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Structure of ATP synthase under strain during
catalysis
Hui Guo 1,2 & John L. Rubinstein 1,2,3✉

ATP synthases are macromolecular machines consisting of an ATP-hydrolysis-driven F1
motor and a proton-translocation-driven FO motor. The F1 and FO motors oppose each other’s

action on a shared rotor subcomplex and are held stationary relative to each other by a

peripheral stalk. Structures of resting mitochondrial ATP synthases revealed a left-handed

curvature of the peripheral stalk even though rotation of the rotor, driven by either ATP

hydrolysis in F1 or proton translocation through FO, would apply a right-handed bending force

to the stalk. We used cryoEM to image yeast mitochondrial ATP synthase under strain during

ATP-hydrolysis-driven rotary catalysis, revealing a large deformation of the peripheral stalk.

The structures show how the peripheral stalk opposes the bending force and suggests that

during ATP synthesis proton translocation causes accumulation of strain in the stalk, which

relaxes by driving the relative rotation of the rotor through six sub-steps within F1, leading to

catalysis.
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ATP synthases use a transmembrane electrochemical proton
motive force (pmf) to generate adenosine triphosphate
(ATP) from adenosine diphosphate (ADP) and inorganic

phosphate (Pi). The enzyme complex consists of two molecular
motors positioned to oppose each other’s action on a shared rotor
subcomplex (Fig. 1a, left). The membrane-embedded FO motor is
driven by proton translocation across the membrane through two
offset half channels1,2 while the soluble F1 motor is powered by
ATP hydrolysis. In Saccharomyces cerevisiae, the FO region con-
tains subunits a, e, f, g, i/j, k, 8, part of subunit b, and the c10-ring
of the rotor3, while the F1 region includes a trimer of catalytic
subunit αβ pairs and subunits γ, δ, and ε from the rotor4. Cou-
pling between F1 and FO requires that the two motors are held
stationary relative to each other by a peripheral stalk subcomplex
(Fig. 1a, green structure), which in yeast is formed from subunits
b, d, h, and OSCP (the oligomycin sensitivity conferral protein).

During ATP synthesis, proton translocation through FO at the
interface of subunit a and the c-ring causes the γδεc10 rotor
(Fig. 1a, outlined in black) to turn. Rotation of subunit γ within
F1 leads each αβ pairs to cycle through open, tight, and loose
conformations that result in the formation of ATP. Conversely,
sequential ATP hydrolysis at each of the three αβ pairs in F1
causes the γ subunit to turn in the opposite direction, rotating the
proton-carrying c-ring against subunit a in FO and pumping
protons across the membrane. Even with the rotor turning at
hundreds of revolutions per second5,6 there is little or no ‘slip’7

and the H+:ATP ratio remains constant. In S. cerevisiae this ratio
is 10:3 due to the ten proton-carrying c subunits in FO and three
catalytic sites in F18. With this H+:ATP ratio, when 10× the free
energy of proton translocation (4eμHþ ) is more negative than 3×
the free energy of ATP hydrolysis (4GATP) the FO motor over-
powers the F1 motor, forcing it to synthesize ATP. When
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Fig. 1 Rotation in ATP synthase. a ATP synthase (left) consists of an F1 and an FO region with a shared rotor subcomplex (outlined in black) and a
peripheral stalk (green). Rotation driven by proton translocation through the FO region, or the opposite rotation driven by ATP hydrolysis in the F1 region,
are predicted to induce a right-handed bend of the peripheral stalk (right). b ATP hydrolysis or synthesis in the F1 region requires three catalytic (black,
yellow, and red) and three bind dwell (light blue, blue, and green) conformations. c High-resolution structure of the yeast mitochondrial ATP synthase. d In
the absence of free ATP, the peripheral stalk exhibits limited flexibility with a left-handed curvature. e During ATP hydrolysis, ATP synthase can adopt
conformations that show a right-handed curvature of the peripheral stalk. f Histograms of the distribution of conformations in the absence of ATP (top,
blue) and during ATP hydrolysis (bottom, purple).
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3 ´4GATP is more negative than 10 ´4eμHþ , F1 overpowers FO
and the enzyme hydrolyzes ATP to pump protons.

