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Dynamic recognition and mirage using neuro-
metamaterials
Chao Qian 1,2,3✉, Zhedong Wang1,2,3, Haoliang Qian 1,2,3, Tong Cai1,2,3, Bin Zheng 1,2,3, Xiao Lin1,2,3,

Yichen Shen 4, Ido Kaminer 5, Erping Li 1,2,3✉ & Hongsheng Chen 1,2,3✉

Breakthroughs in the field of object recognition facilitate ubiquitous applications in the

modern world, ranging from security and surveillance equipment to accessibility devices for

the visually impaired. Recently-emerged optical computing provides a fundamentally new

computing modality to accelerate its solution with photons; however, it still necessitates

digital processing for in situ application, inextricably tied to Moore’s law. Here, from an

entirely optical perspective, we introduce the concept of neuro-metamaterials that can be

applied to realize a dynamic object- recognition system. The neuro-metamaterials are fab-

ricated from inhomogeneous metamaterials or transmission metasurfaces, and optimized

using, such as topology optimization and deep learning. We demonstrate the concept in

experiments where living rabbits play freely in front of the neuro-metamaterials, which enable

to perceive in light speed the rabbits’ representative postures. Furthermore, we show how

this capability enables a new physical mechanism for creating dynamic optical mirages,

through which a sequence of rabbit movements is converted into a holographic video of a

different animal. Our work provides deep insight into how metamaterials could facilitate a

myriad of in situ applications, such as illusive cloaking and speed-of-light information display,

processing, and encryption, possibly ushering in an “Optical Internet of Things” era.
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Object recognition is a computer technology that involves
computer vision and image processing to detect, classify,
and tag instances of semantic objects of a certain class in

digital photographs1. In modern society, it has already permeated
deeply into every corner of our life, such as through video sur-
veillance, target tracking, and image annotation and segmenta-
tion. To achieve object recognition, conventional approaches
typically entail a two-step procedure: image sequences are cap-
tured by a camera and then processed using a digital computer, in
tandem with deep learning or other pattern recognition
algorithms2,3. However, with the exponential growth of Big Data
and the Internet of Things, the conventional two-step procedure
may not be considered adequate, with speed-of-light parallel
information collection and data processing being in high demand.

From the beginning of this century, the advent of metama-
terials and photonics has extensively motivated scientists to revisit
the established object-recognition technology from a radically
new perspective of optics. As compared with conventional
electron-based implementations, those of photon-based com-
puting have been found promising, especially in high-throughput,
site-specific, real-time tasks, and provide the competitive advan-
tages of speed-of-light operations, low-power consumption, and
parallel capability4. Thus far, achievements include mathematical
operators5,6, logic operators7,8, and so on. With respect to optical
imaging, there exist also many related developments, such as
computational imaging9–11, edge detection12,13, and non-line-of-
sight imaging14. These pioneering approaches have effectively
accomplished the first step of object recognition—image capture
—replacing and even improving digital camera technology.
However, if one intends to continue to the image processing step
of an object-recognition task, digital computing remains indis-
pensable for the required operations, including dimension
reduction and feature extraction, and researchers are aiming to
improve the efficiency of algorithms for complicated applications
scenarios.

On the other hand, whereas object recognition (e.g., of hand-
written digits) has been frequently used as an example to
demonstrate various optical neural network architectures15–20,
such as nanophotonic deep-learning circuits and hybrid optical-
electronic convolutional neural networks, these architectures in
essence finalize the second step—image processing—replacing
and even improving on digital computing by utilizing a series of
previously prepared datasets. As such, to cater to in situ appli-
cations, a light-to-electronics/electronics-to-light conversion
should be applied to allow real-time communication between the
electronic image perceptron and optical processing component.
The speed of the entire recognition system is ultimately limited by
the cloak rate of an electronic processor4. The processing speed is
difficult to increase due to the energy consumption of the pro-
cessor, becoming ever more challenging at the twilight of Moore’s
law21. Given all these factors, it is of prime importance, albeit
challenging, to facilitate entirely optical object recognition for
real-world three-dimensional (3D) applications and thus harness
the full potential of optical technology.

