CNAs in cancer genes: given the rapid accumulation of
genetic changes in cultured cancer cell lines82,83, and prevalent
epistasis in cancer84,85, it is plausible that recently occurring,
unobserved mutations or CNAs affect the ability to identify drug
sensitivity markers from analyses of cell line screening data.

An interesting observation about mutational signatures asso-
ciated with drug activity is that some likely result not from DNA
repair deficiencies, but instead from exposure to mutagenic
agents. Some of these signatures presented many associations in
our analyses and were, overall, more commonly associated with
drug resistance rather than sensitivity (Supplementary Fig. 12 and
Figs. 4 and 6a, b). For example, this includes SBS25 and SBS11,
reported to be associated with chemotherapy, or signatures linked
with exposure to chemicals causing DNA adducts (tobacco
smoking, aristolochic acid), and additionally an SBS17a-like sig-
nature as well (where SBS17 was associated with gastric acid
exposure, possibly via oxidative damage to the nucleotide pool).
Even though cell lines are not exposed to these chemical agents
during culture and thus the signatures are presumably not ‘active’,
drug associations are identified with such signatures (Fig. 4).

One possible explanation may be that mutational signatures of
different processes are sometimes sufficiently similar such that
they are not easily ‘unmixed’ only from trinucleotide spectra. For
instance, SBS17 (mostly A>C/T>G changes) might result from
varied mechanisms that converge onto the same spectrum, some
of which are from chemotherapy exposure, while others may be
endogenous86. This highlights an example where current statis-
tical methods may not reliably deconvolve underlying biological
mechanisms. This might be addressed by the use of additional
mutational features, such as penta- or hepta-nucleotide
contexts87, small indels9, copy-number changes22 and strand-
specific, or regional mutation rates10,88.

Another explanation may be that prior exposure to a carci-
nogen would select tumor cells with an altered DNA replication/
repair state, which continues after the carcinogen is withdrawn,
thus generating resistance in cancer cells. Indeed, prolonged
exposure to mutagens that are also cytotoxic – as is the case for
many cancer therapeutics – is likely to select resistant cells, in
some cases via altered DNA replication or repair mechanisms.
For instance, therapy of tumors with temozolomide (associated
with SBS11) is known to select for cells that are resistant due to a
MMR-deficiency via loss-of-function of MSH689. It is conceivable
that also the various epigenetic changes resulting from carcinogen
exposure might confer similar properties. In other words, even a
temporary exposure to a mutagen may prime tumor cells for
resisting later drug treatment.

Methods
Human cancer cell lines and primary tumor data. We obtained WES bam files
(human reference genome version hg19) of human cancer cell lines (n= 1072;
cancer cell lines from Genomics in Drug Sensitivity in Cancer (GDSC)) from
European Genome-phenome Archive (EGA) (ID number: EGAD00001001039)
and WES bam files (human reference genome version hg38) of primary tumors
(n= 6154) and their matched normal samples (n= 6154) from the TCGA repo-
sitory at NCI Genomic Data Commons (access via dbGaP accession phs000178).
We downloaded samples from the following TCGA cohorts: BLCA, BRCA, COAD,
GBM, HNSC, KICH, KIRC, KIRP, LIHC, LUAD, LUSC, OV, PAAD, READ,
STAD, THCA, UCEC. We aligned the human cancer cell line bam files to the
human reference genome (version hg38) using the bwa90 software, and sorted and
indexed them using the samtools software91. We used the Strelka2 software (ver-
sion 2.8.4)92 to call single nucleotide variants (SNVs) and small insertions and
deletions. We called SNVs and indels for cell lines, primary tumors and normal
samples. In samples where Strelka2 was unable to run, a re-alignment was per-
formed using Picard tools (version 2.18.7)93 to convert the bams to FASTQ and,
following that, the alignment was performed by executing bwa sampe (version
0.7.16a) with default parameters. The resulting bam files were sorted and indexed
using Picard tools. We used SNVs and indels marked as “PASS” in the Strelka2
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output. We annotated SNVs and indels with minor allele frequencies (MAF)
obtained from the gnomAD database94 (for SNVs and indels that could be found in
gnomAD).

Data for human cancer cell lines. We downloaded drug response data for 518
drugs from GDSC (Release 8.3; June 2019)37. We used the natural logarithm of the
50% growth inhibition values (IC50) as a measure of the activity of a compound
against a given cell line. If for the same drug activities were available from both
GDSC1 and GDSC2 versions, we used GDSC1. We downloaded the information
about drugs (the list of drugs’ putative targets and target pathways) from the GDSC
website (https://www.cancerrxgene.org/). We manually curated the list to correct
inconsistencies (Supplementary Data S12).

