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Double-layer geodesic and gradient-index lenses
Qiao Chen 1, Simon A. R. Horsley 2, Nelson J. G. Fonseca 3, Tomáš Tyc 4 & Oscar Quevedo–Teruel 1✉

A double-layer lens consists of a first gradient-index/geodesic profile in an upper waveguide,

partially surrounded by a mirror that reflects the wave into a lower guide where there is a

second profile. Here, we derive a new family of rotational-symmetric inhomogeneous index

profiles and equivalent geodesic lens shapes by solving an inverse problem of pre-specified

focal points. We find an equivalence where single-layer lenses have a different functionality

as double-layer lenses with the same profiles. As an example, we propose, manufacture, and

experimentally validate a practical implementation of a geodesic double-layer lens that is

engineered for a low-profile antenna with a compact footprint in the millimeter wave band.

Its unique double-layer configuration allows for two-dimensional beam scanning using

the same footprint as an extension of the presented design. These lenses may find appli-

cations in future wireless communication systems and sensing instruments in microwave,

sub-terahertz, and optical domains.
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When a material’s refractive index changes in space
gradually, an electromagnetic (EM) wave may be
approximately described using a collection of rays

following curved trajectories. This simplified view of electro-
magnetism is the theory of geometrical optics1, and its applica-
tion to lens design goes back to Maxwell’s consideration of the
‘fish eye’ lens, where all rays follow circular paths2. Although
there are now more detailed design theories, where the entire EM
field can be controlled (e.g., transformation optics3,4), geometrical
optics remains a fascinating and active area of research.

Interestingly, in geometrical optics, the scattering by a rota-
tionally symmetric profile n(r) can be inverted5–7. Rather than
finding the ray paths through the index profile, the index profile
can be found from the ray deflection angle as a function of
angular momentum. Perhaps most well-known of the profiles
found from this inversion is the Luneburg lens8, a circular disc
(2D) or sphere (3D), that focuses all incident plane waves to
points on the rim or surface of the lens. Other notable profiles
include the Eaton lens9,10, which acts as a perfect ray retro-
reflector; Miñano’s ‘invisible lens’11, where all rays make com-
plete loops, leaving the device as if no refraction had occurred;
Gutman’s modified Luneburg lens12–14, where the focus is inside
the lens; and the multi-focal lenses found in the work of Šarbort
and Tyc7.

Graded index devices have been widely implemented using
effective-medium techniques10,14–21. For instance, all-dielectric
solutions have been employed for lensing from the
microwave10,15 to terahertz16,17 and optical bands18,19, and they
also prove viable for both lensing and cloaking in quasi-
conformal transformation optics18–20. Such devices are usually
realized by a dielectric slab (such as alumina or silicon) patterned
with subwavelength structures like pillars or air holes. They fea-
ture flat profiles and demonstrate low dissipation losses at the
infrared range and beyond. However, in millimeter-wave bands
low-loss dielectrics can be hard to find. In cases where the wave is
confined to a plane, an all-metal metasurface lens realized in a
textured parallel waveguide proves more efficient21. An interest-
ing alternative are geodesic lenses that support either a surface
wave22 or the transverse electromagnetic (TEM) wave in a
doubly-curved parallel plate waveguide. Since the TEM wave is
non-dispersive, the geodesic lens provides ultrawide bandwidth.
Here the out-of-plane deformation of the waveguide modifies the
path length between any two points, equivalent to the change in
optical path length due to a spatially varying index23, ∫ndl. The
aforementioned inversion procedure can be adapted to designing
geodesic lens shape from its functionality6,24–28. Such imple-
mentation can achieve a higher equivalent index than the
effective-medium approaches that are limited by the available
materials and geometrical parameters. For instance, sharp tips in
the lens shape are equivalent to points of infinite refractive index
(analogous to the transmutation of singularities with anisotropic
media29,30), making it possible to realize a wider range of geodesic
lenses than graded index ones31. Recent work has also shown that
the theory of geodesic lenses can be used to circumvent some of
the problems inherent in conformal transformation optics32,33.
Additionally, the shielded structure of a geodesic lens permits
multi-layer configurations that are not possible in an all-dielectric
one due to evanescent interactions.

In this work, we explore a generalization of a recent problem
addressed in lens design (schematic given in Fig. 1), where wave
propagation takes place in two (upper and lower) parallel plate
waveguides, containing two different inhomogeneous refractive
index profiles and connected by a mirror or reflector over part of
their common circumference. The combination of the reflection
and the two inhomogeneous profiles serves to e.g., convert an
incident plane wave in the first waveguide, to a focused spot in the

second. We call such devices ‘double-layer’ lenses. This idea of
double-layer lenses was inspired by the work of Rotman34 where
the wave between two layers is transferred by a ‘curved conducting
back wall’ at the lens rim, often referred to as a ‘pillbox’ antenna
because of its shape. Thanks to the rotational symmetry, that
solution provides a wider scanning range in comparison to
parabolic reflectors (or a parabolic pillbox35) and other line source
antennas, which made it an attractive solution for the early
microwave radar systems developed in the 1950s. However, this
geometry is limited by spherical aberrations. Combining the
double-layer pillbox antenna described by Rotman and the
Luneburg lens concept, a pillbox antenna with no aberrations (in
principle) was recently proposed and referred to as a ‘reflective
Luneburg lens’36.

