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Implicitly perturbed Hamiltonian as a class of
versatile and general-purpose molecular
representations for machine learning
Amin Alibakhshi 1✉ & Bernd Hartke 1

Unraveling challenging problems by machine learning has recently become a hot topic in

many scientific disciplines. For developing rigorous machine-learning models to study pro-

blems of interest in molecular sciences, translating molecular structures to quantitative

representations as suitable machine-learning inputs play a central role. Many different

molecular representations and the state-of-the-art ones, although efficient in studying

numerous molecular features, still are suboptimal in many challenging cases, as discussed in

the context of the present research. The main aim of the present study is to introduce the

Implicitly Perturbed Hamiltonian (ImPerHam) as a class of versatile representations for more

efficient machine learning of challenging problems in molecular sciences. ImPerHam repre-

sentations are defined as energy attributes of the molecular Hamiltonian, implicitly perturbed

by a number of hypothetic or real arbitrary solvents based on continuum solvation models.

We demonstrate the outstanding performance of machine-learning models based on

ImPerHam representations for three diverse and challenging cases of predicting inhibition of

the CYP450 enzyme, high precision, and transferrable evaluation of non-covalent interaction

energy of molecular systems, and accurately reproducing solvation free energies for large

benchmark sets.
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Employing machine learning for studying complicated sci-
entific challenges has recently become a widely accepted
approach in science. As a continuously growing field,

machine learning has become a promising tool in studying
many diverse areas in molecular sciences, ranging from major
topics in life science such as synthetic biology1, genomics2,
drug discovery3, and cell biology4, to major sub-fields of chem-
istry such as theoretical5, organic6, quantum7,8, polymer9, and
synthetic10 chemistry.

Despite this diversity in applications, at the heart of all
machine-learning approaches in molecular sciences is a reliance
on translating molecular structures to quantities understandable
by the machine-learning process. These quantities, which are
commonly known as molecular representations in computational
chemistry and molecular descriptors in cheminformatics, are
uniquely defined and are considered as molecular fingerprints.
With the molecular representations defined, the main role of
machine learning is then to learn the relationship between those
representations and the properties of interest.

The earliest example of employing molecular representations
for estimating materials properties, to our knowledge, is the
group contribution method proposed in the middle of the last
century11. This method considers a linear or non-linear depen-
dency between molecular properties and the functional groups
present in molecules. The success of this simply defined repre-
sentation in predicting many properties of chemicals for several
decades12–19 has motivated its employment for approximating
potential energies of molecular ensembles20–23, as one of the most
extensively studied and, at the same time, most challenging
applications of machine learning in theoretical and quantum
chemistry24,25. Nevertheless, achieving high accuracy in challen-
ging problems like prediction of interaction energy of molecular
systems typically requires more versatile molecular representa-
tions. To that end, a number of efficient representations have
been proposed and widely used in recent years, such as atom-
centered symmetry functions26, the bispectrum of the neighbor
density27, smooth overlap of atomic positions28, and the Cou-
lomb matrix29. The popularity of these representations mainly
stems from their remarkably fast and straightforward acquisition,
typically requiring only elementary calculations on the geome-
trical data of the molecules. An excellent review of the recent
progress in employing machine learning for evaluating potential
energy has been reported by Manzhos and Carrington30.

These more advanced representations, despite being more
efficient compared to elementary representations like functional
group numbers and types, still suffer from the limited utility in
studying many challenging and complicated problems of interest.

For machine-learning evaluation of conformational energies
via those representations, despite several decades of progress,
achieving quantum-chemical accuracy still has typically remained
limited to simple molecular systems consisting of very few atom
types26,31–35. As the other limitation, the application of machine-
learning models based on employing the commonly applied
representations is usually restricted only to the specific systems
for which they were developed. This makes it necessary to re-train
those machine-learning models for new systems, which is a highly
demanding task. Finally, the currently defined representations
mainly follow “non-physical” functional forms which result in
very limited extrapolation capabilities36.