Synthesis or hydrolysis of each ATP molecule is associated with
a ~120° rotation of the γ subunit within F1, leading to con-
formations of the enzyme known as rotational State 1, 2, and 3
Ref. 9. During ATP hydrolysis, which is better studied than ATP
synthesis, this ~120° rotation is broken down into a ~40° sub-step
as the enzyme transitions from a ‘catalytic dwell’ to a ‘binding
dwell’, and an ~80° sub-step as the enzyme transitions to the next
catalytic dwell5,10–12 (Fig. 1b, clockwise). ATP hydrolysis likely
occurs during the ~40° sub-step while ATP binding likely occurs
during the ~80° sub-step12–14. Consequently, the expected
sequence of states for a 360° rotation of the rotor during ATP
synthesis is State 1binding→ State 1catalytic→ State 2binding→ State
2catalytic→ State 3binding→ State 3catalytic (Fig. 1b, counter-clock-
wise). The mismatch between these six sub-steps in F1 and the ten
proton-translocation steps in FO suggests that the enzyme cycles
between strained and relaxed conformations during catalysis15,16.
Early cryoEM noted that the peripheral stalks of mitochondrial
ATP synthases have a left-handed curvature17,18 (Fig. 1a, left).
However, torque applied to the rotor following proton translo-
cation through FO (Fig. 1a, right, blue arrows) would tend to
rotate the α3β3 hexamer in the same direction as the torque,
inducing a right-handed curvature of the peripheral stalk as it
resists the rotation. Similarly, the opposite torque applied to the
opposite end of the rotor by ATP hydrolysis in F1 (Fig. 1a, right,
red arrows) would tend to rotate the membrane-embedded region
of FO along with the c-ring, also inducing a right-handed cur-
vature of the peripheral stalk as it resists the rotation17. Previously
observed structures were obtained in the absence of a pmf or free
ATP9,17–30, suggesting that the peripheral stalk may act as a
spring that has a left-handed curvature when relaxed but a right-
handed curvature under strain during catalysis17.

Results and discussion
The peripheral stalk shows pronounced bending under strain
during ATP hydrolysis. We purified S. cerevisiae ATP synthase
with the detergent n-Dodecyl-β-D-Maltopyranoside (DDM),
which results in a monomeric preparation of the enzyme30,31, and
determined its structure by cryoEM (Supplementary Figs. 1 and 2,
Supplementary Tables 1 and 2). A high-resolution map of the
intact complex was generated by combining multiple maps from
focused refinements (Fig. 1c and Supplementary Fig. 1c). In this
map, the peripheral stalk shows the left-handed curvature seen
previously. Three-dimensional (3D) classification allowed particle
images to be separated into six rotor positions, corresponding to
the catalytic and binding dwells for each of the three main
rotational states. These conformations resemble recent catalytic
and binding dwell structures for an isolated bacterial F1 sub-
complex imaged during ATP hydrolysis, where the absence of the
peripheral stalk resulted in all catalytic dwell structures being
identical and all binding dwell structures being identical32. For
yeast ATP synthase imaged without ATP, the catalytic dwell
structures show αβtight either in the open conformation lacking
nucleotide or in a closed conformation with weak nucleotide
density, and the binding dwell structures show αβtight only in an
open conformation without nucleotide (Supplementary Fig. 3).
The existence of αβtight in an open conformation without visible
nucleotide density is likely an artifact from loss of ATP during the
purification of the enzyme. Further classification of the State
1catalytic conformation resulted in classes distinguished by varia-
bility in the position of the peripheral stalk and a slight rotation of
the rotor relative to subunit a. These classes were designated as
State 1catalytic(a) (Fig. 1d, light blue) to State 1catalytic(d) (Fig. 1d,
dark blue) in order of increasing straightening of the peripheral

stalk (Supplementary Movie 1, ‘no ATP’ condition). As these
structures were determined in the absence of free ATP, they likely
represent energetically similar conformations that can be reached
by thermal fluctuation of the enzyme structure9,26.