In this paper, a generalization of this particular case is intro-
duced, which defines a new family of inhomogeneous lenses with
possible applications in the microwave, terahertz, and optical
domains. The interest for quasi-optical parallel plate waveguide
solutions has grown over recent years for use in terrestrial and
non-terrestrial systems14,21,27,35–37, making the more general
solution presented here a timely and promising development. The
proposed lens problem uses a Luneburg-like inversion of the ray
propagation, but with the addition of a mirror at the edge of the
profile (as in34). Before encountering the mirror the ray follows a
curved trajectory in the upper inhomogeneous profile waveguide.
It is then reflected into a lower waveguide where the ray follows a
second curved trajectory in a different inhomogeneous profile.
For the development reported here, it is assumed that the
thickness of the waveguides is much smaller than the wavelength
and that aberrations introduced by the ‘curved conducting back
wall’ are negligible. We develop a general formula for the index
profile. In the special case where the lower waveguide contains a
homogeneous refractive index (or is perhaps a dielectric slab35,38,
or equivalent periodic surface36,39 to generate leaky-wave radia-
tion) we find a remarkable relation between double-layer and
single-layer lenses. For instance, the generalized Maxwell fish eye
lens profile employed in a double-layer lens provides the same
functionality as the Eaton lens profile in the single-layer setting.
Based on the double-layer generalized Maxwell fisheye lens, we
design, fabricate, and test a fully-metallic geodesic lens antenna at
26–32 GHz with low profile and compact footprint for beam-
scanning applications, whose experimental results exhibit extre-
mely low insertion losses and stable gain patterns up to an
angular range of ±50∘. We demonstrate that the profile height of
double-layer geodesic lenses can be significantly lowered by
truncating and modulating the initial ones while keeping their
functionalities, a general technique also applicable to other lenses.
Furthermore, the distinctive double-layer configuration geome-
trically divides the lens functionality into a beamforming layer
and a radiating one. The latter can be straightforwardly extended
for 2D scanning by exploiting its entire footprint area as the
radiation aperture.

Results
Problem formulation. In geometrical optics, we treat the gra-
dient of the wave’s optical path as a ‘velocity’ v=∇S, and the
eikonal equation (∇S)2= v2= n2 is equivalent to the conservation
of energy in classical mechanics, 1

2mv2 ¼ E � VðxÞ. For a 2D
rotationally symmetric refractive index profile the angular
momentum of each ray is also conserved

L ¼ rvϕ ¼ r2
dϕ
dt

¼ ∂S=∂ϕ ¼ const: ð1Þ

Imposing this constraint allows us to eliminate ∂S/∂ϕ from
the eikonal equation, finding the radial velocity as a function
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of radius

dr
dt

¼ ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2ðrÞ � L2

r2

r
: ð2Þ

Dividing Eq. (1) by (2) and integrating between radii r0 and r1,
we find the associated change in the angular coordinate as a
function of radius

Δϕ ¼ ±
Z r1

r0

L

r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2ðrÞ � L2

r2

q dr: ð3Þ

Given the conservation of angular momentum, the change in
angle over the trajectory has a fixed sign. The sign is therefore
chosen depending on whether the ray is traveling into or out from
the origin. The sign changes at the turning points, where n(r)
r= ±L. We now find the refractive index profile n(r) for given
source rs, image ri, and ray rotation angle Δϕ. The theory is a
particular case of that given in Landau and Lifshitz5 (section 12),
and Šarbort and Tyc6,7.

Consider the double-layer lens problem sketched in Fig. 1a.
The rays originate from source point rs, propagate through index
na up to the radius of the lens, which we choose as r= 1, without
loss of generality. Within the lens, the ray propagates through the
first index profile n1(r) from the outer radius to the turning point
rt1, and then returns to the outer radius. Meeting the outer radius
for a second time it is reflected (as at a turning point) into a
waveguide of background index nb ≥ na and index profile n2(r),
meeting at the final image point ri. Note that the incidence
direction is implicitly restricted due to the presence of the mirror
at the lens rim, which breaks the rotational symmetry. Yet, wide-
angle scanning properties are expected as in double-layer pillbox
antennas34.

Calculating the total change in angle Δϕ, for propagation
between rs and ri as a sum of (3) for each segment of the
trajectory, we findZ 1

rt1

r�1L drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21ðrÞr2 � L2

p þ
Z 1

rt2

r�1L drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n22ðrÞr2 � L2

p

¼ 1
2

Δϕ�
Z rs

1

r�1L drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2ar

2 � L2
p �

Z ri

1

r�1L drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2br

2 � L2
q

2
64

3
75 � gðLÞ

ð4Þ

where g(L) is half the required turning angle of the double-layer
lens. We carry out the constant index integrals in (4) in terms of
inverse sin functions, each of which represents a contribution to

the total angle swept out by the ray outside the lensZ rb

ra

r�1L drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2ar

2 � L2
p ¼ arcsinðL=naraÞ � arcsinðL=narbÞ: ð5Þ

Carrying out the integrals in this manner leaves us with a
function g(L) of the form

gðLÞ ¼ 1
2

Δϕþ arcsin
L

nars

� �
þ arcsin

L
nbri

� ��

� arcsin
L
na

� �
� arcsin

L
nb

� ��
:

ð6Þ

We now find the formula for the two refractive index profiles
n1,2(r) such that the half turning angle equals (6). The integrals on
left of Eq. (4) are closely related to Abel transforms40, which can
be inverted to find the refractive index n(r). This inversion
procedure is complicated in general because there are two
integrals (one for each index profile) with different ranges of
allowed angular momentum. There are however several special
cases where we can simply invert the left-hand side of (5). In this
work, we concentrate on two special cases: (i) where the two
waveguides have equal background index na= nb; and (ii) where
the second waveguide contains a homogeneous index profile.

