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Sources of confidence in value-based choice
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Confidence, the subjective estimate of decision quality, is a cognitive process necessary for

learning from mistakes and guiding future actions. The origins of confidence judgments

resulting from economic decisions remain unclear. We devise a task and computational

framework that allowed us to formally tease apart the impact of various sources of con-

fidence in value-based decisions, such as uncertainty emerging from encoding and decoding

operations, as well as the interplay between gaze-shift dynamics and attentional effort. In line

with canonical decision theories, trial-to-trial fluctuations in the precision of value encoding

impact economic choice consistency. However, this uncertainty has no influence on con-

fidence reports. Instead, confidence is associated with endogenous attentional effort towards

choice alternatives and down-stream noise in the comparison process. These findings provide

an explanation for confidence (miss)attributions in value-guided behaviour, suggesting

mechanistic influences of endogenous attentional states for guiding decisions and meta-

cognitive awareness of choice certainty.
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The ability to evaluate the quality of our own decisions in
the absence of immediate feedback is a fundamental aspect
of cognition, which can be used to revise decisions and

guide future behavior. This kind of subjective evaluation of choice
is known as confidence, which is particularly relevant in the
domain of economic decisions, where subjective evaluations of
choice can have far-reaching implications for the welfare of
individuals and social groups1–3. For instance, after finally
deciding on a dish in a restaurant, we might feel that it was
actually not the dish we wanted to eat, potentially leading us to
revise our meal choice4. Likewise, we may introspect decisions
about what house we opted to buy, or what financial investment
we have made. Despite its importance, little is known about the
mechanisms underlying confidence originating from subjective
value-based decisions.

Arguably, most of our knowledge regarding confidence
mechanisms originates from the domain of perceptual decision
making1,5–10. A potential reason is that, in purely perceptual
decision tasks, experimenters have full control of the objective
stream of evidence presented to the decision-maker, thus allowing
to examine how each objective ingredient of the input stimuli
affects the choice and the resulting confidence evaluation.

Normative approaches formulate that confidence reflects an
optimal estimate that the decision was correct11,12 and is a direct
transformation of evidence strength13–15. This rationale is parti-
cularly relevant to one of the central arguments that have sparked
research in the last years: whether confidence represents an
accurate index of decision uncertainty11,16,17. Interestingly, earlier
studies found that people indeed rely on the strength of evidence,
but do not directly consider the uncertainty on that evidence
when they make confidence reports18, nor do they necessarily use
the evidence available against their choice19,20. All these studies
aimed at dissecting the relationship between choice behavior and
its resulting confidence evaluations20–24. However, this has not
been formally studied in the domain of value-based choices.

A potential reason for this gap is that in the domain of value-
based choices neither the experimenter nor the decision-maker
has complete access to the subjective values of the alternatives
comprising a decision, where values are potentially sampled from
multiple attributes stored in memory25. This is critical, as an
interpretation of confidence from decisions that rely on
subjective-value estimations run the risk of being misattributed to
aspects of the choice process that are actually choice-irrelevant.
Therefore, it is important to establish whether processes that lead
to confidence reports in value-based choice overlap or differ from
those supporting simple perceptual decisions. Recent develop-
ments in the study of subjective valuation that more formally take
into consideration some of these limiting aspects might be pro-
mising approaches to elucidate the sources of confidence in value-
based choices26,27. For instance, using some of these develop-
ments it might be possible to investigate how post-decision
confidence reports are influenced by distinct sources of variability
in the decision process while taking into account the distribution
of individual preferences in a given environment or context.

Another key aspect to consider is that value-based choice tasks
usually entail two or more alternatives for choice situated at
different spatial locations of the visual field. That is, decision-
makers foveate—often repeatedly via changes in eye-fixation—to
one of the choice options at a time, thereby gathering evidence
from each alternative28. Seminal studies in the attention literature
clearly indicate substantial influences of reward value in biasing
attention with direct consequences on choice processes29–31.
Thus, an unresolved question is whether observers have the
capability to introspect about their endogenous attentional states
of the decision processes and whether these internal signals are
used to inform post-decision confidence reports.

We argue that these issues have been difficult to tackle given
the lack of mechanistic and formal models of decision behavior
capable of dissecting the different components of choice processes
that rely entirely on subjective value evaluations. Here, we address
these issues via a combination of a behavioral task with eye-
tracking and computational modeling, which allowed us to dissect
what aspects of the choice process are linked to post-decision
confidence reports. More specifically, we study whether con-
fidence reports emerge from sources of uncertainty emerging
during encoding and decoding operations of the choice alter-
natives, as well as how the interplay between gaze-shift dynamics,
attentional and cognitive effort influence metacognitive awareness
of choice certainty. Across two independent datasets, we find that
human participants incorporate knowledge of trial-to-trial fluc-
tuations in attentional effort in their confidence reports, thus
revealing that contrary to standard specifications28 attentional
effort is highly dynamic across trials and deeply influences both
choices and confidence. Further investigating the role of different
forms of noise in the decision process, we find that trial-to-trial
fluctuations in encoding noise do not influence confidence, while
down-stream comparison noise does.

