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Cryo-EM structure of anchorless RML prion reveals
variations in shared motifs between distinct strains
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Gerald S. Baron 3, Byron Caughey 3✉ & Allison Kraus 2,4✉

Little is known about the structural basis of prion strains. Here we provide a high (3.0 Å)

resolution cryo-electron microscopy-based structure of infectious brain-derived fibrils of the

mouse anchorless RML scrapie strain which, like the recently determined hamster 263K

strain, has a parallel in-register β-sheet-based core. Several structural motifs are shared

between these ex vivo prion strains, including an amino-proximal steric zipper and three β-
arches. However, detailed comparisons reveal variations in these shared structural topologies

and other features. Unlike 263K and wildtype RML prions, the anchorless RML prions lack

glycophosphatidylinositol anchors and are severely deficient in N-linked glycans. None-

theless, the similarity of our anchorless RML structure to one reported for wildtype RML prion

fibrils in an accompanying paper indicates that these post-translational modifications do not

substantially alter the amyloid core conformation. This work demonstrates both common and

divergent structural features of prion strains at the near-atomic level.
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Prion strains propagate as distinct infectious scrapie PrP
(PrPSc) conformers that can take the form of amyloid
fibrils. However, the detailed structures of these conformers

and how they differ between strains have been poorly understood.
We recently solved a near atomic cryo-electron microscopy (cryo-
EM)-based structure of a highly infectious brain-derived prion
strain, i.e., 263K hamster-adapted scrapie1. The core of this fibril
has PrP monomers stacked in a parallel in-register intermolecular
β-sheet (PIRIBS)-based architecture. This natural prion core is
more than twice as large as those of synthetic recombinant PrP
fibrils that are likely to be noninfectious or at least orders of
magnitude less infectious2–4. Lower resolution data (~10 Å) for
another brain-derived prion fibril, i.e., the mouse anchorless RML
(aRML) strain, indicated a large core with a distinct fibrillar
morphology, but did not allow localization of the polypeptide
backbone1. The aRML strain provides a striking contrast to 263K.
Whereas 263K PrPSc contains glycophosphatidylinositol (GPI)
anchors and is heavily glycosylated, aRML PrPSc lacks GPI
anchors and, consequently, is poorly glycosylated5,6. Accumula-
tion of aRML PrPSc in the brain is predominantly in extracellular
amyloid plaques6,7 whereas 263K is found mostly in diffuse
deposits that are closely associated with cellular membranes.
Although 263K fibrils have a PIRIBS architecture1, aRML fibrils
have been inferred by others to have a fundamentally different
4-rung β-solenoid-based architecture8,9. Here we report that with
methodological improvements we have now obtained cryo-EM
data for aRML fibrils with sufficient resolution (3.0 Å) to deter-
mine a detailed structure of the amyloid core.

Results
Silver-stained PAGE gels and Western blots of the specific aRML
preparation that we used for cryo-EM have been reported
previously10 and indicate high purity with respect to PrP content.
Previous mass spectrometry analyses of such aRML fibril pre-
parations detected PrP polypeptides inclusive of residues 81–231
within the proteinase K-resistant core10. Intracerebral inoculation
of serial dilutions of the purified preparation ranging from 100 ng
protein down to 10 pg into susceptible transgenic mice (tga20)11

(n= 4 per dilution) caused terminal prion disease requiring
euthanasia in all recipients. The incubations of further dilutions
are ongoing, but inoculations of 100 fg have so far required
euthanasia of 3 mice (n= 6 at this dilution), indicating a specific
infectivity of ≥~1010 LD50/mg. This level is higher than the
~109 LD50/mg reported for purified wildtype RML prions using a
cell rather than animal-based bioassay12.

Cryo-electron tomography was performed to determine
handedness of the fibril twist. Analyses of 12 tomograms indi-
cated that all aRML fibrils sufficiently isolated for tomographic
analysis (n= 64) were left-handed (Supplemental Fig. 1).
Accordingly, a left-handed twist was used in the model building
described below. As was the case for 263K prion fibril
preparations1, we also observed globules along the sides of some
of the fibrils, as is the case for the example shown in Supple-
mental Fig. 1. However, ~70% of the fibrils lacked visible globules.
The nature of the globules is unknown, but their presence on
some of the aRML fibrils indicates that they are not dependent
upon the presence of GPI anchors.