Waveguides with equal background index na= nb. When the
upper and lower waveguides have equal background index na, the
maximum allowed angular momentum in both profiles is the

same, equaling na. Multiplying both sides of (4) by 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 � ~L

2
p

,
where ~L is some number between 0 and na, and integrating over L
from ~L up to na yields the turning points rt1 and rt2 as a function
of the angular momentum variable ~L. We apply the integral
identityZ na

~L
dL
Z 1

rt1ð~LÞ

r�1L drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21ðrÞr2 � L2

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 � ~L

2
p ¼ � π

2
logðrt1ð~LÞÞ ð7Þ

to Eq. (4). Rearranging for the turning points in terms of the
angular momentum we have

rt1ð~LÞrt2ð~LÞ ¼ exp � 2
π

Z na

~L

gðLÞ dLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 � ~L

2
p

 !
: ð8Þ

This formula shows that there is a freedom in the design of a
double-layer lens, as we can only determine the product of the
turning points. To make progress we write the turning point in
the second index profile rt2ð~LÞ as a function of rt1ð~LÞ. This
function must be monotonic and such that it maps the interval
[0, 1] onto itself. As a particular case we choose the second

s1(ρ)

s2(ρ)

z(ρ)

ρ
Lower 

waveguide

Upper 
waveguide

Mirror

Lower 
waveguide

Upper 
waveguide

Mirror

θ

n1(r), n2(r)

rt1

rt2

rs

ri

r

a b

Fig. 1 Schematic of the 2D double-layer lens problem. a Graded index double-layer lens defined under polar coordinate system (r, ϕ). Incident rays from a
point source at r= rs in upper waveguide are first refracted by the profile n1(r) before encountering the mirror on the far side of the device. The mirror
reflects the ray into a lower waveguide where it is refracted by the profile n2(r), focusing all rays to a point image at r= ri. The thickness of the waveguides
is neglected in first approximation for the purposes of this development, considering it is small compared to the wavelength. b Equivalent geodesic double-
layer lens, where the refractive index is placed with an out of plane deformation z(ρ) of the upper/lower waveguide described by the arc length s1,2(ρ) of the
surface measured along the meridian from the axis of symmetry under a cylindrical coordinate system (ρ, ϕ, z). In both cases, the background medium
outside the lens has refractive indices na and nb for the upper and lower waveguides, respectively.
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turning point to be a power of the first

rt2ð~LÞ ¼ ½rt1ð~LÞ�
α ð9Þ

so that Eq. (8) becomes

rt1ð~LÞ ¼ exp � 2
πð1þ αÞ

Z na

~L

gðLÞ dLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 � ~L

2
p

 !
: ð10Þ

This formula gives the radius where the refractive index satisfies
nðrt1Þrt1 ¼ ~L. Even if the integral cannot be done analytically we can
apply (10) to numerically generate a list of radii rt1 and
corresponding values of n(rt1)rt1, from which we can compute the
refractive index in the upper layer as a function of radius. To find the
corresponding index profile in the lower layer we use Eq. (9) to write
n2(r)= n1(r1/α)r1/α−1. A further simplification of the general
problem is to assume n1(r)= n2(r) (α= 1). In this case, the problem
reduces to an ordinary inhomogeneous lens combined with a
spherical mirror, with particular cases of interest reported in11 and41.

Homogeneous index in lower waveguide. When the lower
waveguide contains a homogeneous index profile, n2(r)= nb, the
second integral on the left of Eq. (4) can be evaluated using the
integral identity in Eq. (5).Z 1

nb=L

r�1Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2br

2 � L2
q ¼ π

2
� arcsin L=nb

� �
ð11Þ

which leaves us withZ 1

rt1

r�1L drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21ðrÞr2 � L2

p ¼ ~gðLÞ ð12Þ

where ~gðLÞ is the half turning angle of the upper index profile n1

~gðLÞ ¼ 1
2

Δϕ� π þ arcsin
L

nars

� �
þ arcsin

L
nbri

� ��

þ arcsin
L
nb

� �
� arcsin

L
na

� �� ð13Þ

Applying the same Abel-type inversion procedure we used to
obtain Eq. (8) from Eq. (4) we find the turning point in the upper
index profile as a function of angular momentum

rt1ð~LÞ ¼ exp � 2
π

Z na

~L

~gðLÞ dLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 � ~L

2
p

 !
ð14Þ

This formula enables us to find the refractive index profile n1(r)
in the upper waveguide, in exactly the same manner as described
below Eq. (10). Due to obvious symmetries in the problem for-
mulation, a similar result can be obtained for a homogeneous
index in the upper waveguide.

Geodesic lenses. The above theory can also be applied to design
double-layer geodesic lenses that are considered in a cylindrical
coordinate system (ρ, ϕ, z). To find the geodesic lens shape that is
equivalent to an inhomogeneous index profile, we equate the
optical length element dl in the inhomogeneous profile to the
physical distance on a deformed surface of variable height z(ρ)

dl2 ¼ n2ðrÞ dr2 þ r2dϕ2
� � ¼ 1þ dz

dρ

� �2
 !

dρ2 þ ρ2dϕ2 ð15Þ

where the radial coordinate is r in the inhomogeneous
profile, and ρ on the shaped surface. This equivalence leads us to

identify ρ(r)= n(r)r and d logðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðdz=dρÞ2

q
d logðρÞ ¼

s0ðρÞ d logðρÞ, where s(ρ) is the length on the deformed surface
from the origin to the radius ρ.

Considering the first case of equal background indices in the
two waveguides, the integral Eq. (4) becomesZ R

L

L s01ðρÞdρ
ρ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 � L2

p þ
Z R

L

L s02ðρÞ dρ
ρ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 � L2

p ¼ gðLÞ ð16Þ

where R= na is the maximum radius of the geodesic lens, and

s0ðρÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðdz1;2=dρÞ2

q
represents the radial differential s0ðρÞ ¼

ds=dρ of the distance along the upper and lower geodesic surface,
respectively, defined with reference to the rotational axis. This
equation can be inverted using the same integral transform as (7),

s01ðρÞ þ s02ðρÞ ¼ � 2ρ
π

∂

∂ρ

Z R

ρ

gðLÞ dLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 � ρ2

p : ð17Þ

Again there is a freedom in designing the upper and lower
geodesic shapes, and we can, for instance, add any ρ dependent
function to s01, if the same function is also subtracted from s0. To
constrain the problem we can write e.g., s02ðρÞ ¼ f ðρÞs01ðρÞ, where
f(ρ) is a monotonic function. However, we do not consider this
case further here.