In this article, we propose a concept of neuro-metamaterials to
realize direct and dynamic 3D object recognition. Neuro-
metamaterials are capable of translating user-oriented demands
into the structure of the spatial metamaterial by optimization
techniques, and thus can automatically analyze or process scat-
tered waves (we term it as a scattering neural network). In gen-
eral, neuro-metamaterials can be embodied in either passive
(inherent intelligence) or active (external-driven intelligence)
forms. We show a proof of concept involving a living rabbit that
plays freely in front of a passive neuro-metamaterial. The spatial
electromagnetic (EM) fields scattered by the rabbit are re-
scattered by the metamaterials, which process them to represent

the rabbit’s postures directly. After the neural network has been
trained, the recognition accuracy rate reaches 98% in simulation
for representative rabbit postures, including walking, standing,
and sitting. The capability we developed also enables a counter-
intuitive dynamic optical mirage to be created, as an example of
which we converted a sequence of rabbit movements into a
holographic video of a giraffe. Our work brings closer the
implementation of state-of-the-art entirely photon-based com-
puting in real-world applications and simplifies previously
established but difficult-to-realize physical concepts. Looking
ahead, the results of this study open a pathway for the develop-
ment of this technology for a broad range of applications, such as
intelligent metasurfaces-aided wireless communication22, illusive
cloaking23, and information processing and display24,25, together
creating a vision of exciting possibilities in an “Optical Internet of
Things”.

Results
Prospective application scenario and the physical mechanism
of neuro-metamaterials. The potential applications of neuro-
metamaterials are many and varied. Here, we take a security
inspection system as an example of these promising applications
and clarify the physical mechanism, as visualized in Fig. 1.
Conventionally, when passengers are about to use public trans-
port, they must always undergo screening by a hand-held metal
detector or an advanced millimeter-wave scanner; meanwhile,
their baggage is separately scanned by an explosive materials
detection system or an x-ray system. In our vision, a passive
“neuro-metamaterial wall,” composed of layered or layer-free
inhomogeneous metastructures, can also execute the detection
and recognition task. When a man stands in front of the wall
under the EM wave illumination, the security inspection results
will automatically display. The underlying physical mechanism
can be understood as follows. Since microwaves can readily
penetrate most clothing material, a man carrying prohibited items

Fail

Fig. 1 Illustrative usage of neuro-metamaterials in a security inspection
system. When a man goes through the security inspection system, he
stands directly in front of a passive “neuro- metamaterial wall” fabricated
from inhomogeneous metastructures. Under EM wave illumination, the wall
performs the entire image processing and provides the result of the
inspection in the form of an EM signal. Thus, the entire processing occurs
without the need to convert the photonic to the (slower) electronic signal.
In this example, to mitigate the complexity of designing the “neuro-
metamaterial wall,” we deliberately divide it into several subregions
represented by different colors, each of which is responsible for one specific
part of the human body. For example, a gun hidden at the waist will induce
distinct scattered waves that will propagate and scatter further inside the
wall and are translated directly to a warning signal at the customer
interface. The figure was created by using Autodesk Maya and Photoshop
software.
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(such as concealed weapons) will induce strong and distinct EM
scattered waves26; the waves will then propagate through the wall,
within which intricate diffractions occur, and finally will be
focused on different pre-defined locations behind the wall.
Mathematically, the above process can be expressed as

Ulþ1¼F�1 F Sl � Ul
� � � Hl

� �
, where Hl is the transfer function of

free-space addressed by Rayleigh–Sommerfeld diffraction law, F
denotes the Fourier transform operator, and Sl is the scattering
matrix27,28. Note that the value of l ranges from 1 to L; L is the
number of metamaterial layers. U1 is the initial EM field induced
by passenger and ULþ1 is the EM field at the output plane. Our
goal is to minimize the loss function, f ¼ 1

N ∑
N
n¼1jjULþ1

n j2�
jGLþ1

n j2j, where N is the number of samples and G is the ground
truth. To achieve this goal, we can utilize gradient-based
approaches, such as topology optimization29, or evolutionary
approaches, such as simulated annealing algorithm30, to optimize
the scattering matrix.

To mitigate the design complexity, we deliberately divide the
“neuro-metamaterial wall” into several subregions represented by
different colors, as shown in Fig. 1, each of which is responsible
for one specific part of the human body, in analogy with
conventional safety check door. According to the EM strengths at
different pixels, we can quickly evaluate the level of danger. For
example, if the man is carrying a gun at his waist, the computer
interface will show a warning signal for security officers.
Compared with electronic security systems (mostly based on
amplitude imaging technology)31, neuro-metamaterials may find
the advantages by directly and simultaneously utilizing multiply
scattered wave properties, including phase, amplitude, and
polarization, to reveal features that are otherwise invisible32.
Such neuro-metamaterials-enabled object recognition will be
more convenient and immediate and can be readily extended to
other applications, such as intelligent prefilter in astronomy and
driverless vehicles and autonomous drones33.