For machine-learning evaluation of solvation free energy via
conventional representations, except reporting accurate and
promising results in very few recent studies37,38, for the majority
of the other works, the reported accuracies are beyond chemical
accuracy, as recently reviewed by us39. It demonstrates the
challenges of employing conventional representations for
machine-learned evaluation of the solvation-free energy.

All these issues imply the necessity and importance of devel-
oping novel and more efficient representations, capable of
addressing the above-mentioned shortcomings. For that purpose,
appropriate representations have to satisfy a number of pre-
requisites such as invariance with respect to translation or rota-
tion of the origin of the coordinate system, invariance to
permutation of atoms of the same element, and yielding a unique
or constant number of quantities independent of number and
type of atoms in the system35. Ideally, representations should also
allow transferability of machine-learning models to new systems,
generate a large number of quantities to enhance machine-
learning efficiency for diverse complicated properties of interest,
and be physically interpretable.

With all these considerations, the main aim of the present
study is to introduce the Implicitly Perturbed Hamiltonian
(ImPerHam) as a new class of molecular representations to fulfill
all the above-mentioned requirements.

The general idea behind ImPerHam originates from our
recently developed machine-learning model for the evaluation of
solvation free energy39. In that work, we employed machine
learning for a more rigorous integration of the continuum sol-
vation energy components. To that end, in addition to cavity
geometrical data, we also employed energy attributes of Hamil-
tonian perturbed by the implicitly defined solvent as inputs of
machine-learning models.

The outstanding efficiency of implicitly perturbed Hamiltonian
energy attributes in characterizing the highly challenging case of
solvation free energy reported in our recent study39 motivated us
to employ similar quantities computed not only for a single sol-
vent of interest but also for a diverse set of other implicitly
defined solvents and use them as molecular representations for
other purposes as well.

To clarify the general idea behind the ImPerHam representa-
tions, we discuss the evaluation of solvation free energy of
methane in water as an example. For that purpose, the conven-
tional approaches require computing energy attributes of the
methane Hamiltonian implicitly perturbed in water and inte-
grating them based on the conventional approaches in continuum
solvation models or via our recently proposed machine-learning
model39. Based on the new approach, however, we still employ
those energy attributes but computed for methane dissolved a
number of other arbitrary real or hypothetic solvents and use
them as molecular representations for methane.

An obvious advantage of ImPerHam representations stems
from the provided possibility of generating an unlimited number
of representations via an unlimited choice of solvents. More
importantly, the generated representations are actually thermo-
dynamic quantities attributed to energy and free energy. Con-
sidering that based on the foundations of thermodynamics, the
majority of system properties and thermodynamic quantities can
be expressed as functions of energy and free energy, the repre-
sentations based on these energy functions can be theoretically
related to most properties of interest. For this reason, ImPerHam
representations can be expected to perform better than the tra-
ditional representations mentioned above, which have less direct
and less clear-cut relations to the properties of interest. As
another direct result, although an unlimited number of solvents
can be defined and employed to generate ImPerHam repre-
sentations, as will be shown later in the present study, even very
few arbitrary but diversely defined solvents can yield efficient
machine-learning models for the diverse challenging problems
considered in the present study.

The ImPerHam representations can be generated and studied
using low-cost quantum-mechanical computations or classical
polarizable force fields, which allows fast evaluation of those
representations. Nevertheless, the computational cost of generating
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the ImPerHam representations can be somewhat higher than for
other conventional representations discussed earlier. Despite this
higher computational cost of computing ImPerHam representa-
tions, considering that the developed models based on them are
highly transferable and do not require demanding re-training for
new systems, we can still consider them an economic and rea-
sonable choice.

In the present study, we demonstrate the efficiency of the
machine-learning models based on ImPerHam representations in
studying three challenging and extensively required problems in
molecular sciences.