For the second case of interest, where the index profile in the
lower waveguide is homogeneous and the lens shape is flat, Eq.
(12) is equivalent to Z R

L

Ls01ðρÞ dρ
ρ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 � L2

p ¼ ~gðLÞ ð18Þ

which can again be inverted to give the differential of the distance
on the surface

s01ðρÞ ¼ � 2ρ
π

∂

∂ρ

Z R

ρ

~gðLÞ dLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 � ρ2

p : ð19Þ

Substituting Eq. (13) into this integral and following a similar
procedure as in6, we can write

s01ðρÞ ¼ Aþ Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðρ=naÞ2

q ð20Þ

where

A ¼ 1
2
� 1

π

�
arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2a � ρ2

n2ar
2
s � ρ2

s
þ arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2a � ρ2

n2br
2
i � ρ2

s

þ arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2a � ρ2

n2b � ρ2

s � ð21Þ

B ¼ M � 1
2
þ 1

π
arcsin

1
rs
þ arcsin

na
nbri

þ arcsin
na
nb

� �
: ð22Þ

We have written Δϕ= (M+ 1)π in Eq. (13), in analogy with
the notation of6. In both cases (17) and (19), we can find the

shape of the lens from the relation s0ðρÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðdz=dρÞ2

q
, first

deriving the slope of the geodesic lens at all radii in terms of the
half turning angle, and then integrating this to get the surface
height z(ρ).

Although in general z(ρ) cannot be analytically computed, the
closed-form solution of s1(ρ) can be obtained for the case where the
lower waveguide is flat and has a homogeneous refractive index.
Integrating Eq. (20) over ρ, the general solution of s1(ρ) is explicitly
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expressed as

s1ðρÞ ¼Aρþ naB arcsin
ρ

na
� 1

π

�
nars arcsin ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2s � 1

n2ar
2
s � ρ2

s !

þ nbri arcsin
ρ

na

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2br

2
i � n2a

n2br
2
i � ρ2

s !
þ nb arcsin

ρ

na

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2b � n2a
n2b � ρ2

s !

� na

ffiffiffiffiffiffiffiffiffiffiffiffi
r2s � 1

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2br

2
i � n2a

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2b � n2a

q	 

arcsin

ρ

na

�
ð23Þ

where 1 ≤na ≤ nb, and rs,i is normalized to R= na. From Eq. (23), we
find that the homogeneous medium provides a degree of freedom
that enables some interesting functionalities. For instance, if na < nb
the profile can be designed as a ‘magnifying lens’42 that enhances the
power density in the lower waveguide filled by index nb. Also, the
image point can be placed inside the lens rim as long as ri ≥ na/nb.
Note that when na= nb= 1 and rs,i= 1 or ∞, Eq. (23) reduces to
s1ðρÞ ¼ Aρþ B arcsin ρ, which is detailed in the following sections.

Examples. We now give some simple double-layer lenses with
homogeneous lower waveguide. To ease the discussion we set the
refractive indices of the upper and lower waveguides to unity
na= nb= 1 in all cases, and assume foci that are either at infinity,
or on the edge of the lens (r= 1).

In the simplest case, we take both foci at infinity rs= ri=∞,
such that half the turning angle of the lens (13) takes the form

~gðLÞ ¼ 1
2

Δϕ� π
� � ¼ Mπ

2
ð24Þ

which is independent of the angular momentum L.
Substituting this function into our expression for the turning

point (14) we find the turning point rt1 as a function of the
angular momentum

rt1ð~LÞ ¼
~L
M

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~L

2
p	 
M ð25Þ

By carrying out the same integral in (19), we can also find the
shape of the equivalent geodesic lens

s0ðρÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ dz

dρ

� �2
s

¼ Mffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρ2

p ð26Þ

which implies that sðρÞ ¼ M arcsinðρÞ. This result can also be
directly obtained from Eqs. (20), (23) with A= 0, B=M by
applying rs= ri=∞ to Eqs. (21), (22). Substituting ~L ¼ nðrt1Þrt1
into (26) and solving for n(r), and integrating (26) to find the
surface height z(ρ), we find the following index profiles and
surface heights for double-layer lenses with foci at infinity

nðrÞ ¼ 2

r r
1
M þ r�

1
M

� � zðρÞ ¼ �
Z ρ

0
d~ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2 � 1Þ þ ~ρ2

1� ~ρ2

s
ð27Þ

Interestingly the index profile (2), and equivalent geodesic shape
(27) resemble those of the generalized Maxwell fish eye lens43. Note
that only for M ≥ 1 is z(ρ) a real-valued function of ρ, which can be
realized as a geodesic lens. This condition also ensures that the index
(27) is greater than unity. The generalized fish eye profile can
therefore be used either as a ordinary, or double-layer lens, with
different functionality. In particular, as a double-layer lens the
Maxwell Fish Eye profile (M= 1) (as a geodesic lens, this is a
hemisphere zðρÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρ2

p
� 1) has foci at infinity, with the rays

turning once around the origin, Δϕ= 2π. We denote this lens as a
double-layer ‘invisible’ lens with the idea that the functionality is

‘folded’ in the case of the double-layer configuration (see Table 1 and
Section 2.1 for our naming convention). This lens has the equivalent
effect to an Eaton lens, but without the need of infinity or a sharp tip
in the lens center. In Fig. 2 we show ray propagation for four of the
profiles (2), the integration of the eikonal equation and plotting of
the ray trajectories was carried out using the Python SciPy44,
Numpy45, and Matplotlib46 libraries.