We obtained the following genetic features of cancer cell lines from the GDSC
repository:30 cancer driver genes (Muts), regions of recurrent focal copy number
alterations (CNAs), hypermethylated informative CpG islands (HypMet), and
microsatellite instability status (MSI). We downloaded ANOVA_input.txt files for
18 cancer types and pan-cancer analysis from https://www.cancerrxgene.org/
gdsc1000/GDSC1000_WebResources/Pharmacogenomic_interactions.html. We
downloaded cancer cell line gene expression data (“sanger1018_brainarray
_ensemblgene_rma.txt”) from https://www.cancerrxgene.org/. We selected
expression data for 1564 genes corresponding to the L1000 assay39 and to known
drug targets40.

The drug response data (IC50) for 1502 drugs was downloaded from
the PRISM46 database (secondary-screen-dose-response-curve-parameters.csv).
Drugs and cell lines from PRISM and GDSC databases were matched via drug
names, obtaining in total 348 cell lines and 178 drugs that overlap between the two
databases.

The gene-level fitness effects for 16,827 genes in 786 cancer cell lines were
downloaded as the Integrated cancer dependency dataset from Wellcome Sanger
Institute (release 1) and Broad Institute (19Q3)

(“integrated_Sanger_Broad_essentiality_matrices_20200402.zip”) from the
Project SCORE database48 and matched to the GDSC cell lines via cell line names,
obtaining in total 517 overlapping cell lines (https://score.depmap.sanger.ac.uk/
downloads).

Matching of cancer cell lines and primary tumors (ancestry matching pro-
cedure). To ensure that genomic data is comparable between cell lines and tumors
we performed the following steps: (i) we used only SNVs detected in the regions of
the exome with well sequencing coverage (≥20 reads in 9 out of 10 randomly
selected samples); (ii) to avoid gender bias during analysis, variants on X and Y
chromosomes were not used; (iii) only uniquely mappable regions of the genome
were used, as defined by the Umap k36 criterion;95 (iv) we discarded regions with
frequent somatic deletions, namely pan-cancer deletions of significant SCNA96 and
frequently deleted chromosome arms (deleted in >18% of tumor samples);97 (v) we
detected copy number changes of cell lines with CNVkit98 and removed deleted
regions (log2 score <−0.3). From the remaining regions of the exome we selected
common germline variants across the cell line exomes and the TCGA exomes
(MAF>5% in GnomAD).To perform ‘ancestry matching’ of cancer cell lines with
TCGA normal samples, we performed Principal Component Analysis (PCA) on
the matrix of common germline variants, followed by clustering according to
principal components (PC) (see below).

Clustering of cell lines and TCGA germline samples. We employed robust
clustering (“tclust” algorithm;99 discards outlying samples) on the first 140 prin-
cipal components derived from the common germline variants. Initially, we con-
sidered the first 150 principal components, however, some PCs were attributed to
the batch effect, i.e., they separate cell lines from TCGA samples. We removed the
top 10 such PCs as determined by feature importance of the random forest clas-
sifier (“randomForestSRC” R package) trained to distinguish between TCGA
samples and cell lines. We used the remaining 140 PCs as an input to the tclust
algorithm. Outlying samples, as determined by tclust, were discarded. We varied
the number of clusters from 4 to 20, determining the optimal number of clusters
(13) by using simulated cell line exomes (Fig. 1c; see below). The cancer cell lines
were matched to their ‘ancestry-matched’ TCGA normal samples, i.e., those
belonging to the same cluster as the cell line. We then used ‘ancestors’ to augment
the filtering of germline SNVs from cancer cell line exomes, in addition to filtering
according to the common practices to retain only variants absent or present in very
low frequencies in population databases (see below).

Filtering of germline SNVs from cell lines. Here we considered SNVs from the
regions of the exome as specified before (steps i–v), with the difference that we used
SNVs with the sequencing coverage of ≥8 reads in at least 90% samples (9 out of 10
randomly selected samples). We next filtered germline variants from cancer cell
lines following common practices29,31,79 – here, removing population variants
(found at MAF>0.001% in the gnomAD population database); additionally, we
filtered germline variants that appeared >5% of samples in our TCGA data set or
cell lines data set which removes germline variants that might be particular to this
data set and also suspected sequencing artifacts). Next, from the remaining SNVs,
for each cell line and TCGA germline sample, we calculated its trinucleotide

mutation spectrum. The mutation spectrum contains 96 components, which are
the counts of six possible mutation types (C>T, C>A, C>G, A>T, A>G, and A>C,
considered DNA strand-symmetrically) in 16 possible 5′ and 3′ neighboring
nucleotide contexts for each mutation type. For each cell line, from the cell line’s 96
trinucleotide spectrum, we subtracted the median 96 trinucleotide frequencies of its
TCGA ‘ancestry-matched samples’ (i.e. the TCGA normal samples belonging to the
same population cluster as the cell line in the PC analysis of common germline
variants, see above). In case the subtraction resulted in a negative count for some of
the contexts, we set it to zero.