The first case study is the prediction of inhibition of a cyto-
chrome P450 (CYP450) enzyme by small molecules. Prediction of
CYP450 inhibition by potential drug candidates is a mandatory
consideration in drug discovery, due to the crucially important
role of these enzymes in metabolizing the majority of the drugs
currently found in the market40. Inhibition of CYP450 by
potential drugs can result in their accumulation in the body and
increase the risk of drug–drug interactions41. Mibefradil and
Cerivastatin are two examples of commercial drugs which have
previously retracted from the market for this reason42,43. On the
other hand, targeted inhibition of specific cytochromes has been
proposed as an effective treatment strategy, as has been demon-
strated for metastatic prostate tumors44. In the present study, we
develop machine-learning models to predict inhibition of
CYP450 1A2 as one of the important CYP450 members present
in the liver. The structure of human microsomal CYP450 1A2
obtained by Sansen et al.45 is depicted in Fig. 1.

In addition to inhibition of a CYP450 enzyme by machine-
learning, we also investigate the performance of ImPerHam
representations in the machine-learning evaluation of solvation
free energy as well as non-covalent interaction energy, bench-
marked for large datasets. These case studies are not only among
the most challenging problems in computational chemistry
but also are extensively required in a wide range of scientific
fields which makes them ideal for benchmarking the new
representations.

Results and discussion
Evaluation of CYP450 inhibition. By training SVM models via
3745 training samples provided by Novotarskyi et al.46, the pre-
dictability of inhibitor activity of 3740 test set molecules was
evaluated using the developed machine-learning models.
According to the results, the best prediction of inhibitor activity
for the training samples was observed for an SVM model that
employed 16 representations as model inputs. Via this model, the
inhibitor activity of test set compounds could be predicted with
79.6% accuracy which is very close to the MUE of 81.8% reported
for the same datasets and machine learning algorithm by Novo-
tarskyi et al.46. However, the models studied by Novotarskyi et al.
employed a much greater number of representations, ranging
from several hundred to roughly five thousand representations.
The higher dimension of the representations which simulta-
neously also results in more parameters for the studied model,
typically improves the flexibility of a model to learn complicated
mappings, as we demonstrated in a previous study39. Never-
theless, at the same time it can also reduce the extrapolation
capability of a model47.

Considering that our employed representations are generated
only for a few solvents, it is expected that for further extensions of
the number of solvents, a more accurate evaluation of CYP450
inhibition can be achievable.

Machine-learning approximation of non-covalent interaction
energies via ImPerHam representations. By employing the
GFN2-xTB semiempirical method to approximate relative ener-
gies of different conformers, we initially obtained an MUE of
22.164 kcal/mol and RMSE of 196.91 kcal/mol compared to the
CCSD(T) reference energies.

Despite this large MUE of the originally evaluated energies by
GFN2-xTB computations, a remarkable improvement in the
accuracy of predicted energies was achieved via the developed
machine-learning models based on different combinations of
ImPerHam representations. According to the results, the studied
machine-learning models could yield an MUE of 1.40 kcal/mol
and RMSE of 2.47 kcal/mol via a neural network model taking 38
ImPerHam representations as model inputs and 16 neurons in
the hidden layer. These results show an improvement in
originally computed energies based on the GFN2-xTB method
by one order of magnitude. A comparison of the reference
CCSD(T) configuration energies and the machine-learned and
GFN2-xTB computed ones are depicted in Fig. 2. As a further
illustration, for the three dimers with the greatest energy
variations between their conformers, the CCSD(T) energies are
compared with machine learning and GFN2-xTB evaluated
energies in different conformers in Fig. 3.

Machine-learning estimation of solvation free energies via
ImPerHam representations. Among the studied machine-
learning models for estimation of the solvation free energies,
the best result was obtained for a neural network with only 5
neurons in the hidden layer and 22 ImPerHam representations
and solvent dielectric constants as model inputs. For this model,
we obtained an MUE of 0.545 kcal/mol. Compared to the accu-
racy of the original ALPB, for which an MUE of 1.4 kcal/mol has
been reported48, our results show a substantial improvement by
almost a factor of three. Further comparison of the obtained
results with conventionally accepted continuum solvation models
is reported in Table 1. According to these results, the machine-
learning evaluation of the solvation free energy via ImPerHam
representations is significantly more accurate than SMD, PCM,
and CPCM as the most extensively applied continuum solvation
models, though obtained for a computational cost reduced by

 

Fig. 1 Structure of human microsomal CYP450 1A2 enzyme. Evaluating
the possibility of inhibiting this enzyme by drug candidates is one of the
early steps in drug design.
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several orders of magnitude (a few seconds compared to several
minutes to hours on a normal desktop PC). The distribution of
solvation free energies predicted via the newly proposed machine-
learning method and by the SMD solvation model, in comparison
to experimentally determined data, is depicted in Fig. 4.