If one focus lies on the rim of the lens rs= 1, and the other at
infinity ri=∞ we have a double-layer lens with a function of an
ordinary Luneburg lens or beam divider, depending on the value
of Δϕ. In this case, the half turning angle (13) takes the form

~gðLÞ ¼ 1
2
Mπ þ arcsin Lð Þ½ �: ð28Þ

Inserting this expression in (14) and carrying out the integral
over L, the corresponding expression for the turning point as a
function of ~L is

rt1ð~LÞ ¼
~L
M

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~L

2
p	 
Mþ1=2 ð29Þ

Substituting ~L ¼ nðrt1Þrt1 into (29) we obtain an implicit equation
for the refractive index as a function of radius

n2α�2r2β�2 � 2nα�2rβ�2 þ 1 ¼ 0 ð30Þ
where α=M/(M+ 1/2) and β= (M− 1)/(M+ 1/2). Examples of
the numerical solution to this equation are shown in the density
plots within Fig. (3). We can also find the shape of the equivalent
geodesic lens sðρÞ ¼ ðM þ 1=2Þ arcsinðρÞ � ρ=2: Again, this can be
treated as a special case of the general solution in Eq. (23), thus
obtained by letting rs= 1, ri=∞ in Eqs. (21), (22). In general, we
must numerically evaluate the refractive index (30) and the surface
height. However, in the special case of M= 1, the implicit Eq. (30)
reduces to a quadratic equation n−4/3− n−2/3/2− r2/2= 0 in n−2/3,
which has the solution (taking the root where n= 1 at r= 1)

nðrÞ ¼ 8

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8r2

p� �3
2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8r2

p � 1
� �3

2

ð2r2Þ32
: ð31Þ

This index profile is in agreement with that given in36, where
they studied the special case of the ‘reflective’ (here ‘double-layer’)
Luneburg lens. In Fig. 3 we give the ray trajectories in several
example profiles including this double-layer Luneburg lens. In all
cases where M is integer, the rays are converted from the
diverging point source in the upper waveguide, to a single
collimated beam in the lower guide. Meanwhile, when M is
non–integer the point source is divided into two beams at a
relative angle of 2Mπ.

As a final example, we consider a class of index profiles where
both foci lie on the rim of the lens rs= ri= 1. As a single-layer
problem, the solution would be the generalized Maxwell Fish Eye
lens. However as we have already seen, the generalized Maxwell
Fish Eye acts as a double-layer lens with foci at infinity. In this
case, the half turning angle equals

gðLÞ ¼ 1
2
Mπ þ 2 arcsin Lð Þ½ � ð32Þ

which compared to (28), only differs by a factor of two in front of
the arcsin function. We can therefore straightforwardly find the
turning point and the surface shape as before

rt1ð~LÞ ¼
~L
M

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~L

2
p	 
Mþ1 ð33Þ

which in the same manner as the previous case, yields the same
implicit equation for the refractive index (30), but with the
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modified powers α=M/(M+ 1) and β= (M− 1)/(M+ 1).
Example refractive index profiles are shown as density plots in
Fig. 4. The equivalent geodesic lens can also be found as
sðρÞ ¼ ðM þ 1Þ arcsinðρÞ � ρ, which is a special case of Eq. (23)

with rs= ri= 1 in Eqs. (21), (22). Again, the general index profiles
and surface heights must be obtained numerically. However, for
the particular case of M= 2 the implicit Eq. (30) reduces to a
quadratic equation n−4/3− n−2/3r1/3/2− r5/3/2= 0 and we can

a

dc

b M = 1/2M = 1/4

M = 1 M = 3/2

y

x
-1

0

1
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1
n(r)
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Fig. 2 Double-layer lenses with foci at infinity. The Generalized Maxwell Fish Eye profile can be used as a double-layer lens, with one homogeneous layer
and foci at infinity. We show four examples, with ray turning angle Δϕ of π plus a π/4; b π/2; c π; and d 3π/2. WhenM is an odd integer, the lens provides
the functionality of an ordinary Eaton lens; whenM is an even integer, it acts as an invisible lens where the rays travel in loops in the lens. Note that in Fig. 2
and the following figures the mirror coupling into lower waveguide is indicated as a red solid line, and the color of the rays (blue/green) indicates in which
waveguide the propagation occurs (upper inhomogeneous index/lower homogeneous index).
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Fig. 3 Double-layer lenses with one focus at r= 1. From an initial point source at rs= 1, ϕ= π (blue dot) we trace the ray motion through the profiles
defined through the implicit Eq. (30) for different values of M. To aid visualization we plot the rays launched in the+y direction as dashed lines, and those
launched in the −y direction as solid lines. We give four examples, where the turning angle Δϕ is π plus a π/4; b 3π/4; c π; and d 2π. WhenM is integer, the
double-layer lens has the functionality of a ordinary (for even numbers) and double-layer (for odd numbers) Luneburg lens, otherwise, it acts as a beam
splitter fed by a point source.
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solve for the index profile analytically (taking the root where
n= 1 at r= 1)

nðrÞ ¼ 8

r1=2 1þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8r

p� �3=2 : ð34Þ

This profile has a square root singularity at r= 0 (the same
strength of singularity as an ordinary Eaton lens), and is such that
rays originating from a point source on the rim of the lens loop
once around the origin before reflecting from the mirror to focus on
the opposite side of the lens to the source. Propagation through this
lens is shown in the final panel of Fig. 4. The examples of geodesic
lenses are demonstrated in Supplementary Fig. 1.

Comparison between double-layer and single-layer lenses. We
now compare the above special cases of Eq. (6) to the discussion
given in ref. 6, where the equivalent general single-layer problem,
referring here to the ordinary generalized Luneburg lens problem
without mirror, is discussed for the case na= nb= 1. In that work

the half turning angle is

gðLÞ ¼ 1
2

Δϕþ arcsin
L
rs

� �
þ arcsin

L
ri

� �
� 2 arcsinðLÞ

� �
ð�Sarbort and Tyc ½6�Þ:

ð35Þ

There is an extra factor of π in our Eq. 13, i.e., Δϕ→ Δϕ− π,
and the term �2 arcsinðLÞ in (35) is absent from our expression.
Both of these differences arise from the reversal of the ray at the
mirror, which leads to an extra π change in angle even in the
absence of the refractive index profile.