Insertion and deletion types. In addition to the standard 96 trinucleotide spectra,
to extract mutational signatures from cell lines (see below) we considered addi-
tional features based on small insertions and deletions. We filtered the regions of
the exome using the steps (i-iv) as described above. Similarly as for SNVs, we
discarded indels found at MAF>0.001% in the gnomAD population database and
filtered the ones that appeared in >5% of cell line samples. The remaining indels
were classified into 4, 5, 8, 14, or 32 different indel types considering: the length of
insertion or deletion (considering lengths 1, 2, 3–4, 5+), microhomology at dele-
tion sites (considering the lengths of microhomology 1 or 2+), and microsatellites
at indel loci (considering repeat sizes of 1 and 2–5+). We benchmarked the cell line
mutational signatures (see below) that used different indel types. The most
favorable indel types according to that benchmark were the simplest where we
differentiate 4 indel types: deletions with microhomology (Del-MH), deletions at
microsatellite loci (Del-MS), other deletions (Del-Other), and insertions at any
locus (Insertion).

Simulated cell line exomes. We used TCGA exomes to simulate cell line exomes
(or more precisely, the variant calls that would originate from a cell line exome) in
order to benchmark our ancestry matching procedure for efficacy in reconstructing
the mutation spectrum of cancer cell line exomes. Additionally, we used the
benchmark to optimize the number of clusters in the inference of subpopulations.
To simulate variant calls from cell line exomes, we performed the variant calling for
tumor samples in the same way as for the cell lines, i.e., without matched normal
samples. In addition, for every sample we merged SNV calls obtained thus with the
somatic SNV calls of tumors, ensuring that the true somatic mutations are a part of
a simulated cell line to enable an accurate estimation of errors. In the tumor types
that were represented both in the set of cancer cell lines and the set of TCGA
tumors, we randomly selected 450 tumor samples taking approximately the same
number of samples per tumor type as in cell lines. In the subsequent analysis
involving simulated cell line exomes, we removed their corresponding normal
samples from the pool of germline samples. We performed the ancestry matching
procedure involving simulated cell line exomes in the same way as described above
(Fig. 1g) and evaluated the accuracy of mutation spectrum reconstruction by
comparing the mutation spectrum of a tumor (ground truth) to the corresponding
simulated cell line mutation spectrum obtained by ancestry matching. As an
accuracy measure, we used Absolute Error (the sum of absolute values of differ-
ences between the 96 components of the ground truth spectrum and the recon-
structed spectrum). To estimate the optimal number of subpopulations we varied
the number of clusters in the tclust algorithm from 2 to 20, with 13 being the
optimal according to the average Absolute Error of 450 simulated cell lines
(Fig. 1c).

To investigate the variation between germline mutational spectra across human
(sub)populations (as reported recently34), we performed hierarchical clustering
(based on cosine similarity; stats package in R) of the median mutation spectra of
TCGA subpopulations (i.e., median mutation spectra of the TCGA normal samples
within clusters) (Supplementary Fig. 1E). In addition, we performed PC analysis of
mutation spectra of TCGA normal samples showing that the main principal
component separates the main ethnicity groups (Supplementary Fig. 1D). We note
that, in the previous steps, clustering to infer subpopulations was performed via
common variants (see above), and the trinucleotide spectra were determined after
excluding the non-rare variants (MAF >0.001% in the gnomAD population
database and variants that appear in >5% of samples in our TCGA data set) ruling
out circularity.

Next, we compared our ancestry matching procedure (involving 13 clusters) to
the baseline method of determining somatic variants in a cell line genome (i.e.,
filtering of germline variants according to MAF, where SNVs with MAF >0.001%
and that appeared in >5% of samples in our dataset are removed) and the bootstrap
self-similarity method (Fig. 1d). The bootstrap self-similarity error was calculated
as an error between true and randomly perturbed somatic mutation spectrum,
averaged over 100 random runs. For random perturbation, we used the “sampling”
function of the “UPmultinomial” R package.

We compared the true number of somatic mutations versus the number
obtained with the ancestry-matching and the MAF filtering (removal of SNVs with
MAF where MAF>0.001% and that appeared in >5% of samples) to quantify the
degree of overfiltering and underfiltering of these two filtering approaches
(Supplementary Fig. 1h). If after filtering, the simulated cell line exome has less
mutations than the number of true somatic mutations, we consider it overfiltered
(i.e., some of the true somatic mutations were removed). Otherwise, if it contains
more mutations than the number of true somatic mutations, we consider it
underfiltered (i.e., residual germline variants remained). Next, we compared the
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accuracy of mutational signature extraction (see below for the method) with the
trinucleotide profiles of simulated cell lines obtained with MAF filtering and the
‘ancestry matching’ approach. We compared the 20 known mutational signatures
(>0.85 cosine similarity to PCAWG signatures) that were extracted from both sets
of trinucleotide profiles to the mutational signatures extracted from the true
somatic trinucleotide profiles. We compared the cosine similarity of trinucleotide
composition of the signatures and the cosine similarity of the exposure scores. The
‘ancestry matching’ signatures show statistically significant closer match to the true
somatic signatures than ‘MAF filtering’ signatures in both trinucleotide
composition and exposure scores (Supplementary Fig. 1g). P-values were calculated
by Wilcoxon rank-sum test (artifact signatures were excluded from the test).

