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Membrane marker selection for segmenting single
cell spatial proteomics data
Monica T. Dayao 1,2, Maigan Brusko3, Clive Wasserfall3 & Ziv Bar-Joseph 2,4✉

The ability to profile spatial proteomics at the single cell level enables the study of cell types,

their spatial distribution, and interactions in several tissues and conditions. Current methods

for cell segmentation in such studies rely on known membrane or cell boundary markers.

However, for many tissues, an optimal set of markers is not known, and even within a tissue,

different cell types may express different markers. Here we present RAMCES, a method that

uses a convolutional neural network to learn the optimal markers for a new sample and

outputs a weighted combination of the selected markers for segmentation. Testing RAMCES

on several existing datasets indicates that it correctly identifies cell boundary markers,

improving on methods that rely on a single marker or those that extend nuclei segmentations.

Application to new spatial proteomics data demonstrates its usefulness for accurately

assigning cell types based on the proteins expressed in segmented cells.

https://doi.org/10.1038/s41467-022-29667-w OPEN

1 Joint Carnegie Mellon University-University of Pittsburgh Ph.D. Program in Computational Biology, Pittsburgh, PA, USA. 2 Computational Biology
Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA. 3 Department of Pathology, Immunology and Laboratory
Medicine, University of Florida, Gainesville, FL, USA. 4Machine Learning Department, School of Computer Science, Carnegie Mellon University, Pittsburgh,
PA, USA. ✉email: zivbj@cs.cmu.edu

NATURE COMMUNICATIONS |         (2022) 13:1999 | https://doi.org/10.1038/s41467-022-29667-w |www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-29667-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-29667-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-29667-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-29667-w&domain=pdf
http://orcid.org/0000-0002-5649-6784
http://orcid.org/0000-0002-5649-6784
http://orcid.org/0000-0002-5649-6784
http://orcid.org/0000-0002-5649-6784
http://orcid.org/0000-0002-5649-6784
http://orcid.org/0000-0003-3430-6051
http://orcid.org/0000-0003-3430-6051
http://orcid.org/0000-0003-3430-6051
http://orcid.org/0000-0003-3430-6051
http://orcid.org/0000-0003-3430-6051
mailto:zivbj@cs.cmu.edu
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Recent advances in spatial proteomics enable the study of
protein levels at the single cell resolution. Methods,
including CODEX1 and digital spatial profiling (DSP)2, can

detect the location of up to 70 different proteins in a single tissue
section. Information about the levels of proteins in single cells can
be used to answer questions regarding the set of cell types in a
sample3,4, the spatial distribution of these types5–7, and the
interactions between different cells and cell types in a tissue8,9.

One of the first questions we need to address when analyzing
spatial proteomics data is the identification of the location of cells
in the sample, often termed cell segmentation. This differs from
nuclei segmentation, which identifies just the nuclei of the cells.
Cell segmentation is a crucial step since errors in identifying cells
and their boundaries have a direct impact on our ability to cor-
rectly quantify the expression levels of proteins in these cells.
Several methods have been developed for segmenting cells, and
these often use one of two approaches. The first is to extend the
segmentations of the nuclei, which are relatively easy to stain.
Toolkits that use this approach include Cytokit10, CellProfiler11,
and BlobFinder12. The second is to use a dedicated channel (often
comprising a membrane protein) for cell segmentation11,13,14.
These types of methods often use a Voronoi-based (centered at
the nucleus)15, graph cut14, watershed transform16, or deep
learning17 approach to identify boundaries between neighboring
cells. While both of these approaches can lead to good results,
they both suffer from potential downsides. The nucleus extension
methods often assume that cells are densely packed. However, in
cases where cells are not actually in physical contact, or when
their shapes are irregular, such an approach can lead to incorrect
segmentation. The membrane channel approach works well if the
protein selected as marker is indeed expressed in all cells profiled.
However, in many cases, it is not clear if a single protein can serve
as a marker for specific tissue data, and even if a protein is a
marker for some cells, it may not be expressed in others6,18,
leading to poor segmentation results for these cells.

A unique advantage of spatial proteomics is that, unlike prior
methods, they do not require such markers to be selected in
advance. Since these studies profile tens of proteins, a marker can
be selected post-experiment. Moreover, there is no need to select a
single marker. Even if a single marker does not work for all cells, a
combination of such markers may be useful for segmenting all

cells. However, it is often challenging to know a-priori which
combination would work best for the sample being profiled. An
unsupervised correlation-based approach, suggested in19, is one of
the first attempts to use the image data to determine such markers.
However, as we show, while that approach may work well in some
cases, it does not work well with the datasets used here.

To select an optimal set of markers, we developed a method
for RAnking Markers for CEll Segmentation (RAMCES). Following
pre-processing, we use a pre-trained convolutional neural network
(CNN) to identify the top markers for an unseen dataset. Next, we
construct a new weighted channel using the top CNN predictions
and use it for segmenting cells in the dataset. We tested RAMCES on
CODEX datasets from three different organs which were profiled as
part of HuBMAP20 as well on the mouse spleen dataset from1 and a
cancerous bone marrow dataset from7. We compared RAMCES
with sequence-based and correlation-based methods for determining
membrane/surface proteins19,21–23 and showed that RAMCES out-
performs these methods. As we show, RAMCES correctly identifies
relevant markers for the different tissues and is able to successfully
use the integrated channel for accurate segmentation of cells.