Among the other solvation models reported in Table 1, only for
the commercially available COSMO-RS solvation model higher
accuracies have been reported. However, it should be noted that
the results reported here are presented only as proof of concept.
By trying more extensive sets of solvents, larger neural networks,
and more demanding training of neural network models to search
for the global minimum in the evaluated MUE, more accurate
results by the machine-learning models are expected to be
achievable.

Analysis of the performance of studied solvents and repre-
sentations. As discussed earlier, we considered the gas medium as
well as 9 solvents, which provided a diverse range of dielectric
constants and therefore different perturbations of the molecular
Hamiltonians. The resulting energy attributes were considered as
inputs for machine-learning models. The studied representations
were also a very limited subset of potential energy attributes that
could be defined and used as molecular representations. By
analysis of those developed models that were among the top 10%
of all studied models in terms of accuracy, we investigated the
performance of individual solvents and representations.

The percentage of presence of each one of the studied mediums
in the selected models with the highest accuracies is depicted in
Fig. 5.

As can be seen in Fig. 5, the most effective perturbing mediums
are not the same in different case studies. For example, while the
energy attributes perturbed by benzene are available in 96% and
92% of the most effective machine-learning models developed for
evaluating molecular energies and CYP450 inhibition, respec-
tively, they are present in only 30% of the models which are
effective in the estimation of solvation free energy. Additionally,
the unperturbed Hamiltonian energy attributes as well as those
obtained via perturbed Hamiltonian by ethyl acetate, water, and
octane, are the most efficient ones in all considered case studies.
The other interesting observation here is that all the studied
solvents are employed in at least one-third of the models.

The percentage of presence of considered energy attributes in
the selected models is reported in Table 2. Similar to the studied

solvents, here also these results show significant diversity in the
efficiency of various energy attributes depending on the
application. For example, while the representation with id equal
to 2 is present in 87.5% of the accurate models developed for
evaluation of molecular energies, it has not been employed in any
of the selected models for evaluation of solvation free energy or
inhibition of CYP450. Similarly, in all case studies, we can find
solvents or representations which are present in all of the selected
models. Therefore, studying a wider range of potential solvents or
representations gives both high flexibility of ImPerHam repre-
sentations in studying various problems and allows for achieving
higher accuracies.

As can be seen in Fig. 5, accurate prediction of solvation free
energy by machine-learning models can be achieved for a
significantly lower number of solvents. The potential reason for
that can be attributed to the fact that solvation-free energy mainly
depends on the dielectric constant of the solvent and the
geometrical shape of the solute molecules49. While the former is
already present in all machine-learning models as model input, as
discussed in the method section, the latter remains the same for
different solvents. For the same reason, all of the machine-
learning models that yield the best results for evaluation of
solvation free energy employ total Gibbs free energy and
cavitation Gibbs free energy as model inputs, as can be seen in
Table 2.

On the other hand, for the prediction of interaction energy, the
potential energy attributes, such as isotropic electrostatic energy
and the norm of the gradient vector, which is a measure of the
energy difference between the molecular structure under study
and the most stable conformation, are obviously the most
relevant representations to the interaction energy. Consequently,
these energy attributes are present in 100% of the machine-
learning models that yield the highest accuracies for the
evaluation of conformational energies. Additionally, unlike the
geometrical shapes required by the evaluation of solvation-free
energy, such energy attributes vary more significantly in different
solvents. As a result, the highest employment of all studied
solvents also is observed for this application.