Extraction of mutational signatures. We extracted cancer cell line mutational
signatures from 96 component trinucleotide mutation spectra of cancer cell lines
obtained with the ancestry matching procedure. In total, we used mutation spectra
of 930 cancer cell line exomes (Supplementary Data S13). Note that some cell lines
were excluded because they were assigned to the outlier cluster of the tclust
algorithm, based on their common germline variants (see above). To extract
mutational signatures we used a custom R script based on non-negative matrix
factorization (NMF) as described by Alexandrov et al.33. We additionally imple-
mented a number of signature extraction procedures proposed in the literature
recently9,38,42 and benchmarked the resulting signatures according to the several
criteria: (a) The agreement with an established set of SBS signatures (PCAWG
signatures9) measured as the number of PCAWG signatures that were recapitu-
lated at ≥0.85 cosine similarity cutoff; (b) The similarity of the cell line signature
exposure profiles across cancer types to the exposure profiles of PCAWG sig-
natures, measured as cosine similarity between an average exposure per-cancer-
type profile of a cell line signature and its matching PCAWG signature (for sig-
natures recapitulated at ≥0.85 cosine similarity); (c) The accuracy of the signatures
in predicting drug sensitivity profiles across cancer cell line panels (see below for
method).

From the matrix containing mutation spectra of samples, we generated 300
matrices by bootstrap resampling. One bootstrap sample is obtained by applying
the sampling function of the “UPmultinomial” R package to each sample’s
spectrum. Next, we applied the NMF algorithm to each of the bootstrap samples
(“nmf” function of the “nmfgpu4R” R package to obtain different NMF runs; we
used the Multiplicative update rules algorithm100 with 10,000 as the maximal
number of iterations). For each bootstrap sample, we varied the number of
signatures from 2 to 40. Computations were performed on an NVIDIA GeForce
RTX 2080 Ti GPU.

We implemented the following modifications to the above basic procedure
(each tested independently and some in combinations; Supplementary Data S1) to
obtain the candidate cell line signatures which were matched to the known tumor
PCAWG signatures (see below): (i) Similarly as done in the seminal work of
Alexandrov et al.33, we clustered each batch of NMF solutions and used the cluster
medoids as candidate cell line signatures. We used the clara function in clusters R
package, with Euclidean distance and standardization and “pamLike” options; the
number of samples to be drawn from the dataset was set to 10% of the number of
samples. Each batch of NMF solutions obtained as described before (one batch
corresponds to 300 x n solutions, where n is the number of signatures; varies from
2 to 40) was clustered into k clusters with k-means clustering, varying k from 2 to
30. (ii) We applied the RTOL-filtering (relative tolerance) as proposed by
Degasperi et al.38, where (separately for each different number of signatures
parameter) NMF runs that diverge for more than 0.1% from the best NMF run are
removed, as measured by the root-mean-square deviation of the factorization. (iii)
We implemented the ‘hierarchical extraction’ procedure proposed by Alexandrov
et al.9 where NMF is repeated iteratively while removing (or down weighting) the
well-reconstructed samples (cosine similarity above a specified threshold) from a
previous iteration to uncover additional signatures. We allowed a maximum of 3
iterations and tested different cosine similarity thresholds ranging from 0.95 to
0.99. In the case of down weighting, we multiplied the sample’s mutation spectra by
0.05 instead of removing it. (iv) Similarly as in Ghandi et al.42, we performed joint
signatures inference of cell line exomes and tumor exomes. To the initial matrix
containing mutation spectra of cell lines, we added mutation spectra of 6154 TCGA
somatic exomes which were preprocessed in the same way as cell line exomes: the
same regions of the exome were used (see above for filtering by coverage,
mappability, etc.).