Results
We developed a method for RAnking Markers for CEll Segmen-
tation (RAMCES) in CODEX data. RAMCES uses a CNN to
identify a weighted combination of membrane marker proteins for
new spatial proteomics datasets, regardless of the tissue or organ
being studied (Fig. 1). RAMCES first learns to predict cell mem-
brane markers by training a CNN on manually annotated CODEX
data, where proteins are annotated as membrane markers or not
(Figs. 1, 2). Given a CODEX dataset profiling a new tissue or
region, RAMCES uses the learned CNN to rank proteins based on
how likely they are to be membrane markers in the dataset. Next, it
uses the ranking to generate new, combined images based on the
top-ranked proteins. Finally, using RAMCES output, we can per-
form segmentation for the new data using a membrane-based
segmentation method, such as Cytokit10. See “Methods” for details.

RAMCES identifies combinations of membrane markers. To
test RAMCES, we first manually labeled four different CODEX
datasets and used them for cross-validation testing (Supplementary

Fig. 1 Overview of the RAMCES segmentation pipeline. First, CODEX data goes through a series of pre-processing steps, including rescaling,
normalization, and the discrete wavelet transform (DWT). Next, a pre-trained CNN is applied to the data to rank proteins/markers. Top markers are
combined to create weighted images, which are then used for segmenting cells by a membrane-based segmentation pipeline, such as Cytokit10. The
resulting segmented data can then be used for downstream analyses and for cell type assignment.
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Table 3). Our labeling selects a subset of the profiled proteins for
each tissue and marks them as membrane markers (Fig. 2). Three of
the datasets (2–4, Supplementary Table 1) were from thymus,
lymph node, and spleen from the University of Florida. The fourth
dataset (dataset 1) was from the mouse spleen1. These datasets span
across different tissues, two different labs, and two organisms,
which allows us to test both the generalization of our method to
multiple regions and tissues and the use of our method to overcome
lab-specific batch effects. We manually curated the proteins in each
of the datasets and used these for training and testing (“Methods”,
Supplementary Table 1). Figure 3a presents the resulting receiver
operating characteristic (ROC) and precision recall (PR) curves
from 4-fold cross-validation. On average, our model achieves a
ROC-AUC of 0.79. We additionally performed bootstrap analysis
by training and testing the CNN model on 100 different bootstrap
samples from datasets 1–4 (“Methods”). Results, presented in
Supplementary Fig. 1, show that performance on bootstrap subsets
is consistent, highlighting the robustness of the method.

RAMCES selects membrane markers based on the CODEX
data itself. An alternative is to use a known list of membrane
markers21–23. To compare to such an approach, we ranked
markers using three popular sequence-based methods developed
for predicting membrane or surface/signaling proteins. These
include SURFY21, which uses a random forest model to predict
human surface proteins from sequence and domain-specific
features, PrediSi22, which uses a position weight matrix approach
to predict signal peptide (SP) sequences, and SignalP 5.023, which
uses a neural network-based approach to predict signaling
peptides from amino acid sequences. Each of these methods
assigns a score between 0 and 1 to every protein, with a higher
score indicating that the protein is a surface marker or a signaling
protein. We also compared RAMCES to another unsupervised
method that is based on the input image data. This method uses
Spearman’s correlation to rank protein pairs and selects proteins
appearing in the top-ranked pairs19 (“Methods”).

Figure 3b presents the resulting ROC and PR curves for the
classification performance of all methods on datasets 2–4. The
dataset from1 was left out in this comparison because the SURFY
method21 considers only human proteins. As can be seen, our
context-specific CNN method outperformed all of the other
methods. Specifically, our method achieved an ROC-AUC of 0.81
which is 20% higher than the best sequence-based or correlation-
based method for this data (SignalP5, 0.68).

Table 1 lists the top 5 proteins identified by the CNN for each
held-out dataset from cross-validation. Bolded protein names
are either membrane or cell surface proteins, as defined by
the Human Protein Atlas24 or the Cell Surface Protein Atlas
(CSPA)25. All but Ki67, which was ranked 5th by our model in
the lymph node dataset with a score of 0.544, are defined as
membrane or cell surface proteins, indicating that the CNN can

accurately identify markers for cell segmentation. This result is
especially promising when considering the murine spleen dataset
from1; this dataset is from a different lab and organism than the
other datasets used for cross-validation.

We additionally computed protein rankings on datasets 5–11
using the cross-validation model trained on datasets 2–4. These
rankings are shown in Supplementary Table 4. The top 3 proteins
for these datasets are labeled as membrane proteins by the
Human Protein Atlas24, with the exception of spleen dataset 9. In
dataset 9, only CD20 was given a score greater than 0.5 (0.787).
All other proteins in this dataset received scores less than 0.5,
indicating that the model classified these proteins as non-
membrane labeling proteins. Supplementary Figure 2 shows an
example tile for each of the top 5 proteins in dataset 9, which
shows that only CD20 looks like it labels cell membranes well.

Pre-processing with DWT improves CNN performance. We
also evaluated the pre-processing steps performed by RAMCES.
For this, we trained models with and without using the discrete
wavelet transform (DWT) on the input images for 500 epochs.
For this evaluation, we used the murine spleen dataset1, which we
split 70/30 into training and test sets. Supplementary Figure 3
shows the ROC and PRC curves resulting from evaluating the two
models on the test set. Using the DWT improves the performance
of the classification model from an ROC-AUC of 0.874 to 0.924
and a PRC-AUC of 0.789 to 0.909.