Results
Experiment. We implemented a behavioral paradigm that allows
teasing apart distinct sources of variability in decisions based on
subjective values of the choice alternatives26. In the first part of
the experiment, participants (n= 33) were presented with single
food items and asked to indicate on a continuous rating scale
their desirability to consume the presented item at the end of the
experiment, (rating phase 1, Fig. 1a). Participants then rated the
same items a second time (rating phase 2, Methods). Crucially,
participants were not informed before rating phase 1 that a sec-
ond rating phase would take place. This was important as it
prevented participants from actively memorizing the location of
the rating in the slider in the first phase, thus providing us with
a more accurate measure of the variability in the value estimates.
This procedure allows us to study whether trial-to-trial fluctua-
tions in subjective value estimations are reflected on value coding/
decoding operations rather than just random noise, and how this
variability affects the quality of the decisions26. Crucially, this also
allows studying whether this source of variation is directly related
to post-decision confidence reports. To investigate this, the same
participants underwent a series of incentive-compatible choices in
which they selected from pairs of the previously rated food items
the one item they preferred to eat (Fig. 1a). Given that one of the
main goals of this study is to investigate the influence of visual
fixation dynamics and attentional effort on decision behavior and
confidence evaluations, we tracked the participant’s eyes while
performing incentive-compatible choices (Methods). Summary
statistics of the usage of the preference and confidence scale, as
well as summary statistics of visual fixations, are reported in
Supplementary Figs. 1 and 2.

Analyses and modeling roadmap. In the following, we will
present several analysis and modeling approaches, all with the
goal of elucidating the influence of different components of the
decision process on confidence reports. Here we briefly outline
the different modeling approaches adopted in this work.

In the first part, we perform a “model-free” analysis
investigating the influence of key decision variables on choice
and confidence reports, such as VD and total value (TV) of the
input alternatives, alongside the influence of value estimation
variability obtained from the rating phases. The impact of these
factors is separately studied in both choice consistency and
confidence reports. These analyses will provide initial hints about
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the degree of similarity with which these decision variables
impact choices and confidence.

In the second part, we study dynamical aspects of the decision
process on confidence reports by jointly incorporating choices,
reaction times (RTs), and fixation patterns. This will be formally
studied based on sequential sampling models which will allow
dissecting the influence of latent variables of the decision process
such as the degree of attentional effort and the decision evidence
gain on confidence reports.

In the third part, we implemented a modeling approach that
does not make use of RT information to investigate the influence
of the same latent variables studied in the second part. This
approach is appealing due to the following reasons: first, it is less
computationally demanding. Second, access to RT data is not
always possible in studies of perceptual and economic behavior.
Third, as we will show in the last part of this article, this approach
can be parsimoniously extended to formally incorporate the
statistics of the environment, which in turn allows disentangling
the influence of noise on confidence at different stages of the
decision process such as the value encoding and downstream
comparison processes.

Value variability, choices, and confidence. As commonly
adopted in studies of value-based choices26,28,32, here we define a
consistent choice as a trial in which the subject choses the item
they had assigned a higher average rating across the two previous
ratings. Using a multi-factor hierarchical logistic regression, we
found that choice consistency was influenced by the value dif-
ference (VD) between the two items’ prior ratings: the higher the
VD, the more consistent the choices (β= 0.28 ± 0.04, P < 0.001;
Fig. 1b), a result that is in line with previous work4,26,28,33–36.
Importantly, choice consistency also depended on the variability
in the value ratings: the higher the rating variability for the items
on a given trial, the less consistent the decision (β=−0.15 ± 0.05,
P= 0.002; Fig. 1b), a result that replicates our previous work26.
After controlling for VD and rating variability, we found that the
TV of the alternatives in each trial had no influence on choice
consistency (β= 8.7 × 10−3 ± 0.05, P= 0.43; Fig. 1b), a finding
that is generally consistent with previous work26,36. We tested
whether the null model (Choice ~ VD+Var; which in this case
excludes TV) is more credible than the full model (Choice ~
VD+Var+ TV) via the estimation of the Bayes Factor (BF01). In
this model comparison, we found BF01= 54, which indicates
“very strong” evidence37 for the absence of TV effects on choices.

A key aspect of this study is to test whether trial-to-trial
fluctuations in the estimation of reward value have an impact on
value-based decisions. Specifically, canonical theories of con-
fidence predict that these trial-to-trial fluctuations impact the
confidence reports because this variation directly affects evidence
for choice. Using a multi-factor regression we found, as expected,
that VD has an impact on confidence reports (β= 0.05 ± 0.01,
P < 0.001; Fig. 1b). However and surprisingly, trial-to-trial
fluctuations in the estimation of reward values had no impact
on confidence reports (β= 0.01 ± 0.02, P= 0.2; Fig. 1b). Again,
we tested whether the null model (Choice ~ VD+ TV; which in
this case excludes Var) is more credible than the full model
(Confidence ~ VD+Var+ TV). We found BF01= 450, which
indicates “very strong” evidence for the absence of rating
variability effects on confidence. Furthermore, we found a
significant difference in the effect sizes of the regressor capturing
trial-to-trial fluctuations of subjective valuation between the
choice and confidence models (ΔβEffectSize=−1.11 ± 0.48,
P= 0.01; Fig. 1c), indicating specificity of the effect on choice
consistency but not on confidence. Extending this trial-to-trial
effect of rating variability, we observed that each participant’s