Neuro-metamaterial design and its numerical simulations.
Specifically, we chose a tame animal, a rabbit, as the research
subject because of its biological similarities (body structure, EM
responsiveness, and other congruences) with human beings34,
and we aimed to identify its postures. Thus, the subsequent tasks
included mainly data collection, scattering matrix optimization,
and neuro-metamaterials design. For data collection, we con-
sidered three sizes of rabbit (large, medium, and small), three
postures (standing, sitting, and walking), the angles with respect
to the normal of the neuro-metamaterials (from −30° to 30° with
steps of 10°), and the distances from the rabbit to the neuro-
metamaterials (from 10mm to 100 mm with steps of 10 mm); see
details in Supplementary Fig. 1. Using the commercial software
package CST Microwave Studio, we simulated all these situations
and created a database containing hundreds of samples.

For scattering matrix optimization, we deployed a diffractive
neural network algorithm for simplicity (other algorithms, such
as topology optimization and genetic algorithms, are also superior
candidates), in analogy with orthodox artificial neural networks16.
Each hidden layer of the network consisted of 30 ´ 40 neurons,
the physical dimension of which was 13 ´ 13 mm2, and the axial
distance between layers was set to 300 mm (a hyperparameter
that can be optimized) working at 8.6 GHz. The simulated data
were shuffled and then fed to the neural network to accelerate the
convergence of the algorithm. Among these data, 80% were used
to generate the gradient, and the remaining 20% for testing. To
facilitate its physical implementation, we assumed the transmitted
amplitude of the neuron was uniform. Figure 2c plots the training
process, where the loss declines significantly, and ultimately the

accuracy rates for the training and test set reach 99% and 98%,
respectively. The close accuracy rates indicate that the neural
network is reliable with little overfitting, which has also been
checked by cross-validation (Methods). The final obtained
transmitted phases are shown on the left in Supplementary Fig. 3.
We blindly selected several samples from the testing set and show
their numerical simulation results in Fig. 2d. Here, we designate
three small regions with a radius of less than one wavelength that
corresponds respectively to the three postures. The classification
criterion of the posture is the single-pixel detector (left/middle/
right) with the maximum signal. Evidently, all the focusing points
are located at the correct position in accordance with the training
results.

We then progressed to the design of the neuro-metamaterials.
Many neuro-metamaterials can be realized, such as inhomoge-
neous bulky metamaterials and transmission metasurfaces
(regarded as layered metamaterials). For conceptual clarity, we
considered two-layer neuro-metamaterials. Neuro-metamaterials
are constructed from a dense array of subwavelength meta-atoms,
each of which functions as an independent neuron and
interconnects to other meta-atoms of the subsequent layers. This
design principle and pre-trained phase masks can be scaled into
other single frequencies. For different frequencies, we should
design specific metamaterials due to material dispersions to
match the pre-trained phase masks, such as TiO2 metasurfaces in
visible35. At the microwave regime, we designed a metallic layered
composite unit cell, the transmitted phase of which covers almost
2π. However, we would like to note that, since the transmitted
phase changes very sharply and the amplitude declines drama-
tically in the highlighted region (bottom right in Fig. 2b), they will
be very sensitive to a slight variation in the metallic patch
geometry and dielectric constant of the substrate in the
fabrication. Although this problem can be alleviated to a certain
extent by using a larger number of stacked layers, this would
degrade the robustness of the neural network and induce strong
mutual coupling36. Thus, we utilize only the working regime
outside the highlighted region in the dispersion relation.

Experimental results. The experimental setup is delineated in
Supplementary Fig. 4. A rabbit plays freely in front of the neuro-
metamaterials under the illumination of a transverse electric
plane wave, where the electric field is along the z axis. Meanwhile,
three detectors (small monopole antennas) are connected to a
series of miscellaneous components to perceive the EM strength
(the amplitude of the electric field) at the output plane37; see
Methods and Supplementary Note 4. Note that here all the
electronic components are used only to illustrate the perception
results for users utilizing microwave frequencies, whereas in
visible frequencies the results can be seen with the naked eye.