From the candidate cancer cell line mutational signatures obtained by the above
described methodologies, we searched for the signatures that closely resemble the
ones that were previously found in human cancers9 (referred to as PCAWG
signatures in the text). We compared the individual signatures to the PCAWG
signatures searching for the closest matching cell line signature for each PCAWG
signature. As a final set of tumor-like cell line signatures, we kept the closest
matching cell line signature if its cosine similarity to the best matching PCAWG
signature exceeded 0.85. For cell line signatures that used indel features in addition
to 96 tri-nucleotide spectra, cosine similarity was calculated only on 96 spectra
since the known PCAWG SBS mutational signatures do not have an indel
component in their current implementation (v3.2). We considered an additional
criterion for matching cell line and tumor signatures where in addition to the
mutation-spectrum cosine similarity, a cosine similarity between signature’s

average per-cancer-type exposure profile (for cancer types available in both cell line
and PCAWG data). The spectrum-cosine and exposure-cosine similarities were
combined into a single metric given the weight ‘w’ controlling the relative
contribution of each: w×spectrum-cosine+ (1–w) × exposure-cosine. We tested
different weights: w= 0.5, 0.7, 0.9, and 0.99. For each PCAWG signature, from a
set of cell line signatures that match it with spectrum-cosine ≥0.85, we selected the
best matching cell line signature as the one with the highest combined metric.

We considered using additional regression post-processing for assigning
signature exposures to samples, similarly as done by Petljak et al.31 and Alexandrov
et al.9. We used the “sigproSS” tool of SigProfilerExtractor framework101 to
attribute exposures to the extracted cell line signatures (i.e., signatures were used as
an input to sigproSS). Additionally, we used a custom script based on regularized
regression from “glmnet” R package enforcing different degrees of sparseness. We
considered Ridge, Lasso and Elastic Net regression to model cell line’s mutation
spectra as a combination of cell line signatures, where the resulting regression
coefficients are considered as exposures to signatures. We enforced non-negative
coefficients, no interaction term, and used crossvalidation to determine the optimal
value of the lambda parameter.

The different procedures for mutational signature extraction we implemented
were evaluated according to the above-described criteria (a–c), results are presented
in Supplementary Data S1. As a final set of signatures we chose signatures obtained
with hierarchical extraction (using 0.97 cosine similarity threshold for sample
removal), using 4 indel features in addition to 96 trinucleotide types. We
considered both the cosine similarity in the trinucleotide spectrum and also the
cosine similarity in the exposures across tissues (in tumor genomes), using w= 0.9
as weight on the trinucleotide-cosine and 0.1 on exposure-cosine, for matching our
cell line signatures with the known COSMIC tumor signatures. No post-processing
of exposures to signatures was performed since it did not yield improvements
according to the evaluation criteria, thus, we used the raw NMF scores of the
exposure matrix. A notable modification from the signature extraction method
presented in Alexandrov et al.33 is that we did not limit to a single value of the
“number of signatures” NMF parameter (choosing based on measures of fit and
consistency, as in Alexandrov et al.33). Instead, inference was run for many values
of this parameter, and the final set of mutational signatures consists of solutions
from different values for the ‘number of signatures’ parameter.

This procedure yielded 52 signatures (Supplementary Fig. 2). The cell line
signatures are named according to the PCAWG signatures they resemble, e.g., the cell
line signature name SBS4/45L denotes that for PCAWG SBS4 this signature was the
closest match (i.e., SBS4 is the primary signature); 45L denotes that the signature also
resembled PCAWG signature SBS45 (at cosine similarity ≥0.85). The suffix “L” (for
“like”) denotes 0.85 ≤ cosine similarity < 0.95 (a somewhat less-close match), while the
absence of the suffix “L” means cosine similarity ≥0.95. Names of signatures other
than the primary signature (if present) are ordered by decreasing cosine similarity.

We checked if the trinucleotide composition of the exome ‘territory’ covered in
WES sequencing we used could affect the cosine similarities to the known PCAWG
signatures, since they were extracted from the WGS data. We adjusted the
trinucleotide spectra of our signatures to match the WGS spectra and re-calculated
cosine similarities to the PCAWG signatures. The cosine similarities are not
substantially affected – our signatures map to PCAWG signatures largely
irrespective of the adjustment for territories (Supplementary Fig. 17b). Note the
one signature that does change between the two normalizations (0.96 vs 0.87) is an
SBS49-like signature, where SBS49 was previously suggested to be an artifact9.
Furthermore, to check that the mutational signatures extraction was not biased in
terms of the trinucleotide composition due to the removal of lowly covered regions
and the common germline loci, we compared the trinucleotide compositions in
an exome, our examined territory (largely the exome with lowly-covered regions
removed), and in our examined territory after having removed common SNP loci.
The trinucleotide composition was highly similar (cosine similarities >0.993 in all
three possible pairwise comparisons; Supplementary Fig. 17a).

We next searched for cell line-specific signatures, i.e., signatures that commonly
appear in cell line data and do not resemble any of the known tumor signatures. To
this end, we employed k-means clustering (“clara” function in “clusters” R package,
with Euclidean distance, standardization, “pamLike” options and 10% as the number
of samples to be drawn from the dataset). Each batch of NMF solutions (from the
signature extraction method selected as final by the evaluation) was clustered into k
clusters with k-means clustering varying k from 2 to 40. We chose the clustering result
(i.e., a set of signatures) where the agreement with PCAWG signatures was
maximized in terms of the number of cluster medoids that resemble PCAWG
signatures (at cosine similarity ≥0.85). From such a set of signatures we selected the
ones dissimilar from any of PCAWG signatures (cosine similarity <0.8), yielding in
total 5 cancer cell line-specific signatures (named SBS-CL). These SBS-CL signatures
appear together with real signatures and are robust (i.e., they are cluster medoids)
therefore they are also likely bona fide mutational signatures that might originate, for
instance, from cell-line specific mutational processes.