For inhibition of the CYP450, as it is implied from the physics
of the problem, the free energy of solvation of drug candidates in
different solvents can determine the free energy of docking the
drugs to the active site of the enzyme50,51. To that end, the most
widely considered solvents are octanol and water, commonly

Fig. 2 Comparison of reference CCSD(T) and evaluated energies. A comparison of the reference energies with energies evaluated by machine learning
based on ImPerHam representations (a) and computed by GFN2-xTB method (b) shows that the machine learning-based method results in a remarkably
better agreement with the reference data.
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employed as octanol-water partition coefficient52–56. Very inter-
estingly, these two solvents are also present in all of the developed
machine-learning models with the highest efficiency in evaluating
the CYP450 inhibition. For the same reason, the energy attributes
which are most clearly related to the solvation free energy, such as
electric, cavitation, and hydrogen bonding components of the
solvation free energy, are present in 100% of the most effective
machine-learning models developed for this specific application.
From that perspective and considering that these energy

attributes construct the total solvation free energy, the represen-
tation encoding the total solvation free energy becomes
redundant and is not employed as extensively as its constituting
components.

To summarize, in the present study, we introduced ImPerHam
as highly versatile representations for describing molecular
systems and developing advanced machine-learning models.
The ImPerHam representations are various energy attributes
that are computed via molecular Hamiltonians in vacuum as well

Fig. 3 Comparison of reference CCSD(T) energies and predicted energies in different conformers. For three dimers (a), (b), and (c) which showed the
highest variability in energy range among conformers, employing machine learning and ImPerHam representations remarkably improves the agreement
between predicted and reference data.
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as in implicitly defined solvents. We demonstrated high efficiency
and accuracy of machine-learning models based on ImPerHam
representations in three diverse applications of predicting
CYP450 inhibition by candidate molecules, evaluating the
conformational energies in multi-atomic systems, and solvation
free energies of diverse solute-solvent mixtures. Our results have
shown the capability of ImPerHam representations in developing
transferable machine-learning models applicable to diverse
molecular systems.

Methods
Benchmark sets. To be able to make a reliable evaluation of the newly proposed
representations, we employed large benchmark sets commonly applied for each
studied application.

Accordingly, for studying the inhibition of the CYP450 enzyme we exploited
the benchmark set provided by Novotarskyi and co-workers for comparing
different machine-learning models proposed for the same purpose46. We used the
same compounds considered by them as training and test datasets to train and
validate our model, which included 3745 and 3740 samples, respectively. Note that
this benchmark data re-use implies that we have not done any molecule-protein
docking calculations ourselves, but instead employed machine learning based on
our ImPerHam representations to reproduce the inhibitor/non-inhibitor
classification contained in this benchmark set.

To benchmark our newly proposed representations in reproducing high-quality
molecular energies, we exploited CCSD(T) reference energies computed for
multiple configurations of 3525 dimers provided in the DES370K database57. To
reduce the computational cost of model development, we randomly selected
roughly half of the available dimers a priori, which yielded a dataset containing
1155 neutral, 390 positively charged, and 177 negatively charged dimers. From the
available conformers of each one of the selected dimers, five were selected for
developing the machine-learning models, linearly distributed between the highest
and lowest energy conformers.

Table 1 Comparison of the results of the new method with other models for solvation free energy prediction.

Method Source Nr. Samples Nr. Solvents Nr. Solutes Deviation
measure

Deviation (kcal/
mol)

Machine learning Present study 2493 91 435 MUE
RMSE

0.55
0.74

Machine learning Alibakhshi and Hartke39 2224 88 300 MUE
RMSE

0.24
0.37

Machine learning Vermeire and Green38 10145 291 1368 MUE
RMSE

0.21
0.44

Machine learning Weinreich et al.37 642 ― ― MUR
R

0.57
0.95

COSMO-RS Klamt and Diedenhofen68 2346 91 318 MUE
RMSE

0.42
0.70

SM12 Marenich et al.69 2403 91 352 MUE 0.55-0.67
DCOSMO-RS Klamt and Diedenhofen68 2346 91 318 MUE

RMSE
0.66
1.00

Feature Functional Theory Wang et. al.70 668 1 (water) 668 RMSE 1.05
kernel-based machine learning Rauer and Bereau71 355 1 (water) 355 MUE 1.06
atoms-in-molecules neural
network