To test the hypothesis that the peripheral stalk of ATP synthase
deforms under strain, we next added ATP to the preparation and
froze cryoEM specimens. The presence of ATP in the cryoEM
sample buffer introduces a concentration-dependant background
noise and loss of contrast in images of DDM-solubilized ATP
synthase (Supplementary Fig. 5A). Therefore, a delicate balance is
required to provide sufficient ATP in solution to ensure that the
enzyme is active as grids are frozen, while simultaneously
maintaining sufficient contrast and image quality for image
analysis. Initially, a small dataset of images was collected with a
screening electron microscope where 10 mM ATP was added to
the preparation at 4 °C and cryoEM specimens were frozen within
10 s. Analysis of this dataset revealed conformations of the
enzyme not seen in the absence of free ATP (Supplementary
Fig. 4). Therefore, a large dataset was collected for the specimen
with a high-resolution microscope (Supplementary Fig. 5).
Classification of the resulting dataset yielded maps showing six
different F1 states, corresponding to the catalytic and binding
dwell structures from each of the three main rotational states.
Subclassification of these populations separated each catalytic and
each binding state into conformations with increasing rotation of
the rotor relative to subunit a, and increasingly strained
peripheral stalks, designated as ‘a’, ‘b’, ‘c’, etc. Overall, 27 unique
conformations were identified: State 1binding(a to d), State
1catalytic(a to h), State 2binding(a to b), State 2catalytic(a to e), State
3binding(a to c), and State 3catalytic(a to e). Overlaying the eight
State 1catalytic(a to h) structures reveals that during ATP
hydrolysis the peripheral stalk exhibits a large bending motion,
transitioning from a left-handed curvature (Fig. 1e, light purple)
to the predicted right-handed curvature (Fig. 1e, dark purple;
Supplementary Movie 1, ‘During ATP hydrolysis’ condition).
Without ATP and during ATP hydrolysis, the left-handed
curvature of the peripheral stalk remains the most highly
populated conformation of the enzyme (Fig. 1f).

The flexible peripheral stalk accommodates rigid rotation of
the rotor during ATP hydrolysis. To facilitate comparison of the
ATP synthase conformations that occur during ATP hydrolysis,
backbone models of the protein structure were fit flexibly into
each of the 27 maps (Fig. 2a). Remarkably, the α3β3γδεc10 models
from all 18 catalytic dwell conformations could be overlaid with
high-fidelity (Fig. 2b, left), as could the nine α3β3γδεc10 models
from binding dwell conformations (Fig. 2b, right), with some
limited flexibility at the interface between F1 and the c-ring. This
observation shows that, other than being in a catalytic or binding
dwell conformation, the differences between the structures are
mostly due to deformation of the peripheral stalk subunits and
the rotation of the c-ring relative to subunit a in FO. Comparison
of the eight State 1catalytic models shows that the α3β3γδεc10 rotor
can turn ~80° against subunit a in FO, or more than one-fifth of a
complete revolution, before transition to the next binding dwell
conformation (Fig. 2c). Bending of the peripheral stalk and not
the central rotor of the complex supports suggestions that the
peripheral stalk is the most compliant part of the enzyme and
stores energy during rotary catalysis9,21,22,26,28,33,34.

The peripheral stalk bends by deformation of subunits d, f, and
h. The peripheral stalk of yeast ATP synthase contains subunits b,
d, h, and OSCP (Fig. 3a). Although atomic models for subunits b,
d, and OSCP have been constructed from previous cryoEM of
ATP synthase30, model quality for the 92-residue subunit h in
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earlier structures was low due to flexibility in both the peripheral
stalk overall and subunit h specifically. Focused refinement of the
peripheral stalk in the current structure resulted in continuous
density for most of subunit h, allowing for construction of an
atomic model for residues 1 to 62 based on predictions from
AlphaFold35 (Fig. 3a, blue; Supplementary Fig. 6). Interestingly,
despite density immediately C-terminal of His62 in subunit h
appearing disordered, an additional density that interacts with
subunits a, d, f, and 8 indicates that the C terminus of the protein
reaches the membrane surface, as suggested previously36 (Fig. 3a,
dashed box). Therefore, subunit h spans the entire distance from
F1 to FO, a role usually attributed only to subunit b, and different
from subunit F6, the shorter mammalian homolog of subunit h29.

