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Generic self-stabilization mechanism for
biomolecular adhesions under load
Andrea Braeutigam 1, Ahmet Nihat Simsek1,2, Gerhard Gompper 1 & Benedikt Sabass 1,2✉

Mechanical loading generally weakens adhesive structures and eventually leads to their

rupture. However, biological systems can adapt to loads by strengthening adhesions, which is

essential for maintaining the integrity of tissue and whole organisms. Inspired by cellular focal

adhesions, we suggest here a generic, molecular mechanism that allows adhesion systems to

harness applied loads for self-stabilization through adhesion growth. The mechanism is based

on conformation changes of adhesion molecules that are dynamically exchanged with a

reservoir. Tangential loading drives the occupation of some states out of equilibrium, which,

for thermodynamic reasons, leads to association of further molecules with the cluster. Self-

stabilization robustly increases adhesion lifetimes in broad parameter ranges. Unlike for

catch-bonds, bond rupture rates can increase monotonically with force. The self-stabilization

principle can be realized in many ways in complex adhesion-state networks; we show how it

naturally occurs in cellular adhesions involving the adaptor proteins talin and vinculin.
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Multicellular organisms are held together by complex
biomolecular adhesion structures. For decades, cellular
adhesions have been extensively studied, both, as a

paradigm for fundamental biophysical mechanisms, as well as to
understand their essential biological function. Yet, a very funda-
mental property of cell–matrix adhesions remains mysterious—
their ability to adapt their size to the mechanical load. How is it
possible—from a physics perspective—that the strength of
adhesions increases under load?

Cell–matrix adhesions, also called focal adhesions, are crucial
for cell physiology1,2, cell motility3, cancer metastasis4,5, and
development6,7. The structures consist of transmembrane integ-
rins and adaptor proteins that connect the force-generating
actomyosin cytoskeleton with the extracellular matrix. Accord-
ingly, focal adhesions have been likened to a “molecular
clutch”8–13. In a pioneering experiment by Riveline et al.14, it was
shown that local application of centripetal forces to adherent cells
induces focal adhesion growth14. Moreover, the size of focal
adhesions is proportional to the load15. The regulatory network
associated with focal adhesions is complex and several biological
processes have been proposed to play a role for adhesion stability.
These include mechanosensitive activation of integrins11, catch-
bond behavior of integrins and vinculin-F-actin binding16, non-
linear mechanical response of unfolded proteins, and downstream
signaling, e.g., mediated by the adaptor protein p130Cas17,18.
During the past years, the pivotal role of the adaptor protein talin
for adhesion maturation has also been established19,20. Talin
directly transmits forces by binding with its globular head domain
to integrin, while its rod domain links to F-actin21. Under stretch,
conformation changes in talin occur, leading to an unfolding of
protein domains and to the exposure of cryptic binding sites for
vinculin22–24. Vinculin, in turn, further recruits F-actin and
thereby strengthens the linkage25–27. Moreover, other adhesion
types such as adherens junctions are also capable of a load
adaptation based on unfolding and recruitment of further
molecules28. In spite of the considerable amount of theoretical
approaches29–37 and pioneering work combining modeling and
experiment12,38,39, the physical principle underlying load adap-
tation of focal adhesions remains largely not understood.

We propose a generic mechanism through which molecular
adhesions can harness mechanical load for adapting their size and
stability without active feedback. A minimal model is employed,
which relies on a combination of unfolding of adhesion molecules
under force39,40, the dynamical exchange of molecules with a
reservoir29,30, and possibly the recruitment of additional mole-
cules that stabilize the unfolded conformations, all under the
constraint of thermodynamical consistency. Under tangential
stress, the state occupations shift, leading to a growth of the
adhesion under increasing load, until the adhesion ultimately fails
at very high loads. This mechanism of adaptation is simple and
robust. Numerical analysis shows that the key property allowing
adaptation of our molecular state-networks is that some states are
separated from the reservoir. We show how the mechanism is
naturally realized by the talin-vinculin system at focal adhesions
and perhaps in other bioadhesions. Moreover, the proposed
mechanism is general enough that it could possibly be imple-
mented in engineered biomimetic systems.

Results
Molecular adhesion model. We consider a generic adhesion
system consisting of molecules that form harmonic bonds
between two planar, parallel surfaces, see Fig. 1. The stretch of
each molecule, i.e., the difference between its actual length and
rest length, is denoted by h and the spring constant is κ. The
bottom surface is fixed in space and a constant tangential loading

force F is exerted on the top, leading to a time-dependent tan-
gential shift s. The model is two-dimensional and forces normal
to the surface are not considered. The mean number of molecules
in the adhesion system is denoted by N. A molecule reservoir is
assumed and the stochastic molecule exchange with the adhesion
system is determined by the rate constants γ+ and γ−. Individual
molecules undergo stochastic transitions between different states
in the adhesion. All stochastic transition rates are chosen to fulfill
detailed balance in equilibrium, i.e., when F= 0, which avoids
unphysical energy injection that could produce an apparent
motor-like behavior of the system.

In a first, basic model, see Fig. 1a, molecules from the reservoir
associate reversibly with the adhesion system via the state a, in
which they have not yet formed a bond between the upper and
lower surfaces. The stretch h of unbound molecules in state a
undergoes thermal equilibrium fluctuations with magnitude
σ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=κ

p
, where kBT is the thermal energy scale. Molecules

can then form a bond between the surfaces and this state is
denoted by b. Na and Nb are the average numbers of molecules in
states a and b, respectively. The rate of stochastic bond formation
is denoted by β+(h) and is to be maximal when the stretch equals
an optimal binding distance ∣h∣= ℓb. For molecule unbinding, we
focus on slip-bond dynamics with rupture rates β−(h) that
increase exponentially with bond stretch, see Methods 4A, B. To
ensure detailed balance in equilibrium, we demand
βðhÞ ¼ βþðhÞ=β�ðhÞ ¼ expð�Eβ=kBTÞ, where Eβ is the free
energy difference between the unbound and bound molecule.