We obtained details of the structure of the aRML prion fibrils
using single particle acquisition and helical reconstruction13 with
parameters given in the “Methods” section and Supplemental
Table. Most of the fibrils appeared to be composed of a single
protofilament, but some seemed to be paired laterally (e.g., see
Fig. 1a, arrowhead). Fast Fourier transforms of particle 2D class
averages indicated regular axial spacings of 4.9 Å, which were also
visible in images of class averages (Supplemental Fig. 2a, b). 2D

class averages and iterative 3D classifications converged on a
single core morphology to yield a 3.0 Å resolution map of the
fibril core (Fig. 1b, c; Supplemental Fig. 2c and Supplemental
Table) with stacked rungs occurring perpendicular to the fibril
axis (Fig. 1c, f).

We threaded the polypeptide comprising the aRML protease-
resistant core into the cryo-EM density map, with iterative real
and Fourier space refinements and validation as indicated in
Supplemental Table 1. In silico conformational sampling pro-
duced a backbone RMSD of 2.2 Å demonstrating the relative
stability of the native state model (see the “Methods” section,
Supplemental Fig. 3). The resolved aRML structure comprises
residues 93–230 (Fig. 1d). Some peripheral electron densities were
not assigned to any of these residues (Fig. 2c, green arrows) and
are assumed to reflect either tightly bound remnants of more
extreme N-terminal PrP sequence after partial proteolysis, or
unidentified non-PrP ligands. Peripheral densities that we pre-
viously observed adjacent to the C-terminus and N-linked gly-
cosylation sites in the 263K prion structure1 are absent in the
aRML density map (Fig. 2c). As with 263K, the PrP monomers
span the entire fibril cross-section and are stacked parallel and in-
register perpendicular to the fibril axis with an average spacing of
4.9 Å (Fig. 1f). As detailed below, several major features of the
aRML structure are analogous to, but distinct from, those in the
263K structure (Fig. 2)1.

Residues 95–104 near the N-terminus of the aRML core
sequence are held tightly against residues 140–144 by an inter-
digitation of alternate sidechains across the interface (Fig. 2c and
Supplemental Fig. 4a). This steric zipper interface is similar to
that seen for analogous residues in 263K1. In both aRML and
263K, the backbones of these sequences are not precisely coplanar
within a given monomer but are staggered slightly with respect to
one another axially.

As in 263K, in aRML a β-arch of residues ~103–140 extends
from the N-terminal steric zipper residues and has an anvil-like
head that we previously, and unaptly12, described as a “Greek
key” (Fig. 2a and Supplemental Fig. 4b)1,12. However, despite
having an identical sequence within residues 112–137 (mouse
numbering), the heads of this N-proximal (N) β-arch in aRML
and 263K have markedly different conformations (Fig. 2b). A
notable example of this is the sidechain of Y127, which is on the
inside of the anvil in aRML, while the analogous Y128 of 263K is
on the outside1.

The C-terminal flank of the N β-arch provides a flank of an
overlapping β-arch of residues ~124–167 (Fig. 2a) to form a middle
β-arch. The tip of this arch forms the steric zipper with residues
95–104 described above (Supplemental Fig. 4a). Although aRML
and 263K both have middle β-arches, they differ in sequence at
residues 138 and 154 (mouse numbering) and in the conformation
of residues 125–132 in particular (Fig. 2b). Also, the gap between the
N- and C-terminal flanks of this arch is wider, and presumably more
hydrated, in aRML (Supplemental Fig. 4e).

A staggered interface between the head of the N β-arch and the
C-terminal half of the core has the sidechains of residues 120–124
of a given monomer interacting with sidechains of residues
169–176 of the both the same monomer and the one below it.
While this stagger is less pronounced than that of 263K1, it
contributes to deviations from planarity of each monomer
(Fig. 2d).

The β-arch defined by the disulfide bond between C178 and
C213 is stabilized by a tight interface (Supplemental Fig. 4c). This
occurs before a bend and modest widening of the β-arch to
encompass a presumably hydrated pocket (Supplemental Fig. 4d),
which is much wider in 263K (Fig. 2c)1.

Another striking difference between the aRML and 263K
structures is the orientation of the C-terminal residues that, in
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Fig. 1 Cryo-EM-based structure of aRML fibrils. a 2D cryo-EM images of aRML fibrils. Bar= 50 nm. Inset depicts associated Fast Fourier transform
showing signals from regular 4.9 Å spacings (yellow arrows). The white arrowhead indicates a rare example of aRML fibrils that appear to be paired.
Micrographs shown are representative of 2272 movies collected for subsequent image processing and single particle analysis (see the “Methods” section).
b Cross-sectional view of a density map projection. c Lateral view of the fibril density map with cross-over distance as indicated. d Core sequence showing
relative orientations of side chains. Green, polar; blue, basic; red, acidic; white, aliphatic; gray, aromatic; pink—glycine. e Coulombic charge representation.
f MLP hydrophobicity surface plot demonstrating interspersed hydrophobic interactions.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30458-6 ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:4005 | https://doi.org/10.1038/s41467-022-30458-6 | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


263K, provide a linkage to the GPI anchor. In aRML, the residues
220–230 project away from the disulfide arch and interface with
residues 165–170 (Fig. 2a, b). In contrast, the C-terminal residues
of 263K associate with the disulfide arch1.