Comparing segmentation methods. We next used a weighted
combination of the top-ranked proteins by RAMCES to segment
CODEX data. Here we report the results for datasets 5–7 (Sup-
plementary Table 1). For this, we created new images which use
weighted expression levels for the top 3 proteins for each dataset,
where the weights are proportional to the CNN confidence in
labeling them as membrane markers (“Methods”). Selected pro-
teins are listed in Supplementary Table 4, which also lists the
output RAMCES scores and entropy values to give a measure of
the uncertainty of the model. The new image was subsequently
segmented using Cytokit to obtain cell boundaries for each of the
datasets10,15 (“Methods”). Next, we compared several segmenta-
tion methods to evaluate the resulting segmentation of our
method, which we refer to as the ‘Top 3’ segmentation. Specifi-
cally, we compared the resulting segmentation to (1) the Cytokit
segmentation that uses only the top-ranked protein marker for
segmentation (Top 1) and (2) Cytokit’s default segmentation
which is based on extending the nucleus segmentation by a
specified radius (Nucl-ext). Example segmented cells, overlaid
with the weighted membrane image from RAMCES, are shown in
Fig. 4. The Top 3 segmentation, in green, follows the outlines of
the cell membranes more closely than the other methods. In areas

Fig. 2 Examples of labeled CODEX proteins. Proteins that qualitatively labeled membranes well were labeled as class 1, and proteins that labeled other
cellular components were labeled as class 0.
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where the weighted membrane image (in red) is empty, the
segmentation follows the nuclei instead (in gray).

To quantitatively evaluate the difference between the segmenta-
tions, we selected the following protein sets to examine cells for

coexpression according to the different segmentations: CD3+CD4+
for CD4+ T cells, CD3+CD8+ for CD8+ T cells, CD4+CD8+ for
double-positive T cells, and CD68+CD4−CD8− for macrophages.
‘+’ and ‘−’ correspond to the presence and absence of a protein,
respectively. These cell types are expected to be well represented in
lymph node, spleen, and thymus26,27. We calculated the percentages
of cells in each dataset that match the protein coexpression sets
(Supplementary Table 5 and Supplementary Fig. 8, “Methods”). The
percentage of cells that coexpress these sets of proteins increases
when using RAMCES segmentation compared to the default nucleus
extension segmentation from Cytokit, which shows that there is a
quantitative difference between the two segmentation methods.

Comparing RAMCES to individual markers and manual seg-
mentation. To further test the usefulness of combining multiple
markers, we computed the agreement between RAMCES seg-
mentation and segmentation based on each of the top three
channels individually (“Methods”). Results, presented in Sup-
plementary Table 6, show that RAMCES obtains, on average, a
much better overlap with each of the three top individual

Fig. 3 Cross validation and comparison receiver operating characteristic (ROC) and precision-recall (PR) curves evaluating the results on the binary
classification of membrane protein markers. a ROC and PR curves for the RAMCES CNN model from cross validation runs. Dashed lines represent the
random chance baselines for the ROC and PR curves. The mean ROC and PR curves (purple) are presented with error bands representing ± standard
deviation (n= 4 cross-validation models). b Average ROC and PR curves comparing RAMCES with other membrane protein prediction methods, based on
results from datasets 2–4 (Supplementary Table 1).

Table 1 Top 5 ranked proteins from each cross
validation model.

Rank Lymph
node (2)

Spleen (3) Thymus (4) Murine
spleen (1)

1 CD3e CD45 CD4 CD79b
2 CD8 CD4 CD3e IgD
3 CD45 CD3e CD8 CD44
4 CD4 CD45R0 CD20 CD45
5 Ki67 CD8 CD45R0 CD90

Column headers indicate tissue and dataset number from Supplementary Table 1. Bolded protein
name means that is labeled as a membrane protein by the Human Protein Atlas24 for datasets
2–4. For the murine dataset, bold means it is labeled as a membrane protein by the CSPA25 with
‘high confidence’.
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channels when compared to their average pairwise overlap
(improvement of 6.5% using Jaccard and 3.5% using Dice),
highlighting the advantage of the weighted channel generated by
RAMCES.

Since no segmentation ground truth is available for these data,
we had two experts manually segment cells for two image tiles
and compared RAMCES segmentation performance (using
combined markers) to segmentation performance using only a
single marker and to the nucleus extension method (“Methods”).
For this, we used two image tiles from lymph node dataset 5.
Manual segmentation was performed by referencing all of the
image channels; however, manual segmentation is biased since it
relies on prior assumptions28, and in this case, the DAPI and
CD45 channels were most heavily relied on by the experts we
used. Supplementary Table 9 shows that the two expert
segmentations have an average Dice coefficient of 0.6987, which
is in line with prior work from28. Results from comparing
different segmentation methods with the first expert annotation,
presented in Supplementary Table 7, show that on average,
RAMCES segmentation combining the top 3 (and top 2 and 4)
ranked proteins improve on the average performance of the top
three ranked markers (improvement of 2.1% using Jaccard and
1.3% for Dice). We observe that the 2nd ranked marker on its
own performs slightly better than RAMCES; however, we note
that this marker is CD45, which is the one used by the expert to
segment the cells. RAMCES segmentation also outperforms the
nucleus extension segmentation by 8.1% (Jaccard) and 5.1%
(Dice) on average. Supplementary Table 8 shows a similar
comparison to annotations from the second expert.