Aligning the eight structures corresponding to State 1catalytic by
their FO regions reveals that the dramatic bending of the
peripheral stalk is facilitated mainly by deformation of subunits
b, d, and h (Fig. 3b; Supplementary Movie 1, ‘During ATP
hydrolysis’ condition). In conformations that show only slight
bending of the peripheral stalk, such as State 1catalytic(b to d),

deviation from the relaxed State 1catalytic(a) conformation is
mediated primarily by a pivot point in subunits b and d close to
the membrane surface (Fig. 3c, red arrow). In the more strained
conformations like State 1catalytic(h), a second pivot point in
subunit b at the top of subunit d is apparent (Fig. 3c, yellow
arrow). The two pivot points are located at either end of subunit
d, indicating that subunit d controls where the peripheral stalk
bends and likely acts to oppose the bending force, inducing the
left-handed curvature of the peripheral stalk when it is not under
strain. The structure of subunit d, with an α-helical hairpin that
allows it to push against subunit b, is ideal for its role of applying
a force that attempts to restore the relaxed conformation of the
peripheral stalk during ATP hydrolysis or synthesis (Fig. 3d;
Supplementary Movie 1, orange subunit). Subunit h contains two
disordered regions close to the two pivot points defined by
subunit d, which allows it to withstand the large conformational
changes that occurs around the pivot points (Fig. 3d, blue
asterisks). In contrast with the spring-like peripheral stalk seen
here for the yeast ATP synthase, the unusually large peripheral
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stalk of algal ATP synthase from Polytomella sp., although imaged
in the absence of substrate, appears mostly rigid, with the OSCP
subunit that connects the catalytic domain to the rest of the
peripheral stalk showing the most flexibility26.

Overall rotation cycle of yeast ATP synthase. Despite the pre-
sence of a high concentration of ATP in the buffer used for
freezing specimens during ATP hydrolysis, State 1catalytic(a), the
least strained of the State 1catalytic conformations, appears to have
MgADP bound in its αβtight site (Fig. 4a, left). In contrast,
refinement of the F1 region with particle images combined from
State 1catalytic(e to h), the four most strained of the State 1catalytic
conformations, resulted in a structure similar to State 1catalytic(a)
but with what appears to be MgATP bound to αβtight (Fig. 4a,
right). In the presence of free ATP, ATP hydrolysis occurs at the
αβtight site and MgADP within the site is expected to inhibit this
hydrolytic activity. Therefore, the presence of MgADP in αβtight
of the non-strained conformation suggests that many of the
complexes in this conformation are in the well-known MgADP
inhibited state4,37. Inactive complexes have been detected pre-
viously even in the presence of free ATP38,39. In contrast, the
structures that show the more strained peripheral stalks appear to
be calculated from images of active enzyme particles. Density for
the binding dwell conformations suggests that they contain
MgADP with Pi in the αβtight site (Supplementary Fig. 7a), as was
seen in the bacterial F1 region during ATP hydrolysis32.

To place the 27 conformations of ATP synthase observed
during ATP hydrolysis into a rotational sequence, the positions of
subunit γ relative to α3β3 in F1 (Fig. 4b) and of the c-ring relative
to subunit a in FO (Fig. 4c) were measured and plotted on circles
that represent a 360° rotation. As described above, the α3β3γδεc10
subcomplex is found in three catalytic dwell conformations and
three binding dwell conformations, resulting in only six unique
positions of subunit γ relative to α3β3 in F1 (Fig. 2b). Consistent
with the isolated bacterial F1 region10,32, ATP hydrolysis in αβtight
of the yeast catalytic dwell conformation appears to induce a
slightly more open conformation of the αβ pair and a ~36°
rotation of the rotor (Supplementary Fig. 7b), leaving the enzyme
in a binding dwell. MgADP and Pi are then released from the
αβtight site and ATP binding to the αβopen site drives an ~84°
rotation of the rotor to the next catalytic dwell conformation.
Repetition of this process two more times completes the 360°
rotation cycle for ATP hydrolysis (Fig. 4b, clockwise arrows),
while for ATP synthesis the reverse reaction is driven by rotation
of the rotor in the opposite direction (Fig. 4b, counter-clockwise
arrows).