Discussion
Comparison of the aRML structure with the 263K prion
structure1 reveals that these two ex vivo rodent prion strains both
have PIRIBS amyloid architectures with several similar structural
elements. However, the detailed conformations and relative
orientations of these and other elements differ markedly, pro-
viding distinct conformational templates for incoming monomers
as proposed previously1,14. Also, the amino acid sequences differ
at 8 residues within the ordered cores of aRML and 263K1;
presumably contributing to the respective templating activities,

and, hence, species specificities of these prion strains. The extent
to which the conformational differences between 263K and RML
prions are dictated by sequence differences versus conformational
templating remains to be determined. In both strains, the oppo-
site ends of the fibrils are not equivalent. Among the key differ-
ences is the non-coplanarity of the anvil-like head of the N β-arch
which protrudes at one end and recedes at the other (Figs. 1f and
2d). Such non-equivalence presumably affects the relative
mechanism and kinetics of PrP conversion at the fibril ends.

aRML prions lack GPI anchors, but are still ultimately lethal7.
Thus, although GPI anchors and glycosylation affect the neuro-
pathological lesions observed in infected animals (e.g. refs. 6,7,15–17),
neither is an essential prerequisite for neuropathogenicity. From a
structural perspective, these post-translational modifications do not
seem to substantially alter the core structures of at least three
murine prion strains, as probed by infrared spectroscopy5.
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Fig. 2 Comparison of aRML and 263K prions. a Ribbon diagram of aRML core (stack of 5), with structural motifs as colored. b Overlay of aRML and 263K
cores. c Contour EM density maps of aRML and 263K. Green arrows indicate peripheral unassigned densities associated with cationic residues in the
N-terminal lobes of both strains, but absent in the aRML C-terminal lobe, consistent with aRML’s lack of glycans and glycolipid anchors. d Lateral views of
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Underneath is a ribbon overlay of aRML and 263K monomers indicating differences in planarity.
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Moreover, in vivo passages of RML scrapie from wildtype to
anchorless PrP transgenic mice and back again do not significantly
alter the incubation period or clinical manifestations of the strain in
wildtype mice7. However, such a passage history was reported to
result in stable changes in susceptibility to inhibition of prion
infection by swainsonine and other inhibitors in a cell panel assay18.
These results implied that subtle alterations in the RML prion core
conformation occurred in the anchorless transgenic mice that were
faithfully propagated in subsequent passages in wildtype mice.

Of note, a structure in an accompanying manuscript by Manka
and colleagues for wildtype (wt, i.e., GPI-anchored and more
glycosylated) RML fibrils appears to be quite similar overall to
that of aRML12. However, whereas the ordered core of aRML
spanned residues 93–230, the wtRML core spanned residues
94–225. The less-ordered extreme C-terminus in the wtRML
structure likely relates to the presence of the GPI anchor, which is
absent on aRML fibrils. Also, whereas our analysis of the aRML
model identified 12 β-sheets, the wtRML model indicated 15 β-
sheets. This variance may relate to the differences in the poorly
resolved post-translational modifications and, potentially, non-
PrP ligands between these distinct RML prion preparations.
Alternatively, the cryo-EM density maps used to derive the
atomic models may not be sufficiently resolved in all areas of the
fibril cores to unambiguously pinpoint every polypeptide back-
bone torsional angle and the corresponding secondary structure.
Nonetheless, the predominant similarity between the aRML and
wtRML core structures, together with the retention of most strain
properties through passages into anchorless PrP transgenic mice
and then back into wildtype mice, is consistent with the core
structure providing the primary “code” for the fundamental
properties of a prion strain. However, strain phenotypes can be
further modulated markedly by these post-translational mod-
ifications, or lack thereof, in a given type of host6,7,15–17,19–22.

In any case, the comparisons of RML prions to 263K prions
illustrate structural permutations that discriminate these two
brain-derived prion strains, but much further work is needed to
characterize the full spectrum of mammalian prion structures and
the modulating influences of GPI anchors and glycans.