Fig. 1 Experiment and regression analysis of choice consistency and
confidence. a Example display of the rating and choice task. Participants rated
their desirability to eat the displayed food item. Next participants were asked to
indicate which of the two food items they preferred to consume. After their
choice, participants were asked how confident they were about their decision.
b Standardized estimates of a multiple logistic regression on choice consistency
(green) show that higher value difference (VD) leads to more consistent
choices (β=0.28 ±0.04, P<0.001). Higher variability (Var) in the rating of the
two alternatives leads to less consistent choices (β=−0.15 ± 0.05, P=0.002).
The total value (TV) of the two items had no reliable influence on choice
consistency (β= 8.7 × 10−3 ± 0.05, P=0.43). Standardized estimates of a
multiple linear regression on confidence reports show that higher VD lead to
more confidence (β=0.05 ± 0.01, P<0.001). Crucially, higher variability in the
rating of the two alternatives does not have a reliable effect on confidence
(β=0.01 ± 0.02, P=0.2). Higher TV increases confidence (β=0.28 ± 0.06,
P<0.001). Error bars indicate the mean standard deviation of the posterior
estimates. c The difference of the effect size of the influence of variability on
choice consistency and confidence is significant with P<0.01. Vertical red
dashed line indicates the median, black vertical lines indicate the 95% highest
density interval. d Participant’s average level of variability in the rating task had
a negative influence on average choice consistency of that participant
(β=−0.58 ± 0.16, P<0.001, r=−0.53), however, this effect is not present for
the same analyses performed on confidence reports (β=−0.19 ± 0.18,
P=0.15, r=−0.22), P-values are based on the highest density interval of the
posterior estimates. Gray shaded areas indicate the 95% confidence bands. The
difference of the effect of average variability on choice consistency and
confidence ratings is significant (Δβcons−conf=−0.39 ±0.24, P=0.05).
e Confidence as a function of absolute value difference shows the qualitative
signatures of confidence reports guided by its statistical definition. Confidence
as a function reaction time shows signatures reported in previous work.
Confidence as a function of total value confirms the quantitative results
presented in panel (b). Data are presented as mean values ± SEM. For the
whole figure n= 33 independent participants. Source data are provided as a
Source Data file.
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average level of variability in the rating task had a negative
influence on average choice consistency of that participant
(β=−0.58 ± 0.16, P < 0.001, r=−0.53; Fig. 1d), and this effect
was once again not present for the same analyses performed on
confidence reports (β=−0.19 ± 0.18, P= 0.15, r=−0.22;
Fig. 1d). The difference of the effect of average variability on
choice consistency and confidence ratings is marginally signifi-
cant (Δβcons−conf=−0.39 ± 0.24, P= 0.049; Fig. 1d), however,
this effect becomes more pronounced when removing
two participants with outlying confidence rating behavior
(Δβcons−conf=−0.53 ± 0.25, P= 0.02; Fig. 1d and Supplementary
Figs. 1 and 3). Moreover, contrary to the findings in the choice
consistency logistic regression, our data reveal that TV has a large
positive impact on confidence reports (β= 0.28 ± 0.06, P < 0.001;
Fig. 1b). Once again, we found a significant difference in the effect
sizes of the regressor capturing trial-to-trial fluctuations of
subjective valuation between the choice consistency and con-
fidence models (ΔβEffectSize=−0.82 ± 0.35, P= 0.009), but this
time confirming the specificity of the TV effect on confidence but
not on choice consistency.

We investigated whether our data would still qualitatively capture
the canonical signatures of confidence16,38 despite these surprising
results (Fig. 1b–d). Indeed we found the often reported interaction
between evidence (absolute VD) and response accuracy where
confidence responses ramp up and down for consistent and
inconsistent decisions respectively (consistent: β= 0.056 ± 0.016,
P < 0.001, inconsistent: β=−0.056 ± 0.027, P= 0.017, interaction
evidence*consistency β= 1.11 ± 0.2, P < 0.001; Fig. 1e, left). More-
over, we also found that confidence was higher for faster RTs
(β=−0.37 ± 0.013, P < 0.001; Fig. 1e, center). In line with the
quantitative results in Fig. 1b, a qualitative inspection of the data
shows that TV had a positive influence on confidence reports
(Fig. 1e, right), which is not a direct prediction of the canonical
model of confidence given its relative lack of weight on choice
consistency, but it has previously been observed in value-based
decision studies4,32. Thus, while most of the canonical signatures of
confidence are qualitatively reflected in the data, our initial set of
quantitative analyses suggest that confidence is influenced by factors
other than uncertainty in the estimated input values for decision
making.

Generative dynamical models of confidence. In order to gain a
mechanistic understanding underlying these descriptive results,
we implemented a modeling approach allowing us to tease apart
the different components of the decision process and how these
are related to confidence reports. It has been shown that sub-
jective value reports can be directly used as input evidence in
dynamic accumulation models, which can successfully explain
both choices and RTs28,33,39,40. Moreover, related work in the
perceptual domain suggests that information of both RTs and
evidence strength provide relevant information about decision
confidence5,10. In addition, given that during value-based choices
decision-makers foveate—often repeatedly via changes in eye-
fixation—to one of the choice options at a time, the degree
of attentional effort during the decision process (formally
defined below) has a significant impact on decision-making
processes28,36,41.

In order to jointly account for these factors, here we make use
of a recent evidence accumulation model that takes into account
attentional effort and does an excellent job at explaining value-
based decisions while jointly considering RTs and fixation
patterns on a trial by trial basis: the Gaze-weighted Linear
Accumulator Model (GLAM)41. In this model, the effects of
attention are captured by parameter θ, which can be interpreted
as a cognitive process controlling the degree of effort the agent

exerts to keep the evidence for the non-fixated choice option in
working memory (henceforth, attentional effort). If θ= 0, the
agent completely ignores the evidence for the non-fixated choice
item. But if θ= 1 the agent exerts maximum effort and the two
choice alternatives are equally weighted. The resulting gaze-
weighted decision signals are then fed into a linear stochastic race
(see Methods for details). In typical applications, the attentional
effort θ is assumed to be agent-specific and a constant parameter
in a given experiment28,41. Instead, here we considered the
possibility that attentional effort fluctuates from trial to trial and
studied the potential impact of such fluctuations on confidence
reports. To this end, we considered two families of generative
models of confidence: (i) a heuristic model, and (ii) a
normative model.