We additionally performed an analysis comparing the
agreement and disagreement areas between the different
segmentations. Specifically, we looked at pixels in the image
that RAMCES assigns to the inside of cells and other methods
assign to the background, and at pixels that RAMCES assigns to
background and the other segmentation methods assign to the
inside of cells (Supplementary Figs. 4–7). We would expect that
successful methods would have an average biomarker distribu-
tion for areas where the method assigns to inside cells and the
comparison method assigns to background similar to the
distribution for areas where both methods assign to inside cells
(Supplementary Fig. 4). Supplementary Figure 5 compares the
RAMCES segmentations with the nucleus extension segmenta-
tions and highlights that there is increased biomarker signal in
pixels identified as inside cells by both of the segmentation
methods when compared to those determined to be outside
cells, as we would expect. Supplementary Figure 6 shows that in
areas which RAMCES labels as inside of cells and the nucleus
extension method does not, the biomarker signal resembles that
of levels seen for agreement cell (foreground) areas. In contrast,
areas where the nucleus extension method labels as cells and
RAMCES does not look much more similar to background areas.
This result suggests that the RAMCES segmentations capture
more of the biomarker signal than the nucleus extension method,
which we can interpret as a measure of improved segmentation.
Supplementary Figure 7 summarizes the disagreements between
RAMCES and the first manual expert segmentations in a similar
way to the comparison in Supplementary Fig. 6. This again
shows that for all biomarkers except DAPI, the RAMCES

Fig. 4 Segmentation comparisons. a Comparison of segmentations (from dataset 5, Supplementary Table 1) between RAMCES with the top 3 proteins
combined (Top 3) and the default Cytokit10 nucleus extension method (Nucl-ext), and b between using the top single (Top 1) and top 3 ranked membrane
markers. In each image, green contours are the Top 3 segmentation, and blue contours show the segmentation we are comparing to. Cyan indicates that
the two segmentations overlap. The red channel shows the combined weighted membrane image from the top 3 ranked proteins, and the gray channel
shows the DAPI (nucleus) stain. The top images come from tile X= 4, Y= 5, and the bottom images come from tile X= 4, Y= 4 of dataset 5.
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segmentation actually agrees better with cell biomarker signal
than the manual segmentations.

Application to new CODEX datasets. We performed additional
CODEX experiments to test the ability of RAMCES to generalize
to new data. We first tested RAMCES on new data we generated
profiling lymph node, spleen, and thymus using additional pro-
tein markers (29 distinct markers, datasets 8–10, Supplementary
Table 1). We also analyzed CODEX data for another tissue,
cancerous bone marrow from7. This dataset profiles 59 distinct
markers (dataset 11, Supplementary Table 1). To segment these
datasets, we used RAMCES with the CNN model trained on
datasets 2–4, which profiled only 19 distinct markers. As before,
we rank proteins for these datasets using the CNN model and
select the top 1–3 as membrane markers for the segmentation
pipeline (“Methods”). Selected proteins agree well with known
membrane markers for these tissues (Supplementary Table 4).

Next, we used the protein levels assigned to each segmented
cell to assign cell types to the data. For this, we quantified the
average intensity levels for each protein in each cell using Cytokit,
followed by Leiden clustering of all cells (“Methods”). In total
there were 77576, 103010, 84207, and 5276 cells for the thymus
(10), lymph node (8), spleen (9), and cancerous bone marrow
(11) datasets, respectively. We next looked at top markers for
each cluster and assigned cell types using these markers. Results
for thymus dataset 10 are presented in Fig. 5. Results for datasets
8 and 9 are presented in Supplementary Fig. 9 and dataset 11
in Supplementary Fig. 10. The CODEX panel for these datasets
8–10 was designed to delineate cell types within clusters using
canonical markers, namely, pan-cytokeratin (PAN-CK) for
epithelial cells, smooth muscle actin (SMActin), CD31, and
LYVE-1 for lymphatic and vessel endothelial cells, and CD45 for
immune cells of hematopoietic lineage. Among CD45+ cells, we
further defined major cell subsets as follows: CD20+ B cells,
CD3+CD4+ and CD3+CD8+ T cells, CD4+FOXP3+ regula-
tory T cells, and CD11c+CD68+CD15+ myeloid cells. Clusters
denoted as proliferating cells expressed high Ki67. Additional
markers incorporated in future panels will allow the classification
of effector populations of both innate and adaptive immune cells.
Figure 5 displays the spatial assignments associated with the
different cell types for the thymus dataset along with a couple
examples of labeled regulatory T cells, which clearly show
expression of FOXP3. For the bone marrow dataset from7,
major cell types were defined as follows: CD7+CD8+ T cells,
PAX5+Ki67+CD34+ proliferating stem cells, CD31+ endothe-
lial and stromal cells, CD45RO+CD25+CD3+Ki67+ memory
activated T cells, CD68+CD163+ monocytes and macrophages,
and CD3+FOXP3+CD25+CD4+ memory regulatory T cells.
Supplementary Figures 11–15 show UMAP embeddings colored
by select marker proteins and channel montages for example cell
types for datasets 8–11.

Discussion
Cell segmentation has been a major challenge in computational
biology for a number of decades now. Several methods have been
proposed for this task, and these either extend nucleus segmen-
tation or use a pre-determined membrane or cell surface marker
for the task10–14. However, when profiling tissues with several
different types of cells from different individuals, it is usually not
possible to select markers that would work well for all cells in the
sample.

A unique advantage of single cell spatial proteomics, in which
we profile both the location and the level of proteins at high
resolution, is the ability to select such markers in a post hoc
rather than an ad-hoc manner. Since these technologies often

profile tens of proteins, it is likely that among them we would
identify a combination that would be best for the tissue/sample
we are profiling.