Comparing Eq. (35) and Eq. (13) we can also understand the
origin of the results. The generalized Fish Eye lens was observed
to act as a retro-reflective lens with foci at infinity. Setting
rs= ri= 1, Eq. (35) reduces to g(L)= Δϕ/2. This expression is
identical to our form of ~gðLÞ when rs= ri=∞ in Eq. (6)
(na= nb= 1), with the understanding that Δϕ→ Δϕ− π.

To further aid comparison between single-layer and double-
layer problems, we summarize our double-layer lens designs with
one homogeneous layer in Table 1, where we also reproduce the

Fig. 4 Double-layer lenses with both foci r= 1. From an initial point source at rs= 1, ϕ= π we trace the ray motion through the profiles defined through the
implicit Eq. (30). To aid visualization we plot the rays launched in the +y direction as dashed lines, and those launched in the−y direction as solid lines. We
give four examples, where the turning angle Δϕ is π plus a π/2; b 3π/4; c π; and d 3π/2. When M is integer, the lens has the functionality of a ordinary (for
even numbers) or double-layer (for odd numbers) Maxwell Fish Eye lens, while otherwise, it acts as a Generalized Fish Eye, where two foci appear on
the rim.

Table 1 Comparison between double-layer and single-layer lenses.

Single-layer Lens rs ri A B M Double-layer lens rs ri A B M

MFE 1 1 0 1 1 DL-MFE 1 1 −1 2 1
Generalized MFE 1 1 0 M M DL-generalized MFE 1 1 −1 M+ 1 M
Luneburg 1 ∞ 1/2 1/2 1 DL-Luneburg 1 ∞ −1/2 3/2 1
Beam divider 1 ∞ 1/2 M− 1/2 M DL-beam divider 1 ∞ −1/2 M+ 1/2 M
Plane ∞ ∞ 1 0 1
90∘ rot. ∞ ∞ 1 1/2 3/2 DL-90∘ rot. ∞ ∞ 0 3/2 3/2
Eaton ∞ ∞ 1 1 2
Invisible ∞ ∞ 1 2 3 DL-‘invisible’ ∞ ∞ 0 1 1
Beam divider ∞ ∞ 1 M− 1 M DL-beam divider ∞ ∞ 0 M M

On the left, we list the lenses of ref. 6, with Δϕ=Mπ, and geodesic lens shape sðρÞ ¼ Aρþ B arcsinðρÞ. On the right, we list our double-layer lenses where Δϕ− π=Mπ (the general form of our
expression for s(ρ) is the same).
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analogous table of ref. 6. We name the lenses found here using the
values of M, rs, and, ri, i.e., the focal positions and the turning
angle of the lens, accounting for the extra π ray rotation due to
the mirror. With this naming convention, the double-layer lenses
provide the same functionality as a ‘folded’ lens of the same name.
For example, the double-layer Luneburg lens has the source rs= 1
and image ri=∞ on the same side of the lens, while an ordinary
or single-layer Luneburg lens has the source and image on
opposite sides of the lens. As a consequence, the outgoing rays are
rotated by π compared to the usual single-layer Luneburg lens. As
a general rule we see that to obtain a double-layer lens with the
same function as a single-layer one, we must peform the
substitution A→ A− 1, and B→ B+ 1.

Geodesic double-layer lens antenna. To link the previous find-
ings to practical applications, we provide an example of an
antenna design at 26–32 GHz based on the concept of the geo-
desic double-layer lens. In comparison to the conventional
Luneburg lens antenna, our design features a more compact
footprint beneficial for integration, while preserving its func-
tionality and performance. The unique double-layer geometry
makes possible the separation of the beamforming and the
radiating layers by ‘folding’ the functionality of its conventional
single-layer counterpart.

Although not demonstrated in this work, the standalone
radiating layer permits the accommodation of an overlaying
radiation aperture such as the one in39 that produces ‘pencil’
beams in elevation. This way, the double-layer lens can exploit the
area of its 2D footprint as the radiation aperture, fundamentally
different to the Luneburg lens that radiates from its 1D periphery.
Meanwhile, the beam scanning operation is the same as that of
Luneburg lenses, i.e., by switching the feeding locations along a
focal rim or mechanically steering the feed along that same
focal rim.

Since the rays in a double-layer lens sweep over an additional
angle π, a larger refractive index is needed. The implementation
of such index typically requires the use of dielectrics that

inevitably introduce higher losses in the millimeter-wave band
considered here. Alternatively, a fully-metallic structure can be
implemented using the geodesic lens at an expense of a higher
profile.

The height of the lens can be reduced by ‘folding’24, or more
generally, ‘modulating’27 its profile curve z(ρ). As long as the
initial and the modified surfaces have the same variation of
meridian length s versus ρ (i.e., s(ρ) in both cases are the same),
their rotational symmetry ensures that they have the same square
of the variation, hence the same geodesics, namely, that they are
equivalent to each other.

Another technique to decrease the height of the lens is to
shorten the lengths of its geodesics while sustaining its
functionality. This is achieved by cutting off the upper part of
the surface above z0= z(ρ0), with (ρ= ρ0, ϕ, z= z0) being the
contour coinciding with the cusp of the caustic formed by the
rays on the lens surface. An illustration of this operation is
exemplified in Fig. 5a by the double-layer ‘invisible’ lens
presented in Fig. 2c (also Supplementary Fig. 1a). Then the rays
launched from a point source at (ρ0, ϕ, z0) follow similar geodesics
as the original ones in the remainder of the lens, as depicted in
Fig. 5b. Since the feeding is placed at a focal region rather than a
perfect focal point, the truncated lens inherently possesses
aberrations causing uncollimated rays close to the aperture edges.
As mentioned in Section 1, while the pillbox antenna34 based on a
planar circular reflector is subject to spherical aberrations, the
double-layer lens produces a sharp image with no aberrations.
Here, the truncated lens can be seen as a design trade-off between
its focusing performance and profile height, providing fairly
acceptable aberrations (as demonstrated later) with a moderate
profile height. Generally, this truncating technique is applicable
to reducing the maximum index/height of the generalized double-
layer index/geodesic profiles listed in Table 1 as long as there
is a cusped caustic in the lens. One example of its application
to a graded-index lens based on a bed-of-nails structure is
proposed in36.