The heuristic confidence model is based on the classic “balance
of evidence” approach42. In brief, this approach proposes that the
observer is conceived as accumulating successive differences
between momentarily registered noisy values of two alternatives i
and j. As soon as one of the total accumulated differences reaches
a decision bound B, the observer makes a decision in favor of the
winner alternative. A workable definition of confidence is based
on the “balance of evidence”, that is, based on the difference
between the total evidence of the two accumulators ei(t) and ej(t)
at decision time t. The closer the particle of the loser alternative is
to the decision bound, the lower the confidence of the
observer32,39. In this case, on any given trial confidence is simply
defined as

confidence ¼ B� eiðtÞ; ð1Þ
where B is the bound of the accumulator and ei(t) is the location
of the loser accumulator at decision time t (Fig. 2a; see Methods
for a more detailed explanation of the model). Interestingly, this
heuristic implicitly considers the influence of RT, given that
longer decision times imply a higher probability that the loser
accumulator is closer to the bound (Fig. 2a, b). While readouts of
confidence in this model are simple, it does not directly consider
the statistics of the environment and the decision process hence it
is labeled here as a heuristic model.

The normative confidence model is based on the statistical
definition of confidence5,11,16. In the case of our model
specification, it is assumed that the decision-maker estimates
the probability that the decision is correct by using the
information of the decision time and the location of the losing
accumulator, alongside the parameters of the decision process
and the contextual statistics of the task (see Methods). Given that
the experimenter has no access to the exact evidence of the losing
accumulator in each trial, the best estimation the experimenter
can assume is the expected evidence. In this case, one must gather
information about the statistics of the decision process, and
marginalize out the variables of no interest (see Fig. 2c; Methods).
In this case, confidence is defined as

p̂ðcorrect jC; t;ΩÞ ¼
Z
E
p̂ðcorrect j e!;C; t;ΩÞpð e!jC; t;ΩÞ de;

ð2Þ
where Ω are the set of parameters of the GLAM (including
attentional effort θ), e! are the evidence levels of the correct and
incorrect decision alternatives at the decision time t (thus e!
implicitly contains information of the bound B), and C is the
observed type of choice from the experimenter’s perspective
(correct or incorrect). The contextual association between the
probability of being correct and the dynamics of the choice
process is represented by p̂ð correct j e!;C; t;ΩÞ (see Eq. (12) in
Methods).
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A contribution of our work is that based on our model
specification, it is possible to generate predictions about how
attentional effort θ during the decision process influences
confidence reports. The two models (heuristic and normative)
generate qualitatively similar predictions (Fig. 2e and Supplemen-
tary Figs. 4–6), including the interesting result that the higher the
TV of the input alternatives, the higher confidence is, crucially after
controlling for other relevant factors (Fig. 2e). This prediction is in
line with our data (Fig. 1b, e) and recent work4,39. This result
emerges in the GLAM model based on the fact that under the
assumption that attentional effort is not always maximal, higher
input values amplify the relative difference of the choice
alternatives, furthermore higher input values result in faster RTs
and therefore higher confidence. Interestingly, we find that only the
normative model (and not the heuristic model) predicts that higher
attentional effort θ leads to higher confidence reports (Fig. 2d, e).
This prediction (alongside other slight qualitative differences
between the two models, Fig. 2e and Supplementary Figs. 4–6)
allows us to formally test whether confidence reports in our
experiments are more favored by the heuristic model32,39 or are
better explained by the statistical definition of confidence5,16.

Trial-to-trial fluctuations in attentional effort influence con-
fidence. Based on these model predictions, we hypothesized that
if participants use (or approximate) the statistical definition of
confidence, then they should not only consider information about
the strength of evidence and RT, but also attentional effort on a
trial-to-trial basis. That is, we studied the possibility that human
participants can introspect about how balanced (rational)—with
respect to both items—they were during the comparison process,
where high attentional effort (i.e., θ ≈ 1) should be related to high
confidence. Crucially, we also considered in both heuristic and
normative model specifications how fluctuations in the evidence
gain k (also known as drift rate, which is input value independent;
see methods) may affect confidence as it has been described in the
previous studies32.

In order to evaluate the predictive power of the above-
mentioned families of generative models and take potential trial-
to-trial fluctuations in the relevant decision model parameters
into account (both θ and k), we adopt the “joint modeling”
approach43 (Fig. 3a). This approach allows us to enforce
reciprocal statistical relationships between the confidence reports
and the parameters of the sequential sampling model by modeling

Fig. 2 Generative modeling of confidence: heuristic and normative. a Illustration of how confidence reports are generated by the decision-maker
according to the heuristic process: confidence is simply computed as the difference between the decision bound and the evidence of the losing accumulator
at the time of decision. b Confidence can be computed via the estimation of the expected evidence of the losing accumulator. c How the observer generates
confidence reports according to the normative model: confidence is generated by computing the probability that the decision is correct given the decision
time and the process model parameters. d Confidence predictions generated by the normative model as a function of RTs, evidence of the loser
accumulator, and attentional effort. e Linear regression analysis of confidence comparing the heuristic (blue) versus the normative (orange) model. The
results originate from two separate linear regressions, on the left Confidence ~ Correct (Cor)+VD+ TV+VD*Cor+ TV*Cor and on the right
Confidence ~ Cor+ θ+ RT+ θ*Cor+ θ*Cor*RT. We use two linear regressions to prevent problems with high correlations between explanatory variables
and to separate the input variables from the variables that are generated by the decision-maker. Bars indicate the mean of the standardized β values and
error bars the standard error, stars indicate significant difference from 0 with α= 0.05. Statistics are calculated using n= 33 independent participants.
Only the normative model predicts that confidence should be higher for higher values of attentional effort.
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these random variables simultaneously (Methods). Crucially, this
approach also can automatically evaluate the statistical depen-
dency between decision model parameters and confidence
through correlation parameters (Methods). In addition, one can
obtain approximate trial-to-trial readouts of the decision model
parameters43. Here, it is important to highlight that this method
is completely agnostic as to which mechanism generates the
confidence reports (this method allows evaluating potential co-
fluctuations between confidence and latent variables of the
decision model). Therefore, this approach allows us to use
information about the trial-to-trial readouts in the decision model
and plug these values into the heuristic and normative definitions
of confidence (Eqs. (1) and (2), respectively), thus allowing to
obtain predictions of confidence and formally compare the
predictive power of the two models (Fig. 3a).