In total, this yielded 57 cancer cell line signatures (52 corresponding to known
tumor signatures, and 5 additional cell line-specific signatures) (Supplementary
Fig. 2). To investigate if some of the extracted signatures are a result of incomplete
separation of other signatures we considered the coefficients of the Lasso regression
(“glmnet” R package) (Supplementary Fig. 6), where we modeled cell line
signatures extracted in this work as a linear combination of PCAWG signatures
(Supplementary Fig. 6).
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Predicting drug response. We built predictive models of drug response using the
Random Forest (RF) algorithm as implemented in the “randomForestSRC” R
package. We compared the predictive performance of different predictors: muta-
tions in cancer driver genes (Muts), recurrent copy number alterations (CNAs),
DNA hypermethylation (HypMet), gene expression, previously reported cancer cell
line mutational signatures31,32,42, and mutational signatures extracted in this work.
We used Muts, CNAs, and HypMet data as reported by Iorio et al.30, namely,
mutations in cancer genes associated with positive selection in tumors, focal
recurrently aberrant copy number segments, and hypermethylated informative 5′
C-phosphate-G-3′ sites in gene promoters. The dependent variable was the con-
tinuous value of a response to a drug (log IC50); we iterated this over all drugs.
Another possible way to run Random Forest, not employed here, would be to
binarize the log IC50 drug response and run the RF algorithm in classification
mode rather than regression mode. However, binarizing the drug response implies
some loss of information, and moreover, it would necessitate an extra parameter in
the analysis (choice of the binarization threshold) so we opted to use continuous
drug response values here.

We built cancer type specific models for each drug separately, considering only
models where at least 15 cell lines with drug response were available to train the
model. For model validation we used 10-fold cross validation which was repeated
five times to get more stable results. We built random forests with 100 trees and a
minimal number of samples in terminal nodes set to 2. We assessed the predictive
performance of the predictors by the relative root-mean-square-error (RRMSE),
i.e., a root-mean-square error divided by the root-mean-square error of the default
model. The default model predicts a constant value for all cell lines equal to the
average ln IC50 across the training set. RRMSE < 1, therefore, denotes better
accuracy better than the one of the (uninformative) default model. We define such
models as predictive. Results are presented as an average RRMSE per cancer type
across all models built for a cancer type (Fig. 2a). Note that, all drugs were not
necessarily tested exhaustively across all cancer cell lines, therefore, the number of
models per cancer type may differ (one model corresponds to one drug) due to
missing data (<15 cell lines with drug response data available), as well as the
number of model per different predictors (mutational signatures, gene expression,
oncogenic mutations, copy number alterations, DNA hypermethylation) due to
data availability. In the analysis of complementarity between different predictor
types (Fig. 2d, e and Supplementary Fig. 7b) we thus report relative numbers of
predictive models to facilitate fair comparison.

To assess the statistical significance of the differences in the predictive
performance (Fig. 2b, c), we follow the recommendations given by Demšar102.
More specifically, to statistically compare the predictive performance of multiple
predictors over multiple datasets we use the corrected Friedman test and the post-
hoc Nemenyi test103. Here, a dataset corresponds to a pair of one cancer-type and
one drug. Due to the requirements of this test, only the intersection of drugs
modeled across all cancer types and predictors were considered (due to missing
data the number of drugs modeled per cancer type and/or predictor may differ; see
above). For each drug-cancer-type pair, predictors are ranked according to their
RRMSE for that drug-cancer-type pair, where rank 1 corresponds to the best (i.e.
the lowest) RRMSE, 2 to second-best, etc. Ranks are then averaged across all drug-
cancer-type pairs to obtain the average rankings of predictors. The Nemenyi test
performs a pairwise comparison of predictors’ performance based on the absolute
difference of the average rankings of the predictors to assess whether there are
statistically significant differences among predictors. The test determines the
critical difference (CD) for a given significance level α, if the difference between the
average ranks of two predictors is greater than CD, the null hypothesis (that the
predictors have the same performance) is rejected., i.e., there is a statistically
significant difference between the two predictors. The results from the Nemenyi
post-hoc test are presented with an average ranks diagram102. The average
predictor rankings are depicted on an axis, in such a manner that the best ranking
algorithms are at the left-most side of the diagram. The algorithms that do not
differ significantly (in performance) for a significance level of 0.05 are connected
with a bold line, therefore, predictors that are not connected are statistically
significantly different according to the test.