In a second, generalized model, see Fig. 1c, the molecules can
undergo sudden conformational changes leading to molecule
unfolding. Unfolded states are denoted by a subscript u. The
unbound, unfolded state is au and the average number of
molecules in this state is Nau

. The bound, unfolded state is bu with
average number of molecules Nbu

. Unfolding is modeled as a
thermally assisted escape over a single energy barrier. To satisfy
detailed balance at equilibrium, the ratio of forward and reverse
rate is given by a Boltzmann factor involving the free energy
difference. Details are given in Methods 4C. We assume that
mechanical relaxations occur instantaneously and viscous damp-
ing is neglected, so that the sum of the forces borne by the bonds
equals the applied load F at all times. Stochastic bond dynamics is
simulated with an exact algorithm, see Supplementary Notes II.
In the following, the mean number of bonds formed by all
molecules, irrespective of their unfolding state, is denoted by NB.
NA is the corresponding mean overall number of unbound
molecules.

Self-stabilization of macromolecular adhesions. We first con-
sider the basic adhesion model, in which molecules do not change
conformation, see Fig. 1a and Supplementary Movie 1. Simula-
tions reveal that a load F can lead to a quasi-stationary adhesive
state, where perpetual rupture and binding events result in a
stationary state of persistent tangential sliding of the surfaces. For
these adhesions, the mean number NB of bonds always decreases
monotonically with F, see Fig. 1b. Therefore, increasing load on
adhesions consisting of simple molecules promotes adhesion
failure characterized by rupture of all bonds. Next, we consider
the generalized adhesion model consisting of molecules that can
undergo an unfolding transition under force, see Fig. 1c and
Supplementary Movie 2. For simplicity, we assume that unfolding
only entails an increase in the rest length, while the elastic
properties remain unchanged. Remarkably, the average number
of bonds NB now initially grows with increasing load F, see
Fig. 1b, which prevents early adhesion failure. This striking effect,
which we call “self-stabilization”, is the central finding of this
work. We emphasize that this effect crucially depends on the
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exchange of “folded” molecules (state a) with the reservoir, so
that the transitions a→ b→ bu lead to a depletion of a molecules,
which can be replenished from the reservoir, thereby leading to
an increase of the adhesion size. This mechanism is explained in
detail below.

The simulation results can be corroborated with an analytical
mean-field approximation33. The number distributions of
molecules with stretch h are denoted by nb(h) and na(h), for
the bound and unbound states, respectively. For the basic
adhesion model without molecule unfolding, a drift-reaction
equation is assumed where the average sliding velocity of the
adhesion v ¼ h_si stretches the molecules, so that

∂tnbðhÞ þ v∂hnbðhÞ ¼ βþðhÞnaðhÞ � β�ðhÞnbðhÞ: ð1Þ
Only stationary solutions with ∂tnb(h)= 0 are considered.

The average total number of molecules in the adhesion is obtained
as N ¼ NB þ NA ¼ R1

�1 ½nbðhÞ þ naðhÞ�dh, where the stretch of
the unbound molecules obeys a Gaussian distribution,
naðhÞ / N ð0; σ2aÞ. The non-linear equations are solved by expand-
ing the distributions for small absolute values of ~v ¼ v=ðkβσbÞ,
where the binding constant kβ is employed as time unit and the
stretch standard deviation of bound molecules σb as length unit. We
expand, e.g., nbðhÞ ¼ n�bðhÞ þ ~vnb1 ðhÞ þ 1

2~v
2nb2 ðhÞ þOð~v3Þ. Here

and in the following, asterisks (*) denote equilibrium quantities
calculated with F= 0 and tildes ~ðÞ are used to denote non-
dimensionalized quantities. Using the additional assumption that
the optimal molecule stretch for binding, ℓb, is much smaller than
the typical length fluctuations, ~‘b ¼ ‘b=σb � 1, we find

NB � N�
B � �ð2=πÞ1=2~‘bN�

B ~v
2 / �F2; ð2Þ

where, due to symmetry under reversal of the force direction, to
leading order ~v / F. For the general case, where ℓb≪ σb does not
hold, the first non-vanishing correction to the equilibrium solution
for the bonds NB can be shown to still be of the order ~v2 and strictly
negative, see Supplementary Notes III. Thus, tangential force
reduces the number of bonds and thereby always destabilizes simple

adhesions consisting of molecules that do not undergo conforma-
tion changes, as expected intuitively.

To support the effect of self-stabilization in the generalized
model shown in Fig. 1c with analytical theory, we supplement Eq.
(1) by two additional equations for binding and unfolding
transitions, see Supplementary Notes IV. For j~vj � 1, the overall
number of bound molecules, NB ¼ Nb þ Nbu

, can be expanded as

NB � N�
B � NB;1~v þ NB;2 ~v

2=2 / jFj: ð3Þ

The leading contribution is linear in ~v with a positive
coefficient NB,1 (obtained from numerical analysis), as required
for self-stabilization! The second-order coefficient NB,2 can be
positive or negative, see Supplementary Fig. 3. Hence, analytical
models confirm the existence of a self-stabilization regime where
the number of adhesion bonds initially increases with load.