First, we investigated which of the two models (heuristic or
normative) can better predict future confidence reports assuming
that attentional effort θ and evidence gain k have fixed values (i.e.,
no trial-to-trial fluctuations in the values of these parameters as it
is usually assumed in the literature28,41). While both models were
monotonically related to the confidence reports (βheuristic= 0.45
± 0.04, P < 0.001; βnorm= 0.53 ± 0.06, P < 0.001), we found over-
whelming evidence that the normative model provided more
reliable predictions of confidence via model comparison (BF≫
1000→∞; also confirmed via leave-one-out (LOO) cross-
validation metrics: ΔLOO= 29; Fig. 3c).

We then investigated whether models incorporating trial-to-
trial-fluctuations according to the “joint modeling” approach
provided more accurate predictions of confidence. We found
significant trial-to-trial co-fluctuations between confidence and

Fig. 3 Joint modeling, the covariance approach. a Graphical diagram for the joint model with the covariance approach. White circular nodes represent
latent variables, grey rectangular nodes represent observable variables. The variables θi, ki, and choices and reaction times feed into the generative models
of confidence. b Folke et al. performed similar experiments, with the key difference that the rating task is not repeated. Furthermore, subjects were asked
how much they were willing to pay for a certain food item using a standard incentive-compatible Becker–DeGroot–Marschak method. c Results from the
variable normative model and model comparison. Confidence is positively related to trial-to-trial fluctuations of attentional effort and evidence gain, shown
for three example subjects (for all subjects see Supplementary Figs. 7 and 8). The estimated density of correlation parameters for confidence and
attentional effort and for confidence and the evidence gain is bigger than zero. In both cases ρmcmc > 0 with P < 0.001. The vertical red dashed line indicates
the median, black lines indicate the 95% confidence interval. Loo model comparison of the fixed heuristic (FH), variable heuristic (VH), fixed normative
(FN), and variable normative (VN) model versions show that the VN model explains the data best. The Bayes Factor (BF) is calculated between the variable
normative model and all other models, for all comparisons we find an infinite BF in favor of the variable normative model. d The same as (c), but for the
Folke data. e The empirically found confidence levels as a function of (from left to right) value difference, reaction time, total value, attentional effort, and
the evidence gain, split for consistent and inconsistent choice. Data are presented as mean values ± SEM. g The same as in e, but for the predictions of the
variable normative model. f, h The same as in (d) and (e), but for the data of Folke et al. For the Brus et al. dataset n= 33 independent participants, for
Folke et al. n= 28 independent participants. Source data are provided as a Source Data file.
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attentional effort θ (ρ= 0.54 ± 0.08, P < 0.001; Fig. 3c) and also
between confidence and evidence gain k (ρ= 0.87 ± 0.10,
P < 0.001; Fig. 3c). Subsequently, we used inferred trial-to-trial
estimates of θ and k to generate confidence predictions (Fig. 3a,
Methods). Once again, we found that both models generate
confidence predictions that are monotonically and significantly
related to the empirical reports (βheuristic= 0.13 ± 0.04, P < 0.001;
βnorm= 0.61 ± 0.05, P < 0.001). But crucially, we found over-
whelming evidence that the normative model provided more
reliable predictions of confidence via model comparison (BF≫
1000→∞; also confirmed via LOO cross-validation metrics:
ΔLOO= 1260; Fig. 3c). Moreover, across the normative models,
we found that the confidence model incorporating trial-to-trial
fluctuations in attentional effort θ and evidence gain k provide
more reliable estimates of confidence reports than the models that
assume fixed parameters across trials (BF≫ 1000→∞ favoring
the normative model with trial-to-trial variability in θ and k
across all model comparisons, Fig. 3c). Going beyond these
quantitative analyses, importantly, we found that the qualitative
predictions of the normative model closely match the empirical
results (Fig. 3e, g; for completeness, we provide model predictions
of the remaining models in Supplementary Fig. 4).

To rule out that the results obtained are due to the specifics of
our design or cultural differences, we reanalyzed a value-based
decision-making dataset from previous work (Folke et al.4, Fig. 3b).
Their experimental design is similar to our value-based task, except
that participants performed only one round of ratings, and they
were asked to indicate their willingness to pay for a given item;
while in our task participants were asked to indicate how much they
wanted to consume the item at the end of the experiment.
Analyzing the data of this independent dataset, we fully replicate all
the key results of our data. Using the models with fixed θ and k
parameters, we found that both models are monotonically related to
the confidence reports (βheuristic= 0.51 ± 0.06, P < 0.001; βnorm=
0.82 ± 0.15, P < 0.001), and found overwhelming evidence that the
normative model provided more reliable predictions of confidence
via model comparison (BF≫ 1000→∞; also confirmed LOO
cross-validation metrics: ΔLOO= 333; Fig. 3d). Using the models
allowing trial-to-trial fluctuations in θ and k, we found significant
trial-to-trial co-fluctuations between confidence and attentional
effort θ (ρ= 0.47 ± 0.08, P < 0.001; Fig. 3d) and also between
confidence and gain parameter k (ρ= 0.70 ± 0.11, P < 0.001, see
Fig. 3d). Subsequently, we used inferred trial-to-trial estimates of θ
and k to generate confidence predictions. We found overwhelming
evidence that the normative model provided more reliable
predictions of confidence via model comparison (BF≫ 1000→∞;
also confirmed via LOO cross-validation metrics: ΔLOO= 1548;
Fig. 3d). Moreover, across the normative models, we found that the
confidence model incorporating trial-to-trial fluctuations in atten-
tional effort θ and evidence gain k provide more reliable estimates
of confidence reports than the models that assume fixed parameters
across trials (BF≫ 1000→∞ favoring the normative model with
trial-to-trial variability in θ and k across all model comparisons,
Fig. 3d). Once again, we found that the qualitative predictions of the
normative model closely match the empirical results (Fig. 3f, h; for
completeness, we provide model predictions of the remaining
models in Supplementary Fig. 5).