To further reduce the lens height, we combine both techniques,
i.e., the lens truncation followed by a folding operation as

a b

Cusp of 
caustic 

ρ0

Truncate
(ρ0, z0)

Fig. 5 Truncation of lens. a Ray trajectories and caustic (top view), b truncated double-layer `invisible' lens. The present example is with the dimensional
parameters ρ0= 0.75 and z0≈ 0.66.

a b

Initial profile

Truncated

Fold

z(ρ) = h0(1 - ρp)1/q

(ρ0, z0)

z0/2
z0 = z(ρ0) 

h0

Fig. 6 Folding of truncated lens. a Evolution of lens profiles from the original version to a truncated and folded one, b 1-fold truncated double-layer
`invisible' lens. The present example is with the dimensional parameters h0 = 1, p = q = 2, ρ0 = 0.75, and final profile height z0/2 ≈ 0.33.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-29587-9

8 NATURE COMMUNICATIONS |         (2022) 13:2354 | https://doi.org/10.1038/s41467-022-29587-9 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


illustrated by Fig. 6a. Here, the folding of the truncated surface is
performed with respect to the symmetry plane z= z0/2, leading to
a 1-fold truncated double-layer (1F-TDL) lens with height z0/2
and the feeding positioned at its inner periphery (ρ= ρ0, ϕ, z= 0).
Apparently, an N-fold lens with height z0/2N can be obtained if a
lower profile is required. Although the lens profile z(ρ) does not
usually have an analytical expression as remarked before, it can
be well approximated (with residual errors of an order of
magnitude 10−3) by a general superellipse (for M ≤ 1) following
the same formulation as in27

zðρÞ ¼ h0ð1� ρpÞ1=q ð36Þ

where h0 is the lens height normalized to radius R, and p, q
characterize the profile shape. Eq. (36) is later used as a general
formula to describe an optimized surface shape. For the 1F-
TDL ‘invisible’ lens with h0= 1 exemplified here, the final
profile height is roughly h0/3, reduced by a factor of 4 in
comparison to the double-layer Luneburg lens in Supplemen-
tary Fig. 1b with a height of 1.33 that provides a similar
functionality, i.e., collimating rays launched from a point source
at the lens rim. Since the geodesics remain the same before and
after the folding, the 1F-TDL lens in Fig. 6b behaves exactly the
same as the one in Fig. 5b. In addition to the height reduction,
the 1F-TDL lens is expected to have lower energy losses
in comparison to its complete version owing to the reduced
optical paths in the lens.

As illustrated in Fig. 7, we implement the proposed 1F-TDL lens
with a pair of curved conducting surfaces, referred to as a parallel
plate waveguide (PPW) in microwave engineering, that confines
the wave propagation along the geodesics. The functional hollow
cavity formed by the PPW is highlighted in Fig. 7a. The PPWworks
in a TEM mode that is crucial for the lens to operate over a wide
frequency bandwidth and, hence, the lens is frequency scalable. The
lens is fed by 11 rectangular waveguide ports that are uniformly
placed along its inner periphery, each one transitioned to a coaxial
port for ease of measurement, as indicated in Fig. 7b. On the
opposite side to the feeding, an exponential flare is added to the
other layer for smoothly transforming the guided wave constrained
in a narrow PPW into free-space radiation. Here, the PPW has a
constant height g= 2mm (smaller than quarter-wavelength)

everywhere in the lens except the two chamfers as annotated in
Fig. 7b. As mentioned in Section 1, the conical chamfer at the outer
rim of the lens acts as a reflector that collimates the rays in the top
layer between plates I and II. To mitigate the reflections, a flat
chamfer is introduced at the folding contour that creates a
discontinuity in the surface. The reflections associated with these
chamfers are found to be quite small and insensitive to the angle of
incidence, which is evidenced by the low scattering coefficients
measured at the testing ports as shown in Supplementary Fig. 2. To
account for the impacts that the feeding, flare, and chamfering have
on the radiation performance, the lens profile is optimized with the
parameters defined in Eq. (36). Thanks to the good initial values
obtained from the ray-tracing model, only a few iterations of phase-
only optimization were performed by full-wave simulation,
yielding the optimized dimensions h0= 1.23, p= 1.77, q= 2.28,
ρ0= 0.78. Finally, the antenna structure occupies a cylindrical
volume with diameter D= 200mm and height H= 40mm, sliced
into three pieces that are stacked with screws as shown in Fig. 7c.
The double-layer structure permits the feeding network to be
deployed along the inner focal rim in a plane different from the
radiating one. Therefore, it is enclosed by the overall volume of the
antenna, offering a more compact mechanical footprint area in
comparison to single-layer Luneburg lens antennas21,27,47, where
the feedings spread outwards from the outer rim in the same plane
as the radiating flare. This compactness may be advantageous for a
higher integration of the antenna system, enabling to fit electronic
components connected to the ports directly in the volume formed
by the antenna. Although a cylindrical symmetry is retained in this
design, it is clear that its functional footprint can be still reduced by
half by cutting it along the diameter in the y-axis and keeping only
the reflector side as in34.