To automate the identification process, we developed a new
computational pipeline, RAMCES, that relies on deep neural
networks to select the most appropriate markers for each dataset.
Once trained, the method can be applied to new datasets even if
none of the images in these datasets were manually annotated.
Thus, the pipeline fully automates the process of marker selection
for cell segmentation, drastically reducing the manual labor
required to annotate new membrane channels for each new
dataset. The trained RAMCES model used for evaluation in this
paper is available at github.com/mdayao/ramces. Additionally, if
it is known a priori that particular markers should not be used for
segmentation, they can be removed from the RAMCES ranking
and not combined in the final combined RAMCES output.

We applied RAMCES to several CODEX datasets from mul-
tiple tissues. As we show, outputs from RAMCES are used to
successfully segment the cells, improving on methods that rely on
known markers and those that directly extend the nucleus seg-
mentation. Analysis of the expression of known markers in cells
indicates that RAMCES is able to identify more cells expressing a
combination of markers expected for the different tissues. Com-
parisons to manual segmentation in two tiles of lymph node
dataset 5 showed that by using a combined channel, RAMCES
improves on the average agreement achieved by the the top
three markers, and it also improves on methods that use only the
nuclear channel and its extension. Segmentation using only the
2nd ranked channel (CD45 for this dataset) has slightly better
agreement with the manual segmentation than any of the com-
bined segmentations. This is likely because, as mentioned, the
experts referenced the CD45 channel most often when manually
segmenting the tiles. This highlights the challenge with obtaining
ground truth since any manually-curated ground truth is likely
biased by the individual performing the segmentation28. By
combining the top three channels, RAMCES is able to overcome
such biases and obtain results that are in good agreement with
both expert curation and expected cell populations. Application
of the method to new datasets profiling 50% more proteins than
the training datasets indicates that the method can scale well for
new, unseen, proteins while maintaining accurate cell segmenta-
tion results. Additionally, application to a cancerous bone mar-
row dataset demonstrated the method’s ability to generalize to
tissues different than those in its training set.

We used the segmented cells to cluster and assign cell types
for a number of new CODEX datasets from three different
tissues. Results for the thymus, presented in Fig. 5, indicate that
with RAMCES, we were able to observe the expected cellular
organization and architecture of the thymus. Specifically, fields
of CD4 and CD8 double-positive developing T cells (teal) are
distributed throughout the thymic cortex. These double-
positive T cells then interact with thymic epithelial cells and
antigen-presenting cells (blue) in the medulla, driving their
selection as single positive T cells (red–orange). Thus, the
segmentation accurately captured expected expression profiles
and cellular distribution.

While RAMCES was successful in the segmentation of samples
from a number of different tissues, including lymph node, spleen,
thymus, and cancerous bone marrow, more analysis is required to
make sure that it can generalize to other tissues as well. We note
that since the resulting RAMCES segmentation in this paper is
dependent on Cytokit’s segmentation, which is deterministic, we
cannot derive statistics on issues related to false discovery rates
(e.g., for cell identification) for different thresholds. In addition,
while we believe the approach can be easily generalized to other
types of spatial proteomics data, the current analysis only on
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focused CODEX which is the most widely used technique right
now for HuBMAP20.

Given the growing interest and use of spatial proteomics in
several different studies, we believe that RAMCES can address an
important need and will improve the ability to segment cells and
assign accurate cell-based expression profiles.

Methods
Overview. The initial method used by HuBMAP for segmenting CODEX data is
based on Cytokit10, an image cytometry toolkit for fluorescent microscopy datasets.
Cytokit uses a pre-trained U-Net29 deep neural network for nuclei segmentation.
To extend the nuclei segmentation to full cell segmentation, Cytokit uses one of
two options: (1) the nuclei acts as a center for each cell and is grown to a specified
radius or until it collides with other cells, or (2) use (if known) a specified image
channel for a membrane marker/protein in the dataset with a Voronoi-based
method15 to label the membranes of the cells. However, it is often unclear which
protein best labels the cell membranes as this property differs between tissues and
various regions within them and even between cells in the same tissue30.

To address these problems, we developed a method for RAnking Markers for
CEll Segmentation (RAMCES), which uses a CNN to identify a weighted

combination of membrane marker proteins for new CODEX datasets, regardless of
the tissue or organ it profiles. The combined set of channels is then used to create a
composite image which is fed into the segmentation pipeline (Fig. 1).

Donor acquisition. Organ donor tissue samples were recovered by the HuBMAP
Lymphatic System Tissue Mapping Center (TMC) according to established pro-
tocols (https://doi.org/10.17504/protocols.io.bsdsna6e)31 approved by the Uni-
versity of Florida Institutional Review Board (IRB201600029), the United Network
for Organ Sharing (UNOS), in accordance with federal guidelines, and with written
informed consent from each donor’s legal representative. The studies were con-
ducted in accordance with the relevant criteria set forth in the Declaration of
Helsinki. Donor demographic information is available on the HUBMAP portal
(https://portal.hubmapconsortium.org/) through the dataset IDs provided in Sup-
plementary Table 1.

Human spleen, lymph nodes, and thymus were obtained from organ donors
and processed within 16 h of cross clamp. Residual fat or connective tissues were
removed from each tissue, and size and specimen recovery location and orientation
noted and recorded in https://hubmapconsortium.github.io/ccf-ui/. 1 cm3 blocks
were dissected from each tissue with known and registered location within the
human body. Tissue cassettes were placed in at least 20 volumes of 4% PFA (i.e.,
20 mL 4% PFA per 1 mL tissue) for 20–24 h, transferred to 70% ethanol, and

Fig. 5 Spatial assignment of cell types. a Clustering and UMAP visualization of cells based on the expression of profiled proteins, performed by the Cellar
tool41. Cell types were assigned based on known markers (“Methods”). b Stitched tiles containing segmented cells from thymus dataset 10 (Supplementary
Table 1) using the same colors as the cell type colors above. c Zoomed-in regions of (b) adjacent to their corresponding CODEX images, showing example
cells labeled as regulatory T cells, colored gray and indicated by the yellow arrows. CODEX images show the cell segmentation outline (blue), CD4 (red),
and FOXP3 (green).
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paraffin embedded in an automated tissue processor (Sakura VIP) within 3 days.
Tissues were sectioned to 5 μm and stained with hematoxylin and eosin (H&E) and
evaluated by an independent pathologist to assess organ normality.