Taken together, these results strongly suggest that attentional
effort is not a fixed model parameter but fluctuates from trial to
trial (alongside the evidence gain) and human participants
incorporate this knowledge during their confidence reports as
predicted by the normative definition of confidence.

Using confidence to infer potential latent variable fluctuations
in static models. The results presented above show how it is

possible to capture trial-to-trial fluctuations in relevant latent
variables of a given sequential sampling model (the GLAM in our
case) based on the “joint modeling” approach, where both latent
variables and confidence reports are treated as random variables
(and not observed point estimates). However, this approach relies
on the estimation of covariance matrices that are computationally
demanding (in particular for models with hierarchical Bayesian
structures). Moreover, in some cases, access to reaction time data
and specification of dynamical models is not always possible in
some datasets and studies of psychology and economics (never-
theless, we emphasize that whenever possible, RT and decision
data should jointly be used as they provide complementary
information underlying decision processes44). Therefore, it might
be of interest to investigate whether confidence reports—used in
this case as observed (independent) variables—serve to infer
potential fluctuations in latent variables in static decision-making
models. We emphasize that in this case, it is not possible to
establish generative models of confidence, but the goal is to study
how observed confidence allows us to make inferences about the
decision-making process.

We start by implementing a simple random utility model
(RUM), which is a model that is widely used in the economics
literature, that was extended to incorporate attentional factors45

(Fig. 4a and Methods). Crucially, this extension allows for a
straightforward interpretation of parameter estimates with only a
fraction of the computational costs of commonplace attentional
sequential sampling models28,41 and the “joint modeling”
approach. Therefore, this allows us to flexibly compare a range
of model alternatives concerning factors such as attentional effort
and other sources of noise in more complex models as we
elaborate further below.

First, we studied whether attentional effort influences choices
in the RUM, as demonstrated in previous work using sequential
sampling models28. We find that participants discount the non-
attended item (θ= 0.68 ± 0.04; Fig. 4b), thus reproducing
previous reports and validating our model specification. Then,
we investigated whether post-decision confidence reports predict
trial-to-trial fluctuations of attentional effort θ and evidence gain
k. We find that trial-to-trial confidence reports are related to the
degree of attentional effort (βθ= 0.80 ± 0.06, P < 0.001; Fig. 4f),
and notably, attentional effort θ ranges over its full range from
low to high confidence (Fig. 4b). In the same model, the trial-to-
trial confidence is positively related to changes in evidence gain
(βk= 11.3 ± 3.8, P= 0.002; Fig. 4d, f). The significant impact of
confidence reports on these latent variables was confirmed by
effect sizes significantly larger than zero (effect size
βθ= 13.3 ± 2.0, P < 0.001, effect size βk= 2.95 ± 0.28, P < 0.001;
Fig. 4f). Qualitatively the model also captures the data well
(Fig. 4h). In addition, cross-validation metrics revealed that the
model that incorporates trial-to-trial fluctuations of θ and k as a
function of confidence explains the data more parsimoniously
compared to the standard RUM models (Supplementary Fig. 9).
This set of results mirror the ones obtained using the “joint
modeling” approach, thus validating the usefulness of using
confidence reports in order to reverse-engineer potential trial-to-
trial fluctuations in latent variables of static decision-making
models. For completeness, we applied the same inference
approach, but this time using an attentional drift-diffusion model
variant based on the RUM in order to further validate our results.
We found nearly identical qualitative and quantitative results to
those obtained using the static models (Supplementary Fig. 10).

Once again, in order to rule out that the results obtained are due
to the specifics of our design or cultural differences, we reanalyzed
the value-based decision-making dataset from previous work (Folke
et al.4). This independent dataset fully replicates our findings that
confidence reports are related to fluctuations in attentional effort
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(βθ= 0.80 ± 0.18, P < 0.001, effect size βθ= 2.04 ± 0.47, P < 0.001;
Fig. 4c, g) and the evidence gain (βk= 12.1 ± 1.7, P < 0.001, effect
size βk= 2.59 ± 0.36, P < 0.001; Fig. 4e, g), and can qualitatively
capture the data well (Fig. 4i). Furthermore, cross-validation metrics
revealed that the model that incorporates trial-to-trial fluctuations

of θ and k as a function of confidence explains the data more
parsimoniously compared to the standard RUM models (Supple-
mentary Fig. 9). Thus, these converging results ensure that they are
not a consequence of the specifics of our design or potential cultural
differences.