Mechanism of self-stabilization. To obtain deeper insight into
the necessary ingredients for self-stabilization, and to demon-
strate the essential contribution of the reservoir, we compare
several variants of the basic models, see Fig. 2—such as a simple
adhesion model with fixed molecule number (model I), a model
comprising a molecule reservoir and therefore adhesions of
variable size (model II), a model with a fixed number of molecules
that can unfold under force (model III), and a model combining
unfolding molecules with a molecule reservoir (model IV). Some
results from models II and IV are also shown in Fig. 1. For
models I–III, the mean number of bonds NB decreases with force,
see Fig. 2b. For model II with variable system size, even the
number of molecules in the adhesion decreases with force, leading
to an earlier adhesion failure on average. Thus, neither a variable
adhesion size nor molecule unfolding alone result in self-
stabilization. In model IV, which combines a variable adhesion
size with molecule unfolding, both the total number of molecules
N and the number of bonds NB initially grow with increasing load
on the adhesion, Fig. 2a, b. The increased number of bonds
improves load sharing among the molecules. One consequence is
a significant reduction of the sliding motion of the adhesion,

Fig. 1 Adhesion self-stabilization. a Illustration of the basic adhesion model which consists of unbound molecules a and bonds b that connect two parallel
rigid planes. A tangential load stretches all molecules in state b as it shifts the upper boundary by s. Molecules can transition between states b and a with
extension-dependent rupture and binding rates given by β−(h) and β+(h). Molecules can enter or leave the adhesion cluster with rate constants given by
γ±. The decrease of the ratio of bound to unbound molecules under a small force dF is a second order effect (orange arrow). b Mean number of bonds in
steady state as a function of loading force. Markers show simulation results and lines correspond to approximate analytical results. In the basic model, an
increased load on the adhesion reduces the number of bonds (red). In contrast, an increased load produces a growth of the number of bonds in the
generalized model (blue). c Illustration of the generalized adhesion model incorporating molecule unfolding and refolding with rates δ ±

a;bðhÞ as well as a
molecule-exchange with the reservoir. Mechanical load drives the system out of equilibrium, shifting the state occupations, as indicated by orange arrows
for changes up to second order. See also Supplementary Movies 1, 2.
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Fig. 2c. The inset in Fig. 2b shows that the bound fractions of
molecules, NB/N, as a function of F collapse onto a single master
curve for all models (I–IV). Hence, self-stabilization results from
force-induced growth of the adhesion and not from changes of
the rupture properties of individual molecules. This is the key
difference to established catch-bond models, where individual
molecules exhibit an increase of bond lifetime within limited
force regimes.

Figure 2d illustrates the underlying mechanism of self-
stabilization. The tangential load F causes a shift of state
occupations. The load increases the occupations of state bu and
au, compare Supplementary Notes IV. Meanwhile, the state a,
representing unbound, folded molecules, is in contact with the
reservoir and molecules are replenished here, which allows a
concurrent increase of the overall molecule number. It is important
to note that without the reservoir, self-stabilization cannot occur
because it requires growth of the adhesion cluster. The recruitment
of molecules from the reservoir crucially depends on the
intermediate state au not to be in contact with the reservoir. For
systems where both unbound states a and au are connected to the
reservoir, we find numerically that the self-stabilizing first-order
correction NB,1 is two orders of magnitude smaller than the second
order correction NB,2, see Supplementary Fig. 12. In contrast, if only
state a is connected to the reservoir as in model IV, NB,1 and NB,2

are of the same order order of magnitude, which enables self-
stabilization, see Supplementary Fig 3.

In general, load-dependent state-occupation statistics like those
implied in our models do not always require non-equilibrium
conditions. For the presented system, however, the load F
invariably drives the systems out of equilibrium by inducing

continuous fluxes. For illustration, consider the binding and
rupture transition of unfolded molecules in Fig. 3. While the
distribution of molecule stretches hu is symmetric for unbound
molecules, bound molecules have a skewed stretch distribution
due to the force F > 0, see Fig. 3a. Binding and rupture effectively
cause circular fluxes in stretch-state space, illustrated by the
dashed lines in Fig. 3a. Figure 3b shows that the average stretch
change per rupture event only vanishes for F= 0 and increases
with F > 0. The resulting net occupation-probability flux from au
to bu is shown in Fig. 3c. Note that the mechanical loading can
also drive other occupation-probability fluxes, depending on the
network topology. Supplementary Fig. 4 shows that global
balance conditions are broken for model IV when F > 0.

Self-stabilization is a robust mechanism. To be an efficient and
universally applicable mechanism, self-stabilization must be able
to compensate load changes in non-stationary conditions and
should not depend on a fine-tuning of parameters. To investigate
these aspects, we consider step-like load changes for different
model parameters. After a load jump from F1= 0 to F2= F,
adhesion clusters either dissociate quickly or reach a new non-
equilibrium steady state. Self-stabilization after a load jump
depends on the strength of the molecule exchange with the
reservoir, which is controlled by the values of γ+ and γ−, Fig. 4a.
Exemplary trajectories for the number of bonds in the folded and
unfolded states, b and bu, are shown in Fig. 4b. The most-likely
rupture forces are higher in self-stabilizing than in non-self-
stabilizing adhesions, and grow with increasing reservoir-
exchange rates (γ± ≥ kβ), see Supplementary Fig. 5, because

Fig. 2 Comparison of models I–IV for adhesions with and without molecule unfolding and reservoir exchange. Steady-state quantities are plotted until
forces at which first complete adhesion ruptures occur. a Averaged total number of molecules N. b Averaged overall number of bond NB formed by folded
and unfolded molecules in steady state. Only model IV shows self-stabilization where the mean number of bonds increases initially with force.
c Continuous rupture-rebinding transitions lead to a relative motion of the two planes bounding the adhesion. Self-stabilization reduces the motion.
d Relative deviation of the average number of unbound molecules NA from equilibrium. Note the increased molecule accumulation in the unbound states
for self-stabilization. See Supplementary Notes I for parameters.
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adhesion molecules can quickly be recruited from or released into
the reservoir. The self-stabilization mechanism can thus also work
under dynamic load conditions.