In contrast to the six unique positions of subunit γ relative to
α3β3 in F1, there are 27 unique positions of the c-ring relative to
subunit a in FO. Plotting the angle of the c-ring relative to subunit
a in FO produces a series of arcs that show the range of rotation of
the ring within each catalytic or binding dwell state (Fig. 4c, black,
blue, yellow, green, red, and cyan arcs). These arcs reveal that as
the c-ring rotates in the ATP hydrolysis direction, each state
exhibits a decreasing strain on the peripheral stalk (Fig. 4c,
clockwise arrow). For example, for State 1catalytic (Fig. 4c, black
arc), rotation of the c-ring in the ATP hydrolysis direction occurs
during the transition from State 1catalytic(h)→ State 1catalytic(a). As
ATP hydrolysis in a catalytic αβtight site causes the transition from
a catalytic dwell to a binding dwell, the order of states indicates
that the power stroke of ATP hydrolysis forces the peripheral
stalk into a more strained conformation (e.g., State 1catalytic(a)→ State
1binding(d)). This strain subsequently relaxes as the c-ring continues
to turn in the ATP hydrolysis direction (e.g., State 1binding(d)→ State
1binding(a)). Conversely, rotation of the c-ring in the direction
driven by proton translocation during ATP synthesis (Fig. 4c,

counter-clockwise arrow) leads to increasing strain on the peripheral
stalk (e.g., State 1binding(a)→ State 1binding(d)), which relaxes as ATP
is formed in the catalytic site and the enzyme transitions from a
binding dwell conformation to a catalytic dwell conformation (e.g.,
State 1binding(d)→ State 1catalytic(a)).

Notably, the most strained conformation of some of the states
show less rotation of the c-ring in the ATP hydrolysis direction
than less strained conformations of the preceding state (Fig. 4c,
shaded areas). For example, the transition from State 1catalytic(a)
to State 1binding(d) during ATP hydrolysis would involve the
c-ring rotating 23° in the ATP synthesis direction. The same
apparent ‘backstepping’ can be seen at the transition from State
3catalytic→ State 3binding, and State 2binding→ State 1catalytic. This
backstepping of the c-ring would bend the peripheral stalk in the
opposite direction of the applied force and is physically unlikely.
Therefore, the unstrained conformations appear to show inactive
complexes that are not part of the rotary sequence during
substrate turnover. By extension, these data suggest that during
rotary catalysis the peripheral stalk becomes strained and does
not relax fully until catalysis stops. Construction of a movie
showing rotation in the hydrolysis direction based on the most
strained conformation of the enzyme illustrates the amount of
deformation that can occur during ATP hydrolysis (Supplemen-
tary Movie 2, ‘ATP hydrolysis’ cycle). Similarly, a video can be
constructed showing rotation in the ATP synthesis direction
based on the most strained conformations (Supplementary
Movie 2, ‘ATP synthesis’ cycle). Together, these data illustrate
how in active ATP synthase the peripheral stalk can serve as a
buffer for energy that deforms under strain. ATP synthase c-rings
from different species can have between eight and 17 c subunits40

and the flexibility of the peripheral likely allows this variability.
The storage of energy during rotation would also be expected to
smooth the transmission of power between the F1 and FO motors
despite symmetry mismatch, which is thought to be essential for
the high turnover rate of the enzyme41,42. In the fully active
enzyme, the peripheral stalk likely remains deformed as the
enzyme runs, with the degree of bending dependent on the rate of
turnover, and with the enzyme only becoming fully relaxed in the
absence of ATP or a proton motive force. At present cryoEM
appears uniquely capable of providing high-resolution insight
into changes in enzyme conformation that occur during catalysis.
Experiments to quantify strain within ATP synthase in solution
conditions, such as single-molecule fluorescence resonance
energy transfer43, could complement the findings reported here
and reveal how strain changes within individual molecules during
each rotation cycle.