Zubatyuk et.al.72 ― ― 414 MUE 1.1

Structure-Property Relationship Hutchinson and
Kobayashi73

― 1 (water) ― RMSE 1.65

SMD Present study 2493 91 435 MUE
RMSE

0.79
1.16

CPCM Present study 2493 91 435 MUE
RMSE

2.69
3.17

PCM Present study 2493 91 435 MUE
RMSE

2.91
3.39

Fig. 4 Comparison of predicted and reference solvation free energies. The solvation free energies predicted via ML (a) are in better agreement with the
reference data in comparison to the SMD method (b).
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For studying the predictability of solvation free energies, the efficiency of the
developed machine-learning models was benchmarked using the Minnesota
solvation database58 containing 2493 reference solvation free energy data for binary
mixtures of 435 solutes and 91 solvents.

Details of the studied samples and computed representations for each one are
provided as supplementary materials.

The accuracy of the developed models is reported as the mean unsigned error
(MUE) and root mean square error (RMSE) in kcal/mol, defined as

MUE ¼ 1
N
∑ yexpi � ypredi

�
�
�

�
�
�

� �

; ð1Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N
∑ yexpi � ypredi

� �2
� �

:

s

ð2Þ

Generating representations. We generated ImPerHam representations by per-
turbing the Hamiltonian via the analytical linearized Poisson-Boltzmann (ALPB)
solvation model48, as implemented in Grimme’s Semiempirical Extended Tight-
Binding Program Package59 (xTB). The quantum-mechanical computations were
carried out with the GFN2-xTB semiempirical method60, for fast and computa-
tionally inexpensive acquisition and reasonable estimation of the studied energy
attributes.

For each molecule in the vacuum state as well as in implicitly defined acetone,
acetonitrile, benzene, hexane, water, ether, ethyl acetate, 1-octanol, and phenol
solvents, the Hamiltonian energy attributes listed in Table 3, were computed with
original parameterizations as provided in xTB59. This constituted the initial pool of
representations.

These solvents were selected from a wider choice of available solvents
parameterized in xTB, with the intention to span a diverse range of dielectric
constants. Nevertheless, any real or hypothetic solvent with an arbitrary or actual
dielectric constant can also be used for this purpose, resulting in a wide range of
relevant representations and higher flexibility of the machine-learning models to
evaluate different quantities. This limited number of solvents was considered only
to present the approach and efficiency of the proposed representations and as proof
of concept.

For the computed Hamiltonians, the energy attributes reported in Table 3 were
considered as potentially relevant representations. Nevertheless, many other
relevant energy attributes can also be defined and employed for this purpose.

For the machine-learning models developed to approximate conformational
energies via ImPerHam representations, among the 5 selected configurations of
each individual dimer, the conformation with the lowest energy was considered as
the reference and its energy was set to zero. The energies of the other
conformations of the same dimer were also corrected accordingly. This merely is
the standard practice in most computational chemistry applications, to get away
from total energies (that are irrelevant in most cases, and also frequently method-
dependent). Here it focuses the machine-learning approach on the relevant relative
energies between conformers.

By the above-mentioned treatment of the CCSD(T) conformational energies,
the computed representations also were corrected the same way, i.e. the deviations
of computed representations for each conformer with respect to the one with the
lowest total energy were considered as the inputs to the machine-learning models.

For evaluation of solvation free energies, considering that the reference data
were defined as the difference between the free energies of two liquid and gas states,
we did not employ the same modification of energy and representations. However,
in addition to the computed ImPerHam representations, we also considered the

Fig. 5 Percentage of the presence of studied mediums in selected models for different considered applications. Perturbation of Hamiltonian by different
solvents might have different impacts on predictability depending on the property of interest.

Table 2 Percentage of the presence of studied energy attributes in selected models in different applications.