Associations with drug response
Randomization test for associations that replicate in independent datasets. We
performed two-way association testing where we searched for robust associations
that replicate in two independent datasets (schematic in Fig. 3a). We considered
three different types of two-way tests where we enforced that, for a given drug, an
association between a particular feature (a mutational signature or a genetic fea-
ture) and the drug response from the GDSC database is replicated: (1) in the
PRISM drug screening database (GDSC/PRISM test) for the same drug, or (2) with
another drug from the GDSC database that shares the same molecular target
(GDSC/GDSC (same target) test), or (3) in the Project SCORE CRISPR/Cas9
genetic screen as an association with a protein-coding gene fitness score of one of
the drug’s target proteins (GDSC/PSCORE test).

We considered cancer-type specific associations. We required that in both tests
of a two-way test an association is detected in the same cancer type. We merged
some similar cancer types with a small number of cell lines: esophagus carcinoma
and stomach adenocarcinoma (denoted as ESCA/STAD), glioblastoma and brain
lower grade glioma (denoted as GBM/LGG), and head and neck squamous cell

carcinoma and lung squamous cell carcinoma (denoted as HNSC/LUSC). We
additionally considered two groups of cell lines obtained by dividing colorectal cell
lines according to microsatellite instability status (denoted as COREAD_MSI and
COREAD_MSS; other cancer types did not have enough cell lines with
microsatellite (in)stability labels to warrant such division). Prior to the association
search, we removed 21 cell lines that exhibited either sensitivity or resistance
nonspecifically towards a large number of drugs (15 cell lines reported by Abbas-
Aghababazadeh et al.104 and 6 outlier cell lines considering median ln IC50), as
well as additional 29 cell lines that were reported to be misclassified105. In addition,
for each cancer type, we removed outlier cell lines by the total number of mutations
(remaining after the filtering with the ‘ancestry matching’ procedure; see above),
here defined as having the number of mutations >3× interquartile range+ upper
quartile, or <3 × interquartile range - lower quartile (calculated for each cancer type
separately). We used binarized exposures to mutational signatures where, for each
signature, values below the 5% of the value of the second-highest exposure score
(used in order to avoid single high-score outliers observed in some signatures) of
that signature were set to 0, and the rest to 1 (Supplementary Data S4). We
empirically tested several different thresholds ranging from 1% to 20% (of the
second-highest exposure across cell lines), and measured (i) the sparsity of
binarized signatures and (ii) the distribution of binarized exposures across tissues
for signatures with known etiology that should dominantly appear in certain tissues
(the “UV” signatures 7a and 7b in skin and the “tobacco” signature 4 in lung). We
chose 5% since it offered a good tradeoff on these two metrics; sparsity is not too
high, while the tissue distribution of signatures 7a, 7b, and 4 are reasonable
(Supplementary Fig. 15B). We used normalized (relative) signature exposures, as
described above. We considered only tests with at least 8 cancer cell lines and at
least 2 non-zero values of a feature.

All of the association tests were performed by modeling the drug response (or
gene fitness score) to associate it with the status of a feature (i.e., a mutational
signature or a genetic feature) searching separately for sensitivity and resistance
associations. For each association, we calculated the association score as the
minimum (in the case of sensitivity) or maximum (resistance) effect size (Cohen’s
d) of the two independent datasets i.e. positive Cohen’s d implies sensitivity and
negative resistance associations. Here, effect size is the Cohen’s d statistic:
difference of mean drug sensitivity (ln IC50) between the cell lines having the
feature and those not having it, divided by the pooled standard deviation of the
data. To obtain the association’s empirical p-value, we performed a randomization
procedure where we calculated the association score 100,000 times for the
randomly shuffled features. For the sensitivity test, the formula for the p value is:
p ¼ random score>¼ observed score

num:of randomizations and for the resistance is: p ¼ random score<¼ observed score
num: of randomizations .

Due to the computational burden, we performed the randomization procedure
only for associations that had an effect size >0.2 in the primary test. The empirical
p-values were adjusted with the Tibshirani-Storey method47.

Recent work suggested that MMR-failure signatures can be grouped into a few
broad types38,106,107, in particular a group enriched with C > T changes, and a group
enriched with T>C (equivalently, A > G) changes. Based on this we considered
aggregated mis-match mutational signatures where we merged p-values and effect
sizes of SBS6, SBS15, and SBS44L (denoted as SBS-MMR1); SBS21 and SBS26/12L
(denoted as SBS-MMR2). Similarly, we considered the aggregate of the two APOBEC
signatures SBS2 and SBS13 (denoted as SBS-APOBEC). Pooled p-values of
aggregated signatures were obtained by Fisher's method, while pooled effect size was
obtained by averaging. Pooled p-values were adjusted the same as described above.