Methods
Yeast growth and ATP synthase purification. Yeast strain USY006 containing a
6 ×His tag at the N terminus of the β subunits was grown in YPGD media (1% [w/v]
yeast extract, 2% [w/v] peptone, 3% [v/v] glycerol, 0.2% [w/v] glucose) with a 11 L
fermenter (New Brunswick Scientific) for ~48 h at 30 °C until saturation. All pur-
ification steps were performed at 4 °C. Yeast cell walls were broken with bead beating,
and cell debris was removed by centrifugation at 5000 × g for 30min. Mitochondria
were collected by centrifugation at 25,000 × g for 30min, before being washed with
phosphate buffer (50mM sodium phosphate pH 9.0, 5 mM 6-aminocaproic acid,
5 mM benzamidine, 1mM PMSF) for 30min. Washed mitochondria were collected
by centrifugation at 184,000 × g for 30min, before being resuspended in buffer
(50mM Tris-HCl pH 7.4, 10% [v/v] glycerol, 1% [w/w] DDM [Anatrace], 5 mM
6-aminocaproic acid, 5mM benzamidine, 1 mM PMSF) and solubilized with gentle
shaking for one hour. Insoluble material was removed by centrifugation at 184,000 × g
for 30min, and supernatant containing solubilized protein was supplemented with
40mM imidazole and 300mM NaCl before being loaded onto a 5mL HisTrap
column (Cytiva) equilibrated with HisTrap buffer (50mM Tris-HCl pH 7.4, 10% [v/
v] glycerol, 0.05% [w/w], 40mM imidazole, 300mM NaCl, 5mM 6-aminocaproic
acid, 5mM benzamidine, 1mM PMSF), and washed with HisTrap buffer. ATP
synthase was eluted with HisTrap buffer containing 300mM imidazole and was
loaded onto a Superose 6 Increase column (Cytiva) equilibrated with buffer (20mM
Tris-HCl pH 7.4, 10% [v/v] glycerol, 0.05% [w/w] DDM, 100mM NaCl, 5mM

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-29893-2 ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:2232 | https://doi.org/10.1038/s41467-022-29893-2 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


MgCl2). Fractions containing ATP synthase were pooled, and the protein was con-
centrated to ~15mg/ml prior to cryoEM grid freezing or storage at −80 °C.

CryoEM specimen preparation. Glycerol in the ATP synthase preparation was
removed with a Zeba Spin desalting column (Thermo Fisher Scientific [TFS])
before freezing cryoEM specimens. Holey gold films with ~2 µm holes were

nanofabricated44 on 300 mesh Maxtaform copper-rhodium grids (Electron
Microscopy Sciences). Specimens with 10 mM ATP were prepared by first applying
0.4 µL of 50 mM ATP in buffer (70 mM Tris-HCl pH 7.4, 0.05% [w/w] DDM,
100 mM NaCl, 55 mM MgCl2) onto a grid that had been glow-discharged in air for
2 min. Freshly prepared ATP synthase (1.6 µL) was mixed quickly with the ATP
solution on the grid before blotting for 1 s in an EM GP2 grid freezing device
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(Leica) at 4 °C and 100% humidity and plunge frozen in liquid ethane. Specimens
without ATP were prepared the same way except that the mixing step was omitted.

CryoEM data collection. Preliminary cryoEM data was collected with FEI Tecnai
F20 electron microscope operated at 200 kV and equipped with a Gatan K2 Summit
camera. Images with this microscope were acquired as movies with 30 fractions at 5 e/
pixel/s and a calibrated pixel size of 1.45 Å/pixel. CryoEM movies for high-resolution
analysis were collected with a Titan Krios G3 microscope operated at 300 kV and
equipped with a Falcon 4 camera (TFS). Automated data collection was performed
with EPU. For the dataset including ATP, 10,037 movies, each consisting of 30
fractions, were collected at a nominal magnification of ×59,000, corresponding to a
calibrated pixel size of 1.348 Å. The exposure rate and the total exposure of the
specimen were 6.1 e−/pixel/s and ~40 e−/Å2, respectively. For the ATP-free dataset,
8817 30-fraction movies were collected at a nominal magnification of ×75,000, cor-
responding to a calibrated pixel size of 1.046 Å. The exposure rate and the total
exposure for this specimen were 4.2 e/pixel/second and ~39 e/Å2, respectively.