Representation ID Conformational energy Solvation free energy CYP450 inhibition

Total energy 87.50 15.38 25.45
Total free energy (without cavity and hydrogen bonding contributions) 87.50 0.00 0.00
HOMO-LUMO gap 16.67 61.54 71.82
HOMO orbital eigenvalue 79.17 84.62 71.82
LUMO orbital eigenvalue 79.17 38.46 100.00
SCC energy 75.00 46.15 0.00
Gibbs free energy (total) 93.75 100.00 57.27
Gibbs free energy (electric) 37.50 15.38 100.00
Gibbs free energy (cavitation) 100.00 100.00 100.00
Gibbs free energy (hydrogen bond) 45.83 92.31 100.00
Free energy shift for infinite dilution 16.67 0.00 0.00
Gradient norm 100.00 84.62 44.55
Isotropic electrostatic energy 100.00 15.38 46.36
Anisotropic exchange correlation 79.17 69.23 71.82
Isotropic exchange correlation 16.67 15.38 97.27
Dispersion energy 37.50 92.31 44.55
Repulsion energy 8.33 46.15 13.64
Atomization energy 79.17 100.00 0.00
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dielectric constant of solvents in each solute-solvent mixture as additional model
input, to characterize the specific solvent under study, similar to conventional
continuum solvation models and our recently developed machine-learning
model39.

To compare the accuracy of solvation free energies obtained by machine
learning with those obtained via conventional solvation models, we also computed
the solvation free energies via the widely accepted SMD61, PCM62, and CPCM63

continuum solvation models at the B3LYP/6-311+ g(2d,p) level of theory in
Gaussian 1664. To that end, the geometry of the solutes was first optimized and
then used for the computation of solvation free energy.

Developing machine-learning models. For more efficient and tractable training
of machine-learning models, we employed variable selection as a commonly used
approach in developing machine-learning models. To that end, the initial pool of
computed representations was screened employing the MRMR variable selection
algorithm65 to yield different sets of input variables containing 4 to 45
representations.

After computation and screening of the required representations based on the
above recipe, the machine-learning models taking those representations were set up
to study the applications of interest.

Considering that the inhibition of CYP450 enzyme by potential drug candidates
is a classification problem, i.e. the role of machine learning is only to classify the
studied molecules as inhibitor or non-inhibitor, we employed the Support-Vector-
Machine (SVM) classification66 as a rigorous machine-learning method developed
for this purpose. To that end and to be able to make a reliable comparison to the
large number of machine-learning models studied by Novotarskyi et al.46 for the
same purpose, we used the same training and test samples employed in that work.
Developing the SVM models was carried out by the fitcsvm module of Matlab67

with the default settings.
For evaluation of interaction energy and solvation free energy, we employed

artificial neural networks as a highly efficient machine-learning tool to map the
dependency between required quantities and the proposed representations. To that
end, training of the ANN models was carried out based on the guidelines provided
in our recent study47.

Accordingly, we assigned 60% of the dataset for training, 15% for validation and
25% for testing the machine-learning models. We only studied small neural
networks with one hidden layer and a very limited number of neurons. The upper
limit of the selected number of neurons was assigned to allow having roughly 10
training samples or more per ANN constant. In many neural network models,
much lower ratios of training samples to ANN constants are commonly employed,
which can result in much higher accuracies for the obtained results. However, this
may lead to reducing the extrapolation capability of the neural networks47.
Therefore, we only considered a limited number of neurons with the upper limit
discussed above. We initially tried 40 different dataset divisions and for each one
100 randomly assigned initial values for the ANN weight and bias constants. For
each model which in initial training yielded MUE lower than the best found results,
to verify that the good result is not due to overfitting, we took the optimized ANN
parameters as initial guesses and retrained those models under 100 different and
random divisions of the dataset into training, validation and test sets. For each one
of these replicas, we compared the MUE of the training and validation set by
standard t-test method and selected a model as reliably trained one if in at least

80% of all the replicasit resulted in no significant difference between the MUE of
the training and test sets at 95% of significance level 59.

For the machine-learning models developed to evaluate conformational
energies, training, validation, and test sets were assigned based on the individual
dimer types and not individual conformers, to avoid unreliable high-accuracy
results due to interpolation. In other words, if a dimer was assigned to a training,
validation, or test set, all its conformers were also assigned to the same set.

Data availability
All data produced in this study are available and can be provided by contacting the
corresponding author.

Code availability
The source file of the C++ code developed for implementing the proposed method with
detailed used instructions are available as supplementary material or can be provided by
contacting the corresponding author.
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