Fig. 4 The RUM decision model. a Sketch of the simple RUM decision model, color-coded to match the graphs. Observers infer the value of the food items by
looking back and forth between choice alternatives. The subsequent comparison process is noisy. We investigate how confidence ratings influence trial-to-trial
fluctuations of attentional factors and the evidence gain. b, d Comparison of parameter estimates of two alternative RUMs: a RUMwith agent-specific estimates
of k and θ and a RUM that allows for trial-to-trial fluctuations of k and θ. b) the median of the posterior estimate of θ of the agent-specific RUM is indicated by
the horizontal blue line, the shaded grey area indicates the 95% confidence interval. The diagonal blue lines represent 100 random samples of the posterior
distribution of how θ changes with confidence in the RUM allowing for trial-to-trial fluctuations. Remarkably, θ changes over its full range as a function of
confidence. d) the same as b, but for k. f Left: standardized posterior estimates of the relationship between confidence and k and θ. Error bars indicate the mean
posterior estimate of the standard deviation. Both βk and βθ are significantly bigger than zero with P < 0.001. Right: effect sizes of the results shown on the left.
Error bars indicate the standard deviation of the posterior estimates of the mean of the effect size. Both the effect sizes of βk and βθ are significantly bigger than
zero with P < 0.001. P-values are based on the highest density interval of the posterior estimates. h Left column: the empirical probabilities of choosing the upper
item; up: as a function of value difference; down: as a function of the difference in dwell time. Right column: the same as left but for the predicted probabilities of
choosing the upper item by the simple RUM. The trials are median split in high/low confidence. Value difference and dwell time difference are split into eight
groups of equal size. Data are presented as mean values ± SEM. c, e, g, i) Same as b, d, f, h, but for the data of Folke et al. For the Brus et al. dataset n= 33
independent participants, for Folke et al. n= 28 independent participants. Source data are provided as a Source Data file.
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Confidence reports are not related to trial-to-trial fluctuations
in reward value encoding. The models presented above depart
from the strong assumption that the experimenter has complete
knowledge of the input stimulus value v for each choice alter-
native, where v is taken from the rating task and directly fed
into decision models4,28,32–35. This strategy is warranted in
studies of perceptual decision-making where the experimenter
has full knowledge of the input values. However, this assump-
tion is not ideal in studies of subjective value-based decisions,
given that in this case, the experimenter has only limited access
to the “true” input values v used to guide decisions. We account
for this caveat by departing from the assumption that the
observer needs to derive an estimate v̂ of the items’ value v to
make the choice26,46,47. Note that this assumption acknowl-
edges the common belief of the brain acting as an inference
machine48, which is not strictly the case in standard specifica-
tions of value-based decision models. Thus, we extend the RUM
to model valuation as a probabilistic inference process

incorporating both encoding and decoding operations (efficient
coding model, methods). The advantage of using this approach
is that it allows taking into consideration: first, the statistics of
the environment (i.e., the prior distribution) of subjective
values for each individual; second, noisy encoding due to the
limited capacity of systems to process information26,27; third,
allows a parsimonious dissociation of noise at the encoding
stage from downstream noise in the comparison process; and
fourth, allows straight forward incorporation of information
about fixation patterns (i.e., attentional effort). The computa-
tional extensions we introduce permit studying how post-
decision confidence reports are related to each of these factors
independently within one unified framework (Fig. 5a). Here, it
is important to clarify that this model cannot be fitted to
experiments that do not include information about rating
variability (Methods). Therefore, this model cannot be fitted to
the data from Folke et al., and in this part of the results, we
restrict our analyses to our experimental data.

Fig. 5 The efficient coding model. a The decision process with three distinct process stages, color-coded to match the graphs. The prior matches the
distribution of subjective values v of supermarket products. When choosing between two items, subjects look repeatedly at them, spending unequal time
on the two options. The subjective values are internally encoded, the corresponding likelihood function pðv̂jvÞ is constrained by the prior p(v) via efficient
coding. Lastly, noise that occurs after the decoding is taken into account. b Standardized posterior estimates of the relationship between confidence and
variance in the encoding process (βσenc ), the variance in the comparison process (βσcomp ), and attentional factors (βθ). (βσenc ) is not significantly different
from 0 (P= 0.39), both (βσcomp ) and (βθ) are significantly bigger than zero with P < 0.001. The effect size of (βσenc ) is not significantly different from 0. Both
the effect sizes of (βσcomp ) and (βθ) are significantly bigger than zero with P < 0.001. Error bars indicate the mean posterior estimate of the standard
deviation. P-values are based on the highest density interval of the posterior estimates. c Left column: the empirical probabilities of choosing the upper
item; up: as a function of value difference; down: as a function of the difference in dwell time. Right column: the same as left but for the predicted
probabilities by the efficient coding model. The trials are median split in high/low confidence. Value difference and dwell time difference are split into eight
groups of equal size. Data are presented as mean values ± SEM. Source data are provided as a Source Data file. d Comparison of parameter estimates of
two alternative efficient coding models: a model with agent-specific estimates of σenc and a model that allows for trial-to-trial fluctuations of σenc. The
median of the posterior estimate of σenc of the agent-specific model is indicated by the horizontal green line, the shaded grey area indicates the 95%
confidence interval. The diagonal green lines represent 100 random samples of the posterior distribution of how σenc changes with confidence in the model
allowing for trial-to-trial fluctuations. e, f Same as (e) but for σcomp and θ. g Comparison of the effect sizes of the posterior estimates of σenc and σcomp.
Vertical red dashed line indicates the median, black lines indicate the 95% confidence interval. h Comparison of the posterior estimates of the intercept of θ
in the efficient coding model and the RUM. i Comparison of the posterior estimates of the slope of θ in the efficient coding model and the RUM. For the
whole figure n= 33 independent participants.
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First, we investigated whether the efficient coding model also
reveals attentional discounting independent of confidence. In this
model, we found that participants also discount the non-attended
item (θ= 0.85 ± 0.03; Fig. 5f), however to a lesser degree relative
to the RUM (this result is discussed in further detail below). Also,
this model can qualitatively capture the data well (Fig. 5c). Then,
we used the efficient coding model to test the potential
relationship between post-decision confidence reports and trial-
to-trial fluctuations in encoding noise (σenc, which is input value
specific), down-stream noise in the post-decoding comparison
process (σcomp, which input value independent), and attentional
discount (θ) (see Fig. 5a).