To measure adhesion lifetimes, we simulate systems consisting
of few molecules, because lifetimes increase rapidly with the
number of molecules. Load-jump simulations are carried out for a
reservoir-exchange rate ratio γ= 1 that leads to adhesions with
N* ≈ 10 molecules in equilibrium when F= 0. Lifetime is
measured as the time from the force jump, F1→ F2, to the
rupture of the last adhesion bond. While lifetimes of adhesions
with no reservoir coupling decrease monotonically with force, i.e.,
show a pure slip-bond behavior, lifetimes of self-stabilizing
adhesions exhibit a maximum at non-vanishing forces, see Fig. 4c.
This lifetime maximum becomes more pronounced for increasing
γ+ and also depends on the rate-constant ratio kδ/kβ, see
Supplementary Fig. 6. To further assess the robustness of the
adhesion-lifetime increase to parameter choices, we vary the
unfolding length Δ, which determines the width of the energy
barrier between the native and the unfolded molecule state. For
adhesions without reservoir coupling, γ±= 0, the unfolding
length Δ does not have a large impact on the adhesion lifetime,
see Fig. 4d. However, a significant increase in adhesion lifetimes is
observed for a broad range of unfolding lengths Δ > 0 if the
reservoir coupling is strong, see Fig. 4e. Self-stabilization is less
effective for very small or very large values of ~Δ ¼ Δ=σb. For the
extreme case of ~Δ ¼ 0, the force response of folded and unfolded
states become indistinguishable, and the unfolding and refolding
rates reduce to constants. For very large unfolding lengths ~Δ, a
high energy barrier suppresses molecule unfolding. Therefore,
self-stabilization occurs in our model approximately in the range
2≤ ~Δ≤ 8, compare Supplementary Fig. 3.

Cell–matrix adhesions. The principle of self-stabilization can be
realized in a large variety of molecular-state networks—as long as
they allow for states that are increasingly populated under

mechanical stress. Self-stabilization is facilitated by states that are
not directly connected to the reservoir, such as au in the models
above. As stated in the introduction, talin unfolding and its
interaction with other focal-adhesion proteins have been identi-
fied as major contributors to adhesion formation. We study here
a model of self-stabilization that incorporates the binding of an
adaptor protein such as vinculin to talin, see Fig. 5a. The talin rod
domain contains 11 cryptic vinculin binding sites. Under load,
subdomains of the rod successively unfold, thereby enabling
vinculin recruitment which blocks talin refolding and promotes
focal-adhesion growth41,42. Talin unfolding typically starts at
forces around 5 pN22,25,41 with the R3 domain, by which two
vinculin binding sites are exposed. In our model, we focus on this
first unfolding transition. Six additional vinculin-bound states bu,
and au, are introduced so that both sites in the R3 domain can be
occupied independently, see Fig. 5b. Rate constants for binding
and unbinding of vinculin to unfolded talin are denoted by λ±

and are assumed to be the same for all transitions. Other model
parameter values are estimated according to experimental
results21,23,40, see Supplementary Notes I.

In the vinculin-bound states, talin refolding is blocked. Thus,
vinculin binding generates talin states that are not in direct
contact with the reservoir. Simulation results for different values
of the parameter λ= λ+/λ− are shown in Fig. 5c. For λ= 0, all
populated unbound states are connected with the reservoir, and
loading cannot increase the number of molecules in these states.
We observe no self-stabilization. For λ > 1, the number of bonds
increases with force, which not only stabilizes the adhesion but
also translates into a reduction of adhesion sliding, see Fig. 5d.
Given the high affinity with a dissociation constant in the range
[1 × 10−7− 1 × 10−8 ] M of unfolded talin for vinculin, we expect
the vinculin binding constant to be larger than unity40,43–45.
Moreover, we conjecture that the remaining cryptic binding sites
in talin that open at higher forces extend the demonstrated self-
stabilization effect to larger loads. In summary, the minimal
adhesion model can be applied to specific biological systems like

Fig. 3 Constant mechanical load maintains a non-equilibrium steady state. a Stretch distributions for unfolded-molecule states bu(hu) and au(hu). Binding
occurs symmetrically around hu= 0. Bonds exhibit a positively skewed stretch distribution under non-zero force. Cyclic stretch changes occur through
binding, loading, and rupture (dashed line). b Average stretch changes during binding (βþu ), rupture (β�u ), and the average acquired stretch in the bound
state ds for unfolded molecules. Error bars indicate sample standard deviation. c) Stretch-dependent flux-balance distributions for binding and unbinding of
unfolded molecules. At vanishing forces, fluxes are balanced for all hu. For F > 0, a net probability flux into state bu at negative stretches and a net flux out of
state bu at positive stretches is found. Fluxes are obtained by binning the transition rates that are chosen in steady state simulation trajectories with a bin
width 0.25σ. Parameter values are given in Supplementary Notes I.
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the integrin adhesome, where vinculin binding to unfolded talin
domains results in a reaction network containing molecular states
that are populated by force application—and thus leads to self-
stabilization. Analytical and numerical results of a simplified,
corresponding mean-field model are given in Supplementary
Notes VI.