CODEX staining and imaging of human samples. Barcoded antibody staining of
tissue sections mounted on cover slips was performed using a commercially
available CODEX Staining Kit according to the manufacturer’s instructions for
FFPE tissue (Akoya Biosciences) and as recorded for HuBMAP Lymphatic System
TMC (https://doi.org/10.17504/protocols.io.be9pjh5n)32. Images were acquired at
20X magnification using a Keyence BZ-X810 microscope with a metal halide light
source and filter cubes for DAPI (358), TRITC (550), CY5 (647), and CY7 (750).
Typical images are 7×9 (3.77 × 3.58 mm) including acquisition of 17 Z-stack
images at 1.5 μm pitch. Raw images were collected using the CODEX Processor
software (version 1.30.0.12). Drift compensation, deconvolution, z-plane selection,
and stitching were performed using the Cytokit software10, using the Docker33

container found at https://hub.docker.com/r/eczech/cytokit (version ‘latest’
uploaded on Feb 5, 2020). The display lookup table (LUT) for all figures presented
in this paper is linear and covers the full range of data.

Datasets. A CODEX1 dataset consists of 2D images of a tissue sample at a single-cell
resolution, with each channel of the image visualizing the expression of a specific
protein from fluorescent antibody probes. Other fluorescent stains, such as DAPI or
DRAQ5 stains, can also be visualized. The images are obtained in tiles across the
tissue sample at different z-levels; however, for our analysis, we use only the z-level
with the best focus for each tile for downstream analysis. The best z-level is chosen by
Cytokit10 using a deep-learning-based classifier that scores image quality34.

For the analysis presented in this paper, we collected data from several different
tissues. For training and cross-validation of the neural network model, we used
three human tissue datasets (lymph node, spleen, thymus) from the University of
Florida and a previously published mouse spleen dataset from1 (Supplementary
Table 1). Supplementary Table 10 gives the table of antibodies used in the human
tissue datasets. We used the trained model to choose membrane proteins from
other CODEX datasets which profiled human tissues from thymus, lymph node,
and spleen. We also used the model to choose membrane markers for a previously
published dataset of cancerous bone marrow (dataset 11, Supplementary Table 1).
This dataset was from region 4 of the ‘Multi-tumor TMA’ data from7.

The training datasets and 3 of the testing datasets from the University of Florida
(2–7, Supplementary Table 1) profiled 19 distinct markers. The other 3 datasets
from UF (datasets 8–10) profiled 29. The dataset from1 (dataset 1) profiled 31
distinct markers, and the bone marrow dataset from7 (dataset 11) profiled 59.
Supplementary Table 2 lists these proteins for each dataset. Each tile within a
dataset spanned 1008 × 1344 pixels, except for dataset 11, which consisted of a
single 1440 × 1920 tile. A more detailed specification of each of the datasets can be
found in Supplementary Table 1. Throughout this paper, we refer to each dataset
by its ‘Dataset’ number in Supplementary Table 1.

For training, each marker from training datasets 1–4 were manually labeled as
one of two classes: labeling cell membranes and not labeling cell membranes
(Fig. 2). Supplementary Table 3 lists these manual annotations.

Convolutional neural network model to classify CODEX proteins. We devel-
oped a CNN model to predict weighted combinations of membrane markers for a
given CODEX dataset. To predict such proteins, the model uses the training data to
learn a classifier for predicting: (1) for a cell membrane protein, or (0) for non cell
membrane protein. The CNN includes three convolutional layers, each followed by
a Leaky ReLu35 activation function and a max-pooling operator, and a fully-
connected layer with dropout36 (p= 0.3) for better generalizability. The Leaky
ReLU is a type of rectified linear activation function which is shown to increase
model performance overall compared to sigmoidal or tanh activation functions35.
It is defined as

f ðxÞ ¼ 0:01x x<0

x otherwise

�
ð1Þ

The last fully-connected layer is fed into a sigmoid activation function such that the
output from the CNN is a value between 0 and 1, representing a score of how well
the input image labels membranes. The sigmoid function is defined as

SðxÞ ¼ 1
1þ e�x

ð2Þ

Pre-processing. Before inputting the images into the CNN to predict membrane
markers, RAMCES performs a series of pre-processing steps. First, each CODEX
image tile is separated into its individual protein channels, such that each channel
for each tile is a separate training sample. Only the unique protein channels are
considered; blank channels and duplicates are removed. The samples are then
rescaled to 1024 × 1024 pixels, z-normalized, and clipped at ±3σ, where σ is the
standard deviation of the pixel intensity values, to remove any extreme outliers.
The 1024 × 1024 sized tiles are then split up into non-overlapping tiles of 128 × 128
pixels each, resulting in 64 separate images for each tile in the dataset. This yields
330,396 training images before data augmentation. For data augmentation during

training, the samples are randomly flipped (vertically and horizontally), rotated (by
multiples of 90∘), and translated.