We conducted many experiments using two rabbits (one large
gray rabbit and one small black-white rabbit); the results are
presented in Fig. 3. To quantize the measurement results, we
define an indicator—the variance in the amplitude of the electric
field over its original amplitude, that is, 4E=E0. Figure 3a shows
photographs of all six postures (three per rabbit), corresponding
one-to-one to the average 4E=Eo of many measurements in
Fig. 3b. Evidently, the strongest signal occurs at the expected
locations, albeit only with a slight transcendence for a few
postures. On this foundation, we further trained the two rabbits
to continue to play for a period of time and recorded the time-
varying signals, as delineated in Fig. 3c, 3d; see full dynamics in
Supplementary Movies 1 and 2. Interestingly, in the first video,
the large gray rabbit is very active, affording a dramatic variation
in the signal (consistent with the ground truth). In contrast, in the
second video, the small black-white rabbit (~5 months old) is not
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active, and thus, the signal remains relatively stable. Although the
sitting and walking postures of the small rabbit are somewhat
similar, our experimental results can express this hybrid mode in
the second half of the regime (right panel in Fig. 3d).

Dynamic optical mirage. In contrast to object recognition, a
counterintuitive optical phenomenon, a dynamic optical mirage/
illusion, can be enabled by neuro-metamaterials. The realization
of optical illusions using transformation optics was theoretically
proposed in 2009, but experimentally it is hindered to a great
extent by the complicated composition of metamaterials, which
feature both anisotropy and inhomogeneity23. Our proposed
approach may provide a radically new methodology that can
simplify the pioneering scheme by virtue of two aspects. First, our
design is more accessible for practical execution using neuro-
metamaterials (isotropic) or metasurfaces. Second, our design can
operate not only for static but also for non-static objects. As
shown in Fig. 4a, when a rabbit plays freely in front of the neuro-
metamaterial wall, an observer behind the wall will misconstrue it
as another object, such as a giraffe. This scheme may enrich
optical holograms, giving rise to many potential applications,
such as data encryption, optical display, and illusive cloaking.

To demonstrate the above capability, we continuously
extracted 15 image frames from Supplementary Movie 1 as the
input and a giraffe video (which also contains 15 frames) was the
output. Notice that optical mirage here is treated as an
optimization task, rather than an inference task (which has been
verified in the posture recognition experiment). To facilitate the
neural network training, the raw input and output images were
spatially sampled by 70 × 84 points, and the distance between
points is set to be 13 mm (the size of the neuron); thus, the
physical sizes of the input and output are 910 × 1092 mm2. Input

images are encoded into the amplitude of the input field, and the
neuro-metamaterials are optimized to transform rabbit images
into giraffe images. We considered phase-modulated neuro-
metamaterials, and the incident wavelength was set to be the
same as that in Fig. 2. Figure 4b, c show the results, and
Supplementary Movie 3 provides a full animation. The original
rabbit movements are successfully reconstructed to provide a
dynamic mirage of a drinking giraffe, with its head going down
gradually. To quantitatively characterize the mirage performance,
we adopted a structural similarity (SSIM) index with an average
value of 93.51%38.

In experiment, we take four distinct frames (frames 1, 7, 10, 15)
as examples. For simplicity, the frames are resized into
325 × 360 mm2 amplitude’s modulated plates as the input of
neuro-metamaterials (Fig. 5a). We fabricated the pre-trained
neuro-metamaterials and measured the electric field distributions
at the output plane. The measured results are displayed in Fig. 5b,
which clearly shows a dynamic mirage of giraffe, and the giraffe’s
head goes down gradually. For comparison, we also measured the
electric field distributions without the neuro-metamaterials,
which shows a completely different result (Fig. 5c).

Discussion
We note that the optical mirage demonstrated here is different
from imaging16. For imaging, its physical essence is to make a
limited number of point sources at the input plane to focus at the
output plane. Once designed well, the imaging lens can be
naturally applied to an arbitrary object with a certain resolution.
For optical mirage, it is almost impossible to be universal like
that, because optical mirage is site-specific for a given input/
output sequence or some input/output categories. For different
scenarios and users, the input and output may be different, for
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example, converting a moving rabbit into a moving giraffe, cat,
and tiger. In real-world applications, we may reasonably incor-
porate more images into large-scale neuro-metamaterials as an
optimization task (Supplementary Figs. 5 and 6), or treat optical
mirage as an inference task for untrained input (Supplementary
Fig. 7). The result in Supplementary Fig. 6 shows that the optical
illusion can still work for a running giraffe (for the case where the
similarities among the output images are weak). For a certain
network, when the number of input images increases, the SSIM of
output images may decrease. Taking the small-scale network and
an experimentally recorded movie as examples, the length of the
input sequence reaches about 150 images with an average SSIM
of 75%.