Discussion
Our theoretical model reveals a strikingly simple mechanism for a
counter-intuitive load-response of adhesions, in which tangential
mechanical load can result in adhesion enhancement — instead
of the ubiquitous adhesion weakening and rupture. This self-
stabilization relies on molecular-conformation state-networks
whose occupations are changed by a mechanical load. By shifting
the state occupations, the load causes a net influx of adhesion
molecules from a surrounding reservoir. Notably, this self-
stabilization does not essentially require extra chemical energy
besides the work done by the load.

For all studied model variants, a constant, non-vanishing load
results in a non-equilibrium steady state. The resulting fluxes
occur in the high-dimensional state-space spanned by the con-
tinuous molecular stretch and the discrete molecular states. A first
indicator for the presence of a non-equilibrium steady state is the
non-vanishing average velocity with which the two adhesion
planes slide relative to each other. This motion corresponds to
stretch changes of bound molecules and vanishes only for the case
F= 0 when all reactions are balanced. A second indicator for the
presence of a non-equilibrium steady state is the load-dependence

of the number of unbound molecules. In equilibrium, global
balance imposes constant values for the average occupation
numbers of unbound states. An increase of the average number of
unbound molecules for F > 0 shows that global balance is broken
and an effective flux occurs along the cycle of state transitions
a" b" bu" au" a, where right reaction arrows point in the
direction of the net flux, compare Supplementary Fig. 4. In case
that the diagram of discrete states does not contain a closed cycle,
global balance conditions are fulfilled, see Supplementary Fig. 9.
However, the state of the system is also defined by the stretch
distributions of bound molecules not contained in the discrete
diagrams. Finite load is found to always drive fluxes within the
stretch distributions b(h) and bu(h), compare Fig. 3 and Supple-
mentary Fig. 8.

Although this work focuses on the theoretical understanding of
a generic physical mechanism, it is inspired by experimental
observations on integrin-based focal adhesions, which display size
adaptation to the applied load in planar cell cultures14,15. Dif-
ferent focal adhesion stabilization mechanisms presumably act in
parallel, including actin polymerization, transcription regulation,
integrin activation, and conformation changes of the adaptor
protein talin. Contrasting to this complexity, we predict that
adhesion self-stabilization emerges naturally in systems that
merely incorporate an unfolding transition of adhesion mole-
cules, like talin, and a mechanism that prevents rapid bulk-
exchange of unfolded states, e.g., vinculin binding. Dissecting how
different mechanisms contribute to the focal adhesion dynamics
is a future challenge that is complicated by a multitude of

Fig. 4 Rupture behavior and lifetimes of adhesion clusters. a The reservoir-exchange rates γ± control the association and dissociation of molecules with
the adhesion. b Exemplary force response of adhesion clusters without reservoir connection and with strong reservoir connection. A force jump amplifies
molecule unfolding. Without self-stabilization, the cluster does not reach a non-equilibrium steady state but dissociates shortly after force application.
c Average lifetimes of the adhesion clusters with N*≈ 10 for different values of γ± with γ= γ+/γ− held constant. A strong reservoir connection results in an
adhesion lifetime maximum at finite, non-vanishing external forces. Average cluster lifetimes as a function of force and the unfolding length Δ for
kδ= 0.1kβ= 1/t0 and γ±= 0 (d) and γ±= 100/t0 (e). See Supplementary Notes I for other parameter values.
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chemically driven signaling pathways involving, e.g., the Rap1-
GTP-interacting adaptor molecule46 or phosphorylation of vin-
culin or paxillin47,48. However, our self-stabilization model is
already consistent with a number of experimental results and
qualitative tests are possible: (i) Having chosen unfolding and
refolding rates that correspond to measured force-dependent
rates of the talin R3-domain, self-stabilization in our model
requires that unfolding under stretch occurs on average before the
bond ruptures, which is ensured for Δ1 > ℓb, compare Eqs. (7) and
(8). In agreement with this prediction, it has been reported that
adhesion growth on rigid substrates occurs experimentally when
unfolding is faster than rupture processes23,39,41. (ii) Our self-
stabilization mechanism does not essentially depend on force
transmission through secondary cross-links via adaptor proteins.
In the exemplary state network analyzed above, vinculin does not
bear force. This prediction is consistent with experiments show-
ing that the vinculin head domain is sufficient to partially rescue
adhesion formation49,50. Generally, however, self-stabilization
may be improved by secondary cross-links and experimental
studies with vinculin mutants can allow further assessment of
specific realizations of self-stabilization. (iii) The basic condition
required for our self-stabilization mechanism is that some
unfolded talin states remain in the adhesion while folded talins
are rapidly exchanged with a surrounding reservoir. Such con-
ditions are consistent with talin’s large number of cryptic binding
sites20 and the rapid exchange of talin51. Our model moreover
predicts a break-down of self-stabilization if both exchange rates
for talin are decreased simultaneously while maintaining the
concentration at focal adhesions. Finally, the suggested mechan-
ism is distinguished by requiring only a few different molecular

components and no catch bonds. Thus, the occurrence of self-
stabilization could also be tested in vitro under controlled con-
ditions, e.g., with an optical-trap setup. A summary of suggestions
for further comparison of the model with experiments are given
in Supplementary Notes VII.

Mechanosensitive conformation changes of adhesion-linked
proteins and subsequent recruitment of additional molecules are
recurring motifs in many fundamental adhesion structures besides
focal adhesions, for instance adherens junctions41,52,53 and
hemidesmosomes54. Motor proteins also undergo mechanosensitive
conformation changes and can form dynamical ensembles.
Understanding the interplay of chemical kinetics and the laws of
thermodynamics has greatly improved our knowledge on biomo-
lecular systems and machines and thus the design of artificial
molecular motors55–57. Therefore, we expect that the suggested
mechanism for self-stabilization can help to decipher many phy-
siological and pathophysiological processes controlled by mechano-
chemical factors, and may even allow novel designs of bio-inspired,
artificial adhesion systems.