A 2D DWT is then used on each sample. The DWT is commonly used for image
compression and image denoising. It decomposes a signal into a set of mutually
orthogonal wavelet basis functions by passing it through a series of filters. These filters
can be denoted g(n) and h(n) for the low-pass and high-pass filters, respectively. In
the 1D case, given a discrete signal x(n) the output of the DWT can be written as the
sub-sampled convolution of the signal and the two filters, yielding a low-pass and
high-pass output that together is equivalent in size to the original signal:

ylowðnÞ ¼ ∑
1

k¼�1
xðkÞgð2n� kÞ ¼ ðx � gÞ # 2 ð3Þ

yhighðnÞ ¼ ∑
1

k¼�1
xðkÞhð2n� kÞ ¼ ðx � hÞ # 2 ð4Þ

For images, we perform the 2D DWT, which uses the 1D DWT on the rows and
subsequently on the columns of the image array. This process yields four sub-band
images: LL, LH, HL, and HH. The LL sub-band image is the downsampled version
of the original image: the result of a low-pass filter in both the rows and the
columns. For a multi-level DWT, the LL image would be used as input to the next
level. The LH sub-band image is the result of a low-pass filter along the rows and a
high-pass filter along the columns; this image contains the horizontal features of
the original image. Similarly, the HL sub-band image isolates vertical features. The
HH sub-band image is a result of the high-pass filter along both the rows and the
columns, capturing most of the noise in the image. We show that using the 2D
DWT improves the performance of our CNN (Supplementary Fig. 3), likely by
isolating the edge-like features in the images. We used the Debauchies 2 wavelet
from37 to perform the 2D DWT on the CODEX images.

Training. The model was trained with CODEX datasets (1–4) as specified in
Supplementary Tables 1 and 3 for 300 epochs. We used stochastic gradient
descent38 with a learning rate of 0.01 as the optimizer and binary cross entropy as
the loss function. Each cross-validation model held out one of the four datasets for
testing and trained on the other three. For the bootstrap analysis, we randomly
sampled from datasets 1–4 with replacement to create a training set size equal to
60% of the total dataset size. The testing set comprised of the remaining samples.
This process was repeated 100 times to obtain the 100 bootstrap models. We
trained the model using the PyTorch deep learning framework39 and visualized
training metrics with Weights & Biases40.

Scoring and weighted images. For the CODEX datasets used for evaluation
(Supplementary Table 1), the score for each protein is calculated as follows. Each
1024 × 1024 pixel tile is split into 64 smaller subtiles, as we do for the training data,
and a score between 0 and 1 is assigned for each of these smaller subtiles by the
CNN. The highest score given to one of the 64 subtiles is used as the score for the
entire tile. The reason we used the max is because several subtiles may contain few
or no cells. In contrast, the majority of large tiles had several subtiles that did
contain cells and so using the max leads to selecting one of the denser subtiles in
the image. The final score for each protein is the average of the scores given to that
protein across the larger tiles in the dataset.

To combine multiple proteins into a new image channel, we take the weighted
average of the corresponding protein images (using their intensity values),
weighted by the individual protein scores. More specifically, the jth pixel in the

weighted image (xðjÞweighted) is calculated from the intensity value of the jth pixels in
the images of the selected proteins, with wi being their score.

xðjÞweighted ¼
∑n

i¼1 wix
ðjÞ
i

∑n
i¼1 wi

ð5Þ

For the results shown here, the top n= 3 proteins were chosen to create the
weighted image channel, as ranked by their score (1 is highest, 0 is lowest). See
Table 1 and Supplementary Table 4 for the proteins used for each dataset and their
scores. Supplementary Table 4 also lists the Shannon entropy for each protein,
which can be interpreted as the uncertainty of the RAMCES CNN model. The
Shannon entropy is calculated as

H ¼ �plog2p� ð1� pÞlog2ð1� pÞ ð6Þ
where p is the output RAMCES score for that protein.

Cell segmentation and post-processing. Cell segmentation was performed using
the Cytokit software10, using the Docker33 container found at https://hub.docker.com/
r/eczech/cytokit (version ‘latest’ uploaded on Feb 5, 2020). The cell segmentation
method by Cytokit10 takes as input the CODEX image data, a nucleus channel, and a
specified membrane channel (output from RAMCES in our case). If no membrane
channel is specified, the default nucleus extension segmentation method is performed.
The Cytokit parameters for segmentation with a membrane channel were specified as
follows: memb_min_dist 1, memb_sigma 5, memb_gamma 0.25, marker_dilation 3,
memb_propagation_regularization 0.25, memb_hole_size 20. Parameters for
nucleus extension segmentation were memb_min_dist 8, memb_sigma 5, mem-
b_gamma 0.25, marker_dilation 3. For dataset 9, we have memb_min_dist 4 and
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marker_min_size 4. In addition to outputting the nuclei and cell segmentation masks,
Cytokit provides information that describes the abundance of protein within each cell.
More specifically, for each cell in the dataset and for each marker, Cytokit computes
the average pixel intensity value over the nuclei segmentation mask and the cell
segmentation mask. For the analysis done in this paper, we use the average value over
the cell segmentation mask to compare different cell segmentation methods.