In line with the “model-free” analyses results (Fig. 1b), we found
that confidence reports appear to be unrelated to trial-to-trial
fluctuations in the encoding precision of the choice inputs
(βσenc ¼ 0:015 ± 0:068, P= 0.41; Fig. 5b, d). However, we found
that confidence reports are strongly related to trial-to-trial
fluctuations in down-stream comparison noise
(βσcomp ¼ 1:21 ± 0:22, P < 0.001; Fig. 5e). The dissociation in the
relationship between confidence reports and these two distinct noise
sources was confirmed by a significant difference in their effect sizes
(ΔβσEffectSize ¼ 3:18± 0:71, P < 0.001; Fig. 5g). These results are in
line with the notion that integration noise of the input values for
each choice alternative is not related to confidence reports during
human value-based decisions as in our initial analyses (Fig. 1b) and
is now confirmed via a normative inference model (Fig. 5).

In addition, we found that in this model confidence reports are
also strongly related to the degree of attentional effort
(βθ= 0.24 ± 0.06, P < 0.001; Fig. 5b). Interestingly, confidence
appears to induce a smaller (but still highly significant) influence
on θ in the efficient coding model relative to the RUM.
This is evident by the fact that βθ was steeper in the RUM
than in the efficient coding model (Δβθ= 0.55 ± 0.13, P < 0.001;
Fig. 5i) and additionally, the intercept parameter θbase (i.e., the
value of θ for the lowest level of confidence, see Methods) has a
higher value in the efficient coding model than in the RUM
(Δβθbase ¼ �0:56 ± 0:11, P < 0.001; Fig. 5h). This result reveals that
incorporating input-specific uncertainty in the decision model
reduces the influence of attentional effort θ. It follows that
participants are more “rational” than observed with models where
this input-specific uncertainty is not considered. Therefore, our
formal and more statistically complete inference model highlights
the importance of incorporating input-specific uncertainty in
process models of preference-based behavior—a fundamental
aspect classically considered in perceptual inference
processes38,49.

Discussion
We implemented a behavioral task and a computational modeling
approach that allowed us to dissect and understand how distinct
components of the value-based choice process and associated
sources of noise related to choice behavior and post-decision
confidence reports. Following the statistical computation defini-
tion that confidence should reflect choice consistency, one would
expect that all factors in the decision process that affect decision
variability and certainty should have a corresponding impact on
confidence reports11. For instance, we find that TV has no effect
on choice consistency but does affect confidence ratings. While
initially surprising, this result appears in line with observations
from perceptual decision-making studies showing that sources of
evidence supporting the correct stimulus identification response
(i.e., positive evidence) and sources of evidence that support the
alternative response (negative evidence) both influence choice
accuracy, but positive evidence affects confidence more
strongly19,20. However, based on the experimental procedure

adopted in our study, we cannot ascertain whether the true factor
underlying this phenomenon is TV or positive evidence as by
design these two factors are correlated (see Supplementary
Fig. 11).

A second surprising finding is that encoding precision of
reward value inputs has an impact on choice (as it is expected
from canonical inference models), but no impact on confidence
reports. This result was initially reflected in our model-free
analyses, revealing that rating variability negatively impacts
choice consistency but not confidence. However, this analysis did
not allow us to directly determine whether trial-to-trial fluctua-
tions in encoding precision were related to post-decision con-
fidence reports. Therefore, we implemented an inference model
allowing us to, not only, formally test the role of value encoding
precision of the input options, but also to separate encoding noise
from downstream noise in the comparison process26. This model
confirmed that trial-to-trial fluctuations in the encoding precision
of reward values are not related to post-decision confidence
reports. However, we found that sources of noise independent of
input values substantially impact confidence reports. These
results reveal an important aspect of how confidence emerges in
economic decisions, which is not fully congruent with the nor-
mative view that confidence reflects an optimal Bayesian estimate
that the decision is correct11,12 nor with the idea that confidence
is a direct transformation of evidence strength13–15. Nevertheless,
we acknowledge that there might be other processes that our
model does not directly capture, but may also influence the
variability of confidence reports, such as how confidence can
dynamically change during choice (for instance due to dynamic
adjustments of decision bounds50), and also after a decision is
made10,51.

Regarding our established dissociation between encoding and
comparison noise, at first sight, this result seems at odds with
recently reported results by Castanon et al.52. It was found that
humans disregard downstream integration noise while using
encoding noise to form believes about confidence52. Here, we
argue that the apparent difference between the influence of
encoding noise on confidence in our study and the study of
Castanon et al. has its basis in the definition of encoding noise
and the characteristics of the task. Castanon et al. use a cate-
gorization task where they present multiple tilted gratings in a
circular array and vary either the contrast level of the gratings
(resulting in different levels of encoding noise) or the variability
of the gratings’ orientations (resulting in different levels of inte-
gration noise, which they define as late noise). In their task
subjects are asked to categorize the average orientation as tilted
clockwise or counterclockwise. First, we argue that what the
authors of this work define as integration noise, could be very
much related to what we define as encoding noise in our reward
task. It has been suggested and is commonly accepted that reward
value is formed via the integration of different discrete compo-
nents (e.g., memories and emotions) associated to the physical
features of the choice alternatives25. Therefore, it is well possible
that trial-to-trial fluctuations in reward value estimations and
their degree of variation is related to the definitions of integration
noise in the above-mentioned categorization tasks. This would be
in principle congruent with a previous study in the perceptual
decision-making domain, demonstrating that observers under-
estimate the variance of orientation noise, which leads to dis-
torted confidence reports8. Second, in our task, observers
integrate information of two distinct choice alternatives thus
resulting in two distinct value estimates that need to be compared
via downstream circuits. However, typically in categorization
tasks observers integrate multiple cues and generate a single value
estimate to be categorized. Therefore, we argue that perceptual
decision tasks of the kind discussed above would resemble the
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characteristics of our task only in the event where feature inte-
gration of two distinct feature estimates takes place simulta-
neously (e.g., the comparison of two distinct arrays of tilted