Image analysis. Data collection was monitored with cryoSPARC Live45 to screen and
select high-quality micrographs. All other image analysis steps were performed with
cryoSPARC except where mentioned. Movie fractions were aligned with patch-based
motion correction and contrast transfer function (CTF) parameters were estimated
with patch-based CTF estimation. After removing movies with undesirable motion or
CTF fit, 7474 and 4059 movies from the dataset including ATP and the ATP-free
dataset were selected for further processing, respectively. Movie fractions were aligned
with MotionCor46 with a 7 × 7 grid and averaged micrographs from the aligned
movies were subjected to patch-based CTF estimation. For the ATP-free dataset,
particle selection was performed with Topaz47. For the dataset including ATP, tem-
plates for particle selection were generated from 2D classification of manually selected
particle images. After particle selection, 2,534,488 particle images were extracted for the
dataset with ATP and 442,025 particle images were extracted for the ATP-free dataset.
Low-quality particle images were removed with two rounds of 2D classifications,
yielding 1,109,677 and 422,765 particle images for the dataset including ATP and the
ATP-free dataset, respectively. Further cleaning with ab initio 3D classification and
heterogeneous refinement reduced dataset sizes to 915,825 and 379,817 particle ima-
ges, respectively. The remaining particle images were classified into three classes,
corresponding to the three main rotational states of the enzyme, and each class was
refined with non-uniform refinement48. For the dataset including ATP, local refine-
ment was performed with all particle images with a mask including α3β3γδε from the
F1 region. CTF parameters of individual particle images were re-estimated with local
CTF refinement, and masked refinement was performed again with updated CTF
parameters. Image alignment parameters were then converted to Relion49 .star file
format with pyem (https://doi.org/10.5281/zenodo.3576630) and individual particle
motion was corrected with Bayesian polishing50. For the ATP-free dataset, Bayesian
polishing was performed with an intact ATP synthase map reconstructed with all
particle images and particle images were down-sampled to a pixel size of 1.308 Å.
Motion corrected images were imported back to cryoSPARC, refined, and CTF
parameters re-estimated. For the dataset including ATP, particle images were initially
classified into four classes. Iterative ab initio classification and heterogeneous
refinement of each of the four classes yielded 27 unique rotational states of ATP
synthase. The 27 structures were named State 1binding(a to d), State 1catalytic(a to h),
State 2binding(a to b), State 2catalytic(a to e), State 3binding(a to c), and State 3catalytic(a to e),
and had resolutions ranging from 4.4 to 7.8 Å after refinement. Masked local refine-
ment of the F1 region of State 1catalytic(a) yielded a 3.5 Å resolution map representing
the MgADP inhibited state. Local refinement of the F1 region of combined State
1catalytic(e to h) and State 1binding(a to d) yielded two 4.0 Å resolution maps. To better
visualize the nucleotide density in maps, density modification51 of locally-refined maps
of State 1catalytic(a), State 1catalytic(e to h), and State 1binding(a to d) was performed in
Phenix52. For the ATP-free dataset, a similar 3D classification strategy yielded nine F1
states, namely State 1, 2, and 3catalytic with αβtight in a closed conformation, State 1, 2,
and 3catalytic with αβtight in an open conformation, and State 1, 2, and 3binding with
αβtight in an open conformation (Supplementary Fig. 1 and 3). These states included
56,739, 52,468, 24,879, 31,559, 47,065, 65,651, 19,922, 57,468, and 23,622 particle
images, respectively. Local refinement of the F1 region with these images yielded maps
at 3.4, 3.4, 3.6, 3.5, 3.5, 3.4, 3.7, 3.4, and 3.7 Å resolution, respectively. When the
three rotational states are combined, the F1 regions of Statecatalytic with βtight closed,
Statecatalytic with βtight open, and Statecatalytic with βbinding open reached 3.2, 3.2, and
3.3 Å resolution, respectively. Classification of particle images contributing to State
1catalytic from the ATP-free dataset yielded 4 classes with different c-ring positions
relative to subunit a, which demonstrates the flexibility of the peripheral stalk in the