Methods
Since the state-transition rates depend on the molecule stretch, they depend on the
force applied to the adhesion. All rates must obey the principle of microscopic
reversibility. In equilibrium, the ratio of forward and reverse rates should depend
only on the free energy difference E through the Boltzmann factor expð�E=kBTÞ.

Binding. Different states are allowed to have their own spring constants and
corresponding quantities are denoted by subscripts, e.g., κa and σa ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=κa

p
. If

not mentioned otherwise, we assume σa= σb= σ. For the unbound state a, the
distribution of molecule numbers at different stretch na(h) must be Gaussian.

Fig. 5 Exemplary realization of self-stabilization in focal adhesions. a Talin binds with its globular head to integrins and with its rod to actin filaments. The
first domain to unfold under force is the R3 domain with two vinculin-binding sites. b State diagram for the talin-vinculin model. Averaged steady-state
simulation results for different linking ratios λ= λ+/λ−. See Supplementary Notes I for parametrization. c Vinculin recruitment produces self-stabilization.
d The relative motion of the top plane, modeling actin fibers, is reduced through vinculin-based self-stabilization.
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Using the average molecule number Na, the normalized stretch distribution is

naðhÞ=Na ¼ e�h2=ð2σ2aÞ=
ffiffiffiffiffi
2π

p
σa: ð4Þ

The binding rate β+(h) depends on the molecule stretch. Assuming a length
scale ℓb at which the overall binding frequency β+(h)na(h) is at its maximum, we
employ as binding rate

βþðhÞ ¼ kβe
� ðjhj�‘bÞ2=ð2σ2b Þ�h2=ð2σ2a Þ½ �þϵb ; ð5Þ

where kβ is the intrinsic binding rate constant and ϵb ¼ ϵb=ðkBTÞ þ lnðσa=σbÞ is an
effective binding affinity. Similar rate expressions have been used previously58. In
case of unfolded molecules, the binding rate βþu ðhuÞ is given by the same expression
as in Eq. (5), but h is replaced with hu.

Unbinding. The unbinding rate β−(h) follows from the expression for β+(h)
together with the detailed-balance condition in equilibrium59,

βþðhÞ=β�ðhÞ ¼ e�h2=ð2σ2bÞþh2=ð2σ2aÞþϵb ; ð6Þ
Solving for the unbinding rate yields

β�ðhÞ ¼ kβe
ð2jhj‘b�‘2bÞ=ð2σ2bÞþlnðσb=σaÞ: ð7Þ

Thus, the stretch-dependence of the unbinding rates is of the Bell-Evans form.
For unfolded molecules, the unbinding rate β�u ðhÞ is given by same expression as in
Eq. (7), but h is replaced with hu.

Unfolding and refolding. The unfolding and refolding reaction is modeled as the
transition between two local energy minima separated by a single barrier. The
distance to the barrier is denoted by Δ1 for unfolding and by Δ2 for refolding. The
total unfolding length is given by Δ= Δ1+ Δ2. The unfolding rates for the states a
and b are defined as

δþa;bðhÞ ¼ kδe
ð2Δ1h�Δ2

1 Þ=ð2σ2a;bÞ�~ϵf ; ð8Þ
where ~ϵf ¼ ϵf=ðkBTÞ is a constant energy contribution for the conformation
change. The corresponding folding rates are given by

δ�a;bðhÞ ¼ kδe
ð�2Δ2h�Δ2

2 Þ=ð2σ2a;bÞ: ð9Þ
The ratio of unfolding and folding rates is given by a Boltzmann factor

containing the energy difference between folded molecules with stretch h and
unfolded molecules with stretch h− Δ. For molecules in the bound state b the
result is

δþb ðhÞ=δ�b ðh� ΔÞ ¼ eð2hΔ�Δ2 Þ=ð2σ2bÞ�~ϵf : ð10Þ
Together, the binding and folding rates fulfill Kolmogorov’s criterion for

networks containing cycles55,60. For example, the criterion for the network shown
in Fig. 1c is given by

1 ¼ βþðhÞ δþb ðhÞ β�u ðh� ΔÞ δ�a ðh� ΔÞ
β�ðhÞ δ�b ðh� ΔÞ βþu ðh� ΔÞ δþa ðhÞ

; ð11Þ

where the stretch of folded bonds h reduces to h− Δ due to unfolding.

Data availability
Source data for the presented figures are provided with this paper. Further simulation
data that is generated and analyzed during the current study is available from the
corresponding author on reasonable request. Source data are provided with this paper.

Code availability
Code for the simulation of cluster trajectories is available from the corresponding author
on reasonable request.

Received: 21 June 2021; Accepted: 20 March 2022;

References
1. Geiger, B., Spatz, J. P. & Bershadsky, A. D. Environmental sensing through

focal adhesions. Nat. Rev. Mol. Cell Biol. 10, 21–33 (2009).
2. Schoen, I., Pruitt, B. L. & Vogel, V. The yin-yang of rigidity sensing: how

forces and mechanical properties regulate the cellular response to materials.
Annu. Rev. Mater. Res. 43, 589–618 (2013).

3. Huttenlocher, A. & Horwitz, A. R. Integrins in cell migration. Cold Spring
Harb. Perspect. Biol. 3, 1–16 (2011).

4. Butcher, D. T., Alliston, T. & Weaver, V. M. A tense situation: forcing tumour
progression. Nat. Rev. Cancer 9, 108–122 (2009).

5. Schwager, S. C., Taufalele, P. V. & Reinhart-King, C. A. Cell-cell mechanical
communication in cancer. Cell. Mol. Bioeng. 12, 1–14 (2019).

6. Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs
stem cell lineage specification. Cell 126, 677–689 (2006).

7. Heisenberg, C.-P. & Bellaïche, Y. Forces in tissue morphogenesis and
patterning. Cell 153, 948–962 (2013).

8. Mitchison, T. & Kirschner, M. Cytoskeletal dynamics and nerve growth.
Neuron 1, 761–772 (1988).

9. Gardel, M. L. et al. Traction stress in focal adhesions correlates biphasically
with actin retrograde flow speed. J. Cell Biol. 183, 999–1005 (2008).

10. Moore, S. W., Roca-Cusachs, P. & Sheetz, M. P. Stretchy proteins on stretchy
substrates: the important elements of integrin-mediated rigidity sensing. Dev.
Cell 19, 194–206 (2010).

11. Sun, Z., Guo, S. S. & Fässler, R. Integrin-mediated mechanotransduction. J.
Cell Biol. 215, 445–456 (2016).

12. Chan, C. E. & Odde, D. J. Traction dynamics of filopodia on compliant
substrates. Science 322, 1687–1691 (2008).

13. Elosegui-Artola, A., Trepat, X. & Roca-Cusachs, P. Control of
mechanotransduction by molecular clutch dynamics. Trends Cell Biol. 28,
356–367 (2018).

14. Riveline, D. et al. Focal contacts as mechanosensors: externally applied local
mechanical force induces growth of focal contacts by an mDia1-dependent
and Rock-independent mechanism. J. Cell Biol. 153, 1175–1185 (2001).

15. Balaban, N. Q. et al. Force and focal adhesion assembly: a close relationship
studied using elastic micropatterned substrates. Nat. Cell Biol. 3, 466–472
(2001).

16. Huang, D. L., Bax, N. A., Buckley, C. D., Weis, W. I. & Dunn, A. R. Vinculin
forms a directionally asymmetric catch bond with F-actin. Science 357,
703–706 (2017).

17. Sawada, Y. et al. Force sensing by mechanical extension of the src family
kinase substrate p130cas. Cell 127, 1015–1026 (2006).

18. Wang, N. Review of cellular mechanotransduction. J. Phys. D Appl. Phys. 50,
233002 (2017).

19. Case, L. B. & Waterman, C. M. Integration of actin dynamics and cell
adhesion by a three-dimensional, mechanosensitive molecular clutch. Nat.
Cell Biol. 17, 955–963 (2015).

20. Goult, B. T., Yan, J. & Schwartz, M. A. Talin as a mechanosensitive signaling
hub. J. Cell Biol. 217, 3776–3784 (2018).

21. Liu, J. et al. Talin determines the nanoscale architecture of focal adhesions.
Proc. Natl. Acad. Sci. USA 112, E4864–E4873 (2015).

22. del Rio, A. et al. Stretching single talin rod. Science 323, 638–641 (2009).
23. Yao, M. et al. The mechanical response of talin. Nat. Commun. 7, 11966

(2016).
24. Rahikainen, R. et al. Mechanical stability of talin rod controls cell migration

and substrate sensing. Sci. Rep. 7, 1–15 (2017).
25. Austen, K. et al. Extracellular rigidity sensing by talin isoform-specific

mechanical linkages. Nat. Cell Biol. 17, 1597–1606 (2015).
26. Atherton, P. et al. Vinculin controls talin engagement with the actomyosin

machinery. Nat. Commun. 6, 1–12 (2015).
27. Massou, S. et al. Cell stretching is amplified by active actin remodelling to

deform and recruit proteins in mechanosensitive structures. Nat. Cell Biol. 22,
1011–1023 (2020).

28. Chen, Y., Ju, L., Rushdi, M., Ge, C. & Zhu, C. Receptor-mediated cell
mechanosensing. Mol. Biol. Cell 28, 3134–3155 (2017).

29. Nicolas, A., Geiger, B. & Safran, S. A. Cell mechanosensitivity controls the
anisotropy of focal adhesions. Proc. Natl. Acad. Sci. USA 101, 12520–12525
(2004).

30. Shemesh, T., Geiger, B., Bershadsky, A. D. & Kozlov, M. M. Focal adhesions as
mechanosensors: a physical mechanism. Proc. Natl. Acad. Sci. USA 102,
12383–12388 (2005).

31. Besser, A. & Safran, S. A. Force-induced adsorption and anisotropic growth of
focal adhesions. Biophys. J. 90, 3469–3484 (2006).

32. Lee, S. E., Kamm, R. D. & Mofrad, M. R. Force-induced activation of talin and
its possible role in focal adhesion mechanotransduction. J. Biomech. 40,
2096–2106 (2007).

33. Sabass, B. & Schwarz, U. S. Modeling cytoskeletal flow over adhesion sites:
competition between stochastic bond dynamics and intracellular relaxation. J.
Phys. Condens. Matter 22, 194112 (2010).

34. Li, Y., Bhimalapuram, P. & Dinner, A. R. Model for how retrograde actin flow
regulates adhesion traction stresses. J. Phys. Condens. Matter 22, 194113 (2010).

35. Leoni, M. & Sens, P. Model of cell crawling controlled by mechanosensitive
adhesion. Phys. Rev. Lett. 118, 228101 (2017).

36. Sens, P. Stick–slip model for actin-driven cell protrusions, cell polarization,
and crawling. Proc. Natl. Acad. Sci. USA 117, 24670–24678 (2020).

37. Danuser, G., Allard, J. & Mogilner, A. Mathematical modeling of eukaryotic
cell migration: insights beyond experiments. Annu. Rev. Cell Dev. Biol. 29,
501–528 (2013).