In Fig. 8, we present the simulated surface current distributions
in the antenna produced by two different ports. For the central
beam in Fig. 8a, the uniform wavefront in the middle part of the
aperture confirms a similar performance as the complete lens, while
both edges are inefficiently illuminated due to the truncation that
causes aberrations. These aberrations generate uncollimated rays
from the edges of the reflector, also introducing slight interference
visible in the illuminated region. Figure 8b demonstrates that the
fields from an offset feeding behave similarly in the lens except that
they are perturbed by the spillover and shadowing effects due to a
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Fig. 7 Implemented antenna structure. a Perspective view of the functional hollow volume, b cross-sectional view, c isometric exploded view. The total
diameter of the antenna is D = 200 mm, and the total height is H = 40 mm. The dimensional parameters of the lens profile are h0 = 1.23, p = 1.77,
q = 2.28, ρ0 = 0.78, with lens radius R = 75 mm, and PPW height g = 2 mm.
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broken rotational symmetry. Nevertheless, these imperfections are
found to have minor impacts on the radiation performance, as
demonstrated next.

A prototype is manufactured by aluminum milling, and
measured in the far-field anechoic chamber with a spherical
coordinate system defined in Fig. 9a. The measured realized gain
patterns excited from three selected ports across the band are
given in Fig. 9b. A stable radiation performance is observed up to
Φ= ±50∘ for all sampled frequencies, with the gain, for instance
at 30 GHz, varying from 20 to 21.1 dBi, as shown in Supplemen-
tary Table 1. Although not explicitly shown, this measured gain
agrees well with the simulated (ANSYS HFSS) result varying
within 20.5–21.4 dBi at the same frequency, exhibiting very low
dissipation losses. The SLLs are all below−15 dB for the central
beams in the band, and rise to roughly−13 dB at Φ= 50∘ for port
2. For the omitted last beam at an extreme angle Φ= 62.5∘

generated by port 1, the gain drops to 18.5 dBi at 30 GHz, with
degraded SLLs of about−11 dB in the band. To fully demonstrate
the radiation performance, 2D contours of the measured gain for
beams excited by all ports are showcased in Fig. 9c. The antenna
offers ‘fan’-shaped beams in elevation that are directive and
steerable in the azimuth plane, providing space diversity along
one axis, of interest in terrestrial communication systems. These
type of beams are also of interest for radar and radiometric
airborne and spaceborne instruments. Furthermore, as mentioned
in the beginning of this section, the second layer of the proposed
antenna can be conveniently transformed into a planar radiating
aperture that fully leverages its footprint area to realize 2-D
pencil-beam switching with a low profile. This unique feature is
highly demanded by broad applications such as 6G and satellite
communications on the move (SOTM) user terminals.

Discussion
We proposed the concept of the double-layer lens that is com-
posed by a pair of rotational–symmetric profiles sharing a cir-
cumference partially bounded by a mirror. This mirror reflects
the wave from one layer to a second layer which provides an
extra degree of freedom for the lens design. We gave the general
solution of index profiles and geodesic shapes for a family of
such lenses by formulating a Luneburg-like inverse problem.
Some special cases of particular interest were exemplified and
closely examined, revealing the remarkable link between a
known single–layer profile and its double-layer counterpart.
This new family of lenses has a potential use for optical, ter-
ahertz, and microwave devices, including lens antennas and
quasi-optical systems for ground and satellite communications,
inter-satellite links, and radiometers and altimeters. As an
example, we propose a varied version of a double-layer geodesic
lens for prototyping a low-profile antenna at the Ka up-link band
of satellite communications. The experimental results demon-
strate a comparable performance as the canonical Luneburg lens
antenna with a more compact footprint area. Additionally, this
footprint area can be later utilized as a radiation aperture to
realize 2D scanning with highly-directive beams, an appealing
asset for broader applications enabled by the distinctive double-
layer geometry.

Methods
The GO analysis is based on the zero-wavelength approximation of wave propagation,
and it generally assumes that the medium properties and the wave field vary smoothly
on the scale of the wavelength so the field behaves locally as a plane wave. The
Maxwell equations, therefore, reduce to the eikonal equation that characterizes the
wave by rays. Without loss of generality, let us consider a time-harmonic EM wave
field in the source-free region of an isotropic medium. Its spatial component takes the

a

b

Fig. 8 Simulated (ANSYS HFSS) surface current distribution at 30 GHz. a Port 6, b Port 2.
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form UðrÞ ¼ uðrÞ expð�jk0SðrÞÞ, with S being the optical path (surface S ¼ const:
being the wavefront) and u ¼ ∑1

i¼0 ui=ðjk0Þi expressed as an asymptotic expansion in
inverse powers of jk0. Substituting U into the Helmholtz equation ½∇2 þ k20n

2�U ¼ 0
yields the eikonal equation ∣∇S∣2= n2, where two conditions have been imposed: (i)
the limit k0→∞ (equivalent to λ0→ 0) that gives u= u0, and (ii) ∇2u0=u0 � k20n

2

implying that the magnitude change of wave field is small in the order of the
wavelength. The eikonal equation itself suggests a slow variation of the medium index
and the wavefront. Accordingly, these conditions, though fulfilled in most applica-
tions with electrically large devices such as lenses and reflectors, limit the applicability
of the ray-based model. First, since only the first term of the expansion is retained
under the zero-wavelength condition, the ray-tracing analysis may be inadequate in
problems such as diffraction and interference, where the higher-order terms or those
with fractional powers dominate or lead to cumulative errors. The diffraction effects
become more prominent when the device is not significantly larger than the wave-
length. Second, the singularities in a medium such as poles and discontinuities that
induce abrupt changes of the wave field may lead to the breakdown of the model in
those positions. The laws of refraction and reflection in GO usually remain valid when
the discontinuity interface is smooth per wavelength, and they may lose force
otherwise. To extend GO to these exceptional situations, more general approxima-
tions must be adopted, such as the Kirchhoff’s diffraction model useful in evaluating
far-field patterns, and the WKB method which can be used to determine accurate
wave fields in our radially symmetric index profiles. The readers are referred to1,31,48

for more information.

Data availability
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