Methods
PrPSc fibril purification and bioassay. All mice were housed at the Rocky
Mountain Laboratory in an AAALAC accredited facility in compliance with
guidelines provided by the Guide for the Care and Use of Laboratory Animals
(Institute for Laboratory Animal Research Council). Experimentation followed
Rocky Mountain Laboratory Animal Care and Use Committee approved protocols
2018‐011, 2016‐039, or 2021-011-E.

aRML (also known as Chandler) prion strain fibrils were purified from brains of
transgenic mice expressing only GPI-anchorless PrP and characterized as part of
previous studies5,10. Briefly, brain homogenates were treated with a 2% sarkosyl
buffer and benzonase (EMD Millipore) to digest nucleic acids and then
ultracentrifuged to pellet PrPSc. The pellet was resuspended, treated with proteinase
K (PK), a high salt (1.7 M NaCl) and 30 mM EDTA buffer, and centrifuged
through a sucrose cushion containing 0.5% sulfobetaine 3–14. The pellet was
washed in 0.5% sulfobetaine 3–14, pelleted, and resuspended using cuphorn
sonication into 0.5% sulfobetaine 3–14 in 20 mM sodium phosphate, 130 mM
NaCl; pH 7.4. Further characterizations of such aRML preparations have been
described previously5. Additional fibril manipulations prior to cryo-EM grid
preparation were performed as previously reported1. Briefly, fibril preparations
were vortexed and allowed to sit for several minutes to pellet highly bundled fibrils.
Aliquots from the supernatant fraction were diluted in 20 mM Tris pH 7.4,
100 mM NaCl containing 0.02% amphipol 8–35 and sonicated immediately prior
to grid preparation.

To estimate the infectivity of the purified aRML preparation, male tga20
homozygous mice11 were anesthetized with isoflurane and injected in the left-brain
hemisphere with 10-fold serial dilutions beginning with 100 ng of purified
anchorless RML prep diluted in 30 µl phosphate buffered balanced saline
solution+ 2% fetal bovine serum. Following inoculation, mice were monitored for
onset of prion disease signs and euthanized when they displayed signs of prion
disease including ataxia, flattened posture, delayed response to stimuli, and
somnolence.

Cryo-EM grid preparation. C-Flat 1.2/1.3 300 mesh copper grids (Protochips,
Morrisville, NC) were glow-discharged with a 50:50 oxygen/hydrogen mixture in a
Solarus 950 (Gatan, Pleasanton, CA) for 10 s. Grids were mounted in an EM GP2
plunge freezer (Leica, Buffalo Grove, IL) and a 3 μl droplet of 0.02% amphipol A8-
35 in phosphate buffered saline was added to the carbon surface and hand blotted
to leave a very thin film. The tweezers were then raised into the chamber of the
plunge freezer, which was set to 22 °C and 90% humidity. 3 μl of recently sonicated
sample was added to the carbon side of the grid and allowed to sit for 60 s. The
sample was subsequently blotted for ∼4 s followed by a 3 s drain time before plunge
freezing in liquid ethane kept at −180 °C. Grids were mounted in AutoGrid
assemblies.

Cryo-electron tomography. For tomography, grids were prepared as above except
that 5 nm Protein A gold (CMC, Utrecht, The Netherlands) was added for fiducial
markers. The grid assemblies were loaded into a Krios G1 (Thermo Fisher Sci-
entific, Waltham, MA) transmission electron microscope operating at 300 kV with
a K3 (Gatan, Pleasanton CA) and a Biocontinuum GIF (Gatan, Pleasanton CA)
with a slit width of 20 eV. Tilt series were acquired using SerialEM23 at a 0.45 Å
pixel size at ±60°, 2° increment in a dose symmetric manner around 0°24 with
defocus values ranging from −3 to −6 μm and a total dose of ~60 e−/Å2. Tomo-
grams were reconstructed and 12 were analyzed using IMOD25. To verify that our
imaging system preserved handedness, we negatively stained bacteria onto a finder
grid and acquired tilt-series of an asymmetric letter to confirm orientation did not
change during imaging nor through tomographic reconstruction26. We then used
the bacteria as fiducials to confirm that there were only rotation changes during
magnification increases from the tilt-series magnification of the finder grid letter to
the tilt-series magnification of aRML.

Image acquisition and processing for helical reconstruction. Initial map and
helical twist parameters were generated based on our recently published dataset1, as
well as on cryo-electron tomographic analyses of aRML fibrils described above.
Motion correction of raw movie frames was performed with RELION 3.113. CTF
estimation was performed using CTFIND4.127. Fibrils were handpicked then
extracted using large and small box sizes. The longer helical segments were
extracted with a box size of 1280 pixels and were downscaled to a box size of 256
pixels. The shorter segments were extracted at 400 pixel box size. 2D classes, from
the long segments were used to estimate the cross-over distance of the fibril for
estimating initial twist parameters. 2D classes from the short segments were used to
generate an initial 3D model.