38. Bornschlögl, T. et al. Filopodial retraction force is generated by cortical actin
dynamics and controlled by reversible tethering at the tip. Proc. Natl. Acad.
Sci. USA 110, 18928–18933 (2013).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-29823-2

8 NATURE COMMUNICATIONS |         (2022) 13:2197 | https://doi.org/10.1038/s41467-022-29823-2 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


39. Elosegui-Artola, A. et al. Mechanical regulation of a molecular clutch defines
force transmission and transduction in response to matrix rigidity. Nat. Cell
Biol. 18, 540–548 (2016).

40. Tapia-Rojo, R., Alonso-Caballero, A. & Fernandez, J. M. Direct observation of
a coil-to-helix contraction triggered by vinculin binding to talin. Sci. Adv. 6,
eaaz4707 (2020).

41. Yao, M. et al. Mechanical activation of vinculin binding to talin locks talin in
an unfolded conformation. Sci. Rep. 4, 4610 (2014).

42. Atherton, P., Stutchbury, B., Jethwa, D. & Ballestrem, C. Mechanosensitive
components of integrin adhesions: Role of vinculin. Exp. Cell Res. 343, 21–27
(2016).

43. Bass, M. D. et al. Further characterization of the interaction between the
cytoskeletal proteins talin and vinculin. Biochem. J. 362, 761–768 (2002).

44. Chen, H., Choudhury, D. M. & Craig, S. W. Coincidence of actin filaments
and talin is required to activate vinculin. J. Biol. Chem. 281, 40389–40398
(2006).

45. Wang, Y., Yan, J. & Goult, B. T. Force-dependent binding constants.
Biochemistry 58, 4696–4709 (2019).

46. Goult, B. T. et al. Riam and vinculin binding to talin are mutually exclusive
and regulate adhesion assembly and turnover. J. Biol. Chem. 288, 8238–8249
(2013).

47. Zaidel-Bar, R., Itzkovitz, S., Ma’ayan, A., Iyengar, R. & Geiger, B. Functional
atlas of the integrin adhesome. Nat. Cell Biol. 9, 858–867 (2007).

48. Stutchbury, B., Atherton, P., Tsang, R., Wang, D. Y. & Ballestrem, C. Distinct
focal adhesion protein modules control different aspects of
mechanotransduction. J. Cell Sci. 130, 1612–1624 (2017).

49. Dumbauld, D. W. et al. How vinculin regulates force transmission. Proc. Nat.
Acad. Sci. USA 110, 9788–9793 (2013).

50. Thievessen, I. et al. Vinculin–actin interaction couples actin retrograde flow to
focal adhesions, but is dispensable for focal adhesion growth. J. Cell Biol. 202,
163–177 (2013).

51. Gupton, S. L. & Waterman-Storer, C. M. Spatiotemporal feedback between
actomyosin and focal-adhesion systems optimizes rapid cell migration. Cell
125, 1361–1374 (2006).

52. Yonemura, S., Wada, Y., Watanabe, T., Nagafuchi, A. & Shibata, M. α-catenin
as a tension transducer that induces adherens junction development. Nat. Cell
Biol. 12, 533–542 (2010).

53. Le Duc, Q. et al. Vinculin potentiates e-cadherin mechanosensing and is
recruited to actin-anchored sites within adherens junctions in a myosin ii-
dependent manner. J. Cell Biol. 189, 1107–1115 (2010).

54. Zhang, H. et al. A tension-induced mechanotransduction pathway promotes
epithelial morphogenesis. Nature 471, 99–103 (2011).

55. Astumian, R. D. Kinetic asymmetry allows macromolecular catalysts to drive
an information ratchet. Nat. Commun. 10, 1–14 (2019).

56. Feng, Y. et al. Molecular pumps and motors. J. Am. Chem. Soc. 143,
5569–5591 (2021).

57. Borsley, S., Leigh, D. A. & Roberts, B. M. A doubly kinetically-gated
information ratchet autonomously driven by carbodiimide hydration. J. Am.
Chem. Soc. 143, 4414–4420 (2021).

58. Bihr, T., Seifert, U. & Smith, A. S. Nucleation of ligand-receptor domains in
membrane adhesion. Phys. Rev. Lett. 109, 258101 (2012).

59. Dembo, M., Torney, D. C., Saxman, K. & Hammer, D. The reaction-limited
kinetics of membrane-to-surface adhesion and detachment. Proc. R. Soc. B.
Biol. Sci. 234, 55–83 (1988).

60. Onsager, L. Reciprocal relations in irreversible processes I. Phys. Rev. 37,
183–196 (1931).

Acknowledgements
B.S. acknowledges funding by the European Research Council (g.a.No. 852585).

Author contributions
A.B. and B.S. designed and performed the research; A.B., A.S., G.G., and B.S. discussed
results and wrote the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41467-022-29823-2.

Correspondence and requests for materials should be addressed to Benedikt Sabass.

Peer review information Nature Communications thanks Raymond Astumian and
Shoichi Toyabe for their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,

distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons
license, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless indicated otherwise in
a credit line to the material. If material is not included in the article’s Creative Commons
license and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder. To
view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-29823-2 ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:2197 | https://doi.org/10.1038/s41467-022-29823-2 | www.nature.com/naturecommunications 9

https://doi.org/10.1038/s41467-022-29823-2
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Generic self-stabilization mechanism for biomolecular adhesions under load
	Results
	Molecular adhesion model
	Self-stabilization of macromolecular adhesions
	Mechanism of self-stabilization
	Self-stabilization is a robust mechanism
	Cell&#x02013;nobreakmatrix adhesions

	Discussion
	Methods
	Binding
	Unbinding
	Unfolding and refolding

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