We consider a two-way association as statistically significant if FDR<15% and
additionally we imposed an effect size threshold of Cohen’s d > 0.5 in both tests
(based on a known set of positive control associations (Supplementary Fig. 16) for
GDSC/PRISM and GDSC/PSCORE tests, while for the GDSC/GDSC (same target)
test we required Cohen’s d > 1. In addition, we considered only associations coming
from cancer types where the inflation factor lambda was below 1.3 (Supplementary
Fig. 8). Note that, in supplementary data also associations with lambda > 1.3 are
listed. For some analyses we considered an additional set of associations with an
unadjusted p-value threshold of < 0.005 and the same effect size threshold of
Cohen’s d > 0.5. As a rule-of-thumb for interpretation, Cohen’s d = 0.2, 0.5 and 0.8
correspond to small, medium and large effect sizes, respectively108. We used
“QCEWAS” R package to calculate the lambda score to estimate the inflation of
p-values (calculated separately for sensitivity and resistance associations).

‘Golden’ and ‘Silver’ sets of high-priority associations. We collated a list of 3911
associations (the ‘silver set’; Supplementary Data S10). To make this list, we con-
sidered all associations tested in the three ‘two-way’ replication tests that pass the
permissive criterion of significance (effect size d > 0.5 in both tests (or d > 1 for the
GDSC/GDSC two-way test) and a nominal p < 0.005). From these, an association
(between a feature and drug within a certain cancer type) was listed in the silver set
if it was confirmed in more than one ‘two-way’ replication tests, or was seen in
more than one cancer type. We require that at least one of the supporting asso-
ciations has FDR<25%. Additionally, we collated a ‘golden set’ of high-priority list
of associations involving mutational signatures and cancer functional events which
we consider to be suitable for follow up work: we require that an association
involving the same drug is supported in at least three cancer types or is replicated
in all three ‘two-way’ tests where at least one association has FDR < 25% (995
associations; Supplementary Data S8).
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Abbreviations of cancer types. A list of abbreviations of cancer types used in this
study: ALL/CLL, acute/chronic lymphoblastic leukemia; BLCA, bladder urothelial
carcinoma; BONE, bone cancer other/not classified further; COREAD, colon
adenocarcinoma and rectum adenocarcinoma; COREAD_MSI, microsatellite
instable colon and rectum adenocarcinoma; COREAD_MSS, microsatellite stable
colon and rectum adenocarcinoma; ESCA, esophageal carcinoma; ESCA_STAD,
esophagus carcinoma and stomach adenocarcinoma; EWING, Ewing's sarcoma;
GBM, glioblastoma multiforme; GBM_LGG, glioblastoma and brain lower grade
glioma; HNSC, head and neck squamous cell carcinoma; HNSC_LUSC, head and
neck squamous cell carcinoma and lung squamous cell carcinoma; KIRC, kidney
renal clear cell carcinoma; LAML, acute myeloid leukemia; LGG, brain lower grade
glioma; LIHC, liver hepatocellular carcinoma; LUAD, lung adenocarcinoma;
LUSC, lung squamous cell carcinoma; LYMP, lymphoma; MESO, mesothelioma;
MM, multiple myeloma; NB, neuroblastoma; OV, ovarian serous cystadenocarci-
noma; PAAD, pancreatic adenocarcinoma; SARC, sarcoma other/not classified
further; SCLC, small cell lung cancer; SKCM, skin cutaneous melanoma; STAD,
stomach adenocarcinoma; THCA, thyroid carcinoma; UCEC, uterine corpus
endometrial carcinoma.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data sources used for this study are listed below and described further in the
Methods. The data resulting from our analyses are available in the Supplementary
Material, or are otherwise available from the authors upon request. Source data for
figures are provided with this paper. Data sources used: WES bam files for human cancer
cell lines (EGA ID number EGAD00001001039, restricted access that can be applied to
following instructions on EGA), WES bam files for tumors and their matched normals
(dbGaP accession ID phs000178 [https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/
study.cgi?study_id=phs000178.v11.p8], restricted access that can be applied to following
instructions on dbGaP; bams downloaded from NCI Genomic Data Commons [https://
portal.gdc.cancer.gov/]), drug response data for human cancer cell lines [https://www.
cancerrxgene.org/]; Release 8.3), PRISM Repurposing dataset 19Q4 [https://depmap.org/
portal/download/all/], Project Score CRISPR genetic screening data [https://score.
depmap.sanger.ac.uk/downloads]; Integrated cancer dependency dataset from Wellcome
Sanger Institute (release 1) and Broad Institute (19Q3)) [https://score.depmap.sanger.ac.
uk/downloads]. Source data are provided with this paper.

Code availability
The computer code is available at the GitHub repository: https://github.com/jlevatic/
CellLineMutSigs (https://doi.org/10.5281/zenodo.6463399)109.
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