absence of free ATP (Fig. 1d, Supplementary Fig. 1). Maps of these states were cal-
culated from 41,506, 8810, 10,550, and 1984 particle images and reached 3.8, 4.4, 4.4,
and 7.1Å resolutions after refinement, respectively. A similar classification strategy was
employed with the other two catalytic states, and particle images of the most relaxed
State 1, 2, 3catalytic(a) (191,939 particle images) were used to calculate locally-refined
maps of OSCP with its contact site on F1, the remainder of the peripheral stalk, and the
FO region. These maps were combined with the map from local refinement of the F1
region of the State 1catalytic with αβtight closed using the ‘vop maximum’ function in
USCF Chimera to generate a composite map of the entire complex.

Model building and refinement. To build atomic models of the F1 region, the
crystal structure of yeast F1 (PDB 2HLD)53 was fitted as a rigid body into locally-
refined maps of F1 in UCSF Chimera54. Models were manually adjusted in Coot55

before being imported into ISOLDE56 within ChimeraX57 to improve dihedral
angles and rotamer fitting. A final round of refinement was performed with Phenix
and the resulting models were evaluated with Molprobity58 and EMRinger59. To
build backbone models of the full complex, a mosaic model was first assembled by
rigid-body fitting of a yeast F1 crystal structure (PDB 2HLD), subunits abc10dfi
from a yeast FO cryoEM structure (PDB 6B2Z)60, the peripheral stalk region
without subunit h from a yeast monomer cryoEM structure (PDB 6CP3)30, and
domains of a subunit h atomic model predicted with AlphaFold35 into the
unsharpened maps. Molecular Dynamics Flexible Fitting61 was then performed for
the 27 rotational states of the dataset including ATP to generate corresponding
backbone models. Figures and movies were generated with ChimeraX and UCSF
Chimera.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data that support this study are available from the corresponding author upon
reasonable request. Cryo-EM maps generated in this study have been deposited in the
Electron Microscopy Data Bank with accession numbers EMD-25930, EMD-25931,
EMD-25932, EMD-25933, EMD-25934, EMD-25935, EMD-25936, EMD-25937, EMD-
25938, EMD-25939, EMD-25940, EMD-25941, EMD-25942, EMD-25943, EMD-25944,
EMD-25945, EMD-25946, EMD-25947, EMD-25948, EMD-25949, EMD-25950, EMD-
25951, EMD-25952, EMD-25953, EMD-25954, EMD-25955, EMD-25956, EMD-25957,
EMD-25958, EMD-25959, EMD-25960, EMD-25961, EMD-25962, EMD-25963, EMD-
25964, EMD-25965, EMD-25966, EMD-25967, EMD-25968, EMD-25969, EMD-25970,
EMD-25971, EMD-25972, EMD-25973, EMD-25974, EMD-25975, EMD-25976, EMD-
25977, EMD-25978, EMD-25979, EMD-25980 and atomic models have been deposited
in the Protein Data Bank with accession codes 7TJS, 7TJT, 7TJU, 7TJV, 7TJW, 7TJX,
7TJY, 7TJZ, 7TK0, 7TK1, 7TK2, 7TK3, 7TK4, 7TK5, 7TK6, 7TK7, 7TK8, 7TK9, 7TKA,
7TKB, 7TKC, 7TKD, 7TKE, 7TKF, 7TKG, 7TKH, 7TKI, 7TKJ, 7TKK, 7TKL, 7TKM,
7TKN, 7TKO, 7TKP, 7TKQ, 7TKR, 7TKS. Previously published atomic models used for
atomic model building are available in the Protein Data Bank with accession codes
2HLD, 6B2Z, 6CP3.
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