In conclusion, we proposed and experimentally realized a more
ambitious 3D object-recognition strategy enabled by neuro-
metamaterials, i.e., passive and inanimate metamaterials endowed
with cognitive and computing ability. In contrast to conventional
object-recognition systems, ours is realized entirely in optics
and for 3D targets; the additive back-end detection system is used
only to illustrate the perception result for users and is not a part
of the recognition calculations. In other words, our approach
successfully integrates two functionalities: the capture and pro-
cessing of optical images. In the experiment, we utilized layered
neuro-metamaterials for identifying the postures of two freely-
playing rabbits without human intervention, which can strongly
verify the preliminary metrics of the neuro-metamaterials.
Furthermore, we introduced an intriguing optical mirage
mechanism, converting a sequence of rabbit movements into
different dynamic holography. This novel scheme substantially
simplifies the mainstream yet difficult-to-reach transformation

optics-based optical illusion, because of its practical feasibility and
dynamic input.

Our work provides deep insight into and a better under-
standing of the way metamaterials can facilitate real-world
applications and may trigger other existing or yet-to-be conceived
applications, in terms of wireless communication22, illusive
cloak23,39,40, and information processing and display24,25. In
some applications that involve high-throughput and on-the-fly
data processing, low-energy consumption, and low-heat genera-
tion, neuro-metamaterials may find definite advantages over
electronic counterparts, such as accelerating matrix calculation in
artificial neural network15, passive imaging pre-processor11–13,
and synthetic aperture radar41. Looking forward, we can also
envision that the neuro-metamaterials may provide a large degree
of freedom to generate a highly-informative holography tech-
nology in tandem with broadband metasurfaces42, orbital angular
momentum25, reconfigurable technologies43, and nonlinear
components44. In addition to spatially separated metasurfaces,
compact metamaterials and nanophotonics45 may also offer a
fertile platform to foster integrable, compact, and speed-of-light
neuro-metamaterials, ushering in a possible “Optical Internet of
Things” era.

Methods
Data collection. We considered four parameters of a rabbit to generate the
simulated data, i.e., the rabbit’s size, posture, rotation angle, and distance to the
neuro-metamaterials; see Supplementary Fig. 1. We import these models into the
commercial software package CST Microwave Studio and continuously generate
the data using the MATLAB-CST co-simulation method. The simulated data are
shuffled and 80% are blindly selected as the training set and the remaining 20% are
used for testing the performance of the neuro-metamaterials.
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input field. b Measured electric field amplitude with the neuro-metamaterials at the output plane. The results clearly show a mirage of giraffe, and the
giraffe’s head goes down gradually. c Measured electric field amplitude without the neuro-metamaterials.
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Training of neuro-metamaterials. The neuro-metamaterials are trained using
Python version 3.5.0. and TensorFlow framework version 1.10.0 (Google Inc.) on a
server (GeForce GTX TITAN X GPU and Intel(R) Xeon(R) CPU X5570
@2.93 GHz with 48GB RAM, running a Linux operating system). It takes dozens of
minutes for our neuro-metamaterials to converge. In the future, it will be possible
to embed nonlinear components in the neuro-metamaterials to extend their
capability44. A similar idea can be applied to optical neuromorphic computing45.

Cross-validation. To validate that our network is reliable, we use a cross-validation
method. To be specific, we divide the whole dataset into five parts. Each time, we
take one of them as the test set (20%) and the rest as the training set (80%). This
way, we obtain five sets of accuracy rates in total. We then calculate the average
accuracy rates of training (98.8%) and test sets (97.6%), which are close to those in
the main text. This provides another ground to validate our clarification.

Experimental measurement setup. A high-directivity lens antenna centered at
the neuro- metamaterials was used as the excitation source. Three monopole
probes, which we built ourselves, were connected to one RF switch
(HMC641ALC4), collecting the amplitude signals from the three ports at
microseconds37. The received signal was amplified by a broadband amplifier and
down-converted by 6 GHz. Then, we employed an AD9361 as the RF processor,
containing a low noise amplifier, mixer, and other components, and used a Xilinx
ZYNQ for data processing accelerated by a field-programmable gate array. These
electronic devices are used only to illustrate the perception results in microwave
and are not a part of the object-recognition process.

Data availability
Data presented in this publication is available on Figshare with the following identifier
(https://doi.org/10.6084/m9.figshare.19602145.v1).

Code availability
The codes used in the current study are available from the corresponding authors upon
reasonable request.
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