Clustering and annotating cell types. We performed dimensionality reduction
and clustering using the Cellar41 tool. We used UMAP as our embedding and Leiden
clustering with a resolution of 0.3 and 15 nearest neighbors. We annotated the
clusters using key markers for canonical cell types known for these tissues. Speci-
fically, for datasets 8–10, we used pan-cytokeratin (PAN-CK) for epithelial cells,
smooth muscle actin (SMActin), CD31, and LYVE-1 for lymphatic and vessel
endothelial cells, and CD45 for immune cells of hematopoietic lineage. Among
CD45+ cells, we further defined major cell subsets as follows: CD20+ B cells,
CD3+CD4+ and CD3+CD8+ T cells, CD4+FOXP3+ regulatory T cells, and
CD11c+CD68+CD15+ myeloid cells. Clusters denoted as proliferating cells
expressed high Ki67. For dataset 11, major cell types were defined as follows:
CD7+CD8+ T cells, PAX5+Ki67+CD34+ proliferating stem cells, CD31+ endo-
thelial and stromal cells, CD45RO+CD25+CD3+Ki67+ memory activated T cells,
CD68+CD163+ monocytes and macrophages, and CD3+FOXP3+CD25+CD4+
memory regulatory T cells. Some clusters were later merged based on these expert
annotations. UMAP embeddings and channel montages colored by abundance of
these key marker proteins are in Supplementary Figs. 11–15.

Gating thresholds. Thresholds for determining the presence/absence of proteins
as summarized in Supplementary Table 5 were computed as follows. For each
relevant protein, we calculate the mean (μ) and standard deviation (σ) of the
background pixel intensities. The background pixels are the pixels that are not part
of any cell segmentation mask. The threshold is μ+ 2σ. Cells whose average
intensity value over its segmentation mask (computed by Cytokit) is greater than
the threshold are labeled as expressing that protein. The corresponding gating/
biaxial plots can be found in Supplementary Fig. 8.

Sequence-based methods for predicting membrane/surface markers. For each
labeled marker in the training set (Supplementary Table 3), we obtained scores
from the SURFY21, PrediSi22, and SignalP 5.023 methods. For SURFY, we used the
web database at http://wlab.ethz.ch/surfaceome/ and used the scores under the
column ‘SURFY score’. For PrediSi and SignalP 5.0, we used the web tools at http://
www.predisi.de/ and http://www.cbs.dtu.dk/services/SignalP/, respectively, and
input amino acid sequences for the proteins. Both of these methods output a score
between 0 and 1 for the specified protein. These scores are compared to the true
classification labels (Supplementary Table 3) to produce the curves in Fig. 3b.

Spearman’s rank correlation method. The Spearman’s rank correlation method
from19 selects membrane protein markers for a particular spatial proteomics
dataset with the following steps: (1) compute the Spearman’s rank correlation
coefficient for each possible protein pair, (2) take the 10 protein pairs with highest
correlation coefficient, (3) choose the 4 most frequent proteins present in those
pairs as the final membrane markers. To compare this method with RAMCES, we
assigned scores to proteins based on their frequency in the top 10 most correlated
pairs, normalized between 0 and 1. The protein that appeared the most frequently
in the top 10 received a score of 1, and any proteins not present in the top 10
received a score of 0. These scores are compared to the true classification labels
(Supplementary Table 3) to produce the curves in Fig. 3b.

Segmentation comparisons. Supplementary Table 6 compares RAMCES seg-
mentations that use combined top markers with segmentations that use only
individual markers or the nucleus extension method. Supplementary Tables 7 and
8 compare RAMCES combined segmentations, individual marker segmentations,
and nucleus extension segmentations with the two expert manual segmentations.
Supplementary Table 9 compares the two expert manual segmentations with each
other. Below are the definitions of the Jaccard index and Dice coeffiecient we use
for these tables. TP= # true positives, FP= # false positives, FN= # false negatives.

Jaccard index ¼ TP
TP þ FP þ FN

ð7Þ

Dice coefficient ¼ 2TP
2TP þ FP þ FN

ð8Þ

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The HuBMAP data used in this study are available in the HuBMAP data portal [https://
portal.hubmapconsortium.org/] with HuBMAP IDs HBM869.VZJM.366 [https://portal.
hubmapconsortium.org/browse/dataset/a6ccc344f88a164766d1251053173009],

HBM432.LLCF.677 [https://portal.hubmapconsortium.org/browse/dataset/
75edcda4f3ff5bef72383d5d082438c2], HBM588.FHDS.363 [https://portal.
hubmapconsortium.org/browse/dataset/8dd0ef5cafa3541cf9f0661db64662b7],
HBM279.TQRS.775 [https://portal.hubmapconsortium.org/browse/dataset/
077f7862f6306055899374c7807a30c3], HBM337.FSXL.564 [https://portal.
hubmapconsortium.org/browse/dataset/f0c58e670ceb445e6ab02c6a20c83aee],
HBM376.QCCJ.269 [https://portal.hubmapconsortium.org/browse/dataset/
4514230f7473a496201a4e45c4ff9568], HBM754.WKLP.262 [https://portal.
hubmapconsortium.org/browse/dataset/c95d9373d698faf60a66ffdc27499fe1],
HBM556.KSFB.592 [https://portal.hubmapconsortium.org/browse/dataset/
00d1a3623dac388773bc7780fcb42797], HBM288.XSQZ.633 [https://portal.
hubmapconsortium.org/browse/dataset/f86b9efc87074bf03cd53932d8f1e76f].
Segmentation masks and RAMCES outputs are available in Zenodo with the identifier
“https://doi.org/10.5281/zenodo.5655738”42. Celltype annotations can be found at the
Cellar tool [https://data.test.hubmapconsortium.org/app/cellar]41. Processed primary
imaging data for the bone marrow dataset was from7 from the ‘Multi-tumor TMA’ data,
region 4. The primary imaging data for the mouse spleen dataset was from1.

Code availability
RAMCES is available at github.com/mdayao/ramces43.
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