Higher resolution data was collected using a Titan Krios G3i (Thermo Fisher
Scientific, Waltham, MA) with a K3 camera and BioQuantum GIF (Gatan,
Pleasanton, CA) with images acquired at 0.55 Å/pixel at Super Resolution mode,
60 e−/Å2, and 60 total frames. Movies were motion corrected and the CTF
estimated as above. Fibrils were picked manually and segments were extracted with
an inter-box distance of 14.6 Å using box size of 740 pixels that was down sampled
to 370 pixels. Reference-free 2D class averaging was performed, using a
regularization parameter of T= 2, a tube diameter of 180 Å, and the translational
offset limited to 4.8 Å. The initial model was used for 3D auto refinement with
C1 symmetry, initial resolution limit of 40 Å, initial angular sampling of 3.7°, offset
search range of 5 pixels, initial helical twist of −0.72°, initial helical rise of 4.85 Å,
and using 50% of the segment central Z length. The output from auto refinement
was used for 3D classification without allowing for image alignment to remove
poorly aligned segments from auto refinement. Classes were selected for further
refinement based on similarity of features in their cross-section (excluding visually
low resolution and poorly aligned classes), estimated resolution, overall accuracy of
rotation and translation, and Fourier completeness. Auto-refinement was then
performed while optimizing the helical twist and rise, yielding a final map with a
twist of −0.637° and rise of 4.876 Å. Iterative cycles of CTF refinement, Bayesian
polishing, and auto refinement were used until resolution estimates stabilized. Post
processing in RELION was performed with a soft-edged mask representing 10% of
the central Z length of the fibril. Resolution estimates were obtained between
independent refined half-maps at 0.143 FSC.

Model building. De novo building of an aRML atomic model was conducted using
Coot28, with the assumption that residues comprising the protease-resistant core
(i.e. ~90–231) were included in the amyloid core. Individual subunits were
translated to generate a stack of five consecutive subunits, and translated subunits
rigid-body fit in Coot. Iterative real-space refinement and validation with Coot and
Phenix29,30 were performed, with Fourier space refinements being conducted using
RefMac5. Model validation was performed with CaBLAM31, MolProbity32, and
EMringer33, and any outliers/clashes identified and corrected with subsequent
iterative refinements/validation. Model renderings in Figs. 1 and 2 were performed
using Chimera X.

Molecular dynamics simulations. Molecular dynamics simulations were per-
formed using NAMD 2.1434 with the CHARMM36 forcefield35. After the addition
of protons utilizing the HBUILD functionality in the CHARMM molecular
dynamics platform36, a disulfide bond between cysteines 178 and 213 was gener-
ated with the use of the DISU patch. The individual monomer chains in the fibril
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were capped using the ACE and CNEU patches. The system was then solvated with
TIP3P water molecules in a cubic box containing neutralizing Na+ and Cl− ions. A
gradient of backbone and sidechain restraints ranging from 10 kcal/mol/ Å2 to
1 kcal/mol/ Å2, was utilized in iterative runs of conjugate gradient minimization
and were subsequently removed in the last 15,000 steps. A 1 ns NVT equilibration
simulation with backbone restraints was performed at a temperature of 300 K
maintained with Langevin dynamics. The simulation advanced at a timestep of 1 fs
and the particle mesh Ewald algorithm was used to calculate long-range electro-
statics. Non-bonded interactions had a cutoff of 10 Å and the rigid bond algorithm
was applied to all bonds containing hydrogen atoms. Subsequently, a 1 ns NPT
equilibration was performed with backbone restraints followed by a 10 ns pro-
duction run which advanced at a 2 fs timestep. Pressure was kept constant using
the Langevin-piston method. After 10 ns, the restraints were removed, and the
simulation continued for an additional 170 ns. The trajectories were analyzed using
VMD37 and Bio3D38.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Cryo-EM density maps and the atomic model of PrPSc fibrils have been deposited at the
Electron Microscopy Data Bank and Protein Data Bank with accession codes EMD-
25824 and PDB ID 7TD6, respectively.
The purified aRML prions, and the brains from which they are isolated, are extremely

limited. While we might be able to share small amounts of these materials upon request,
we cannot guarantee availability. However, the Tg44 anchorless PrP transgenic mice, and
RML scrapie inocula are more readily available upon request.

Received: 11 January 2022; Accepted: 27 April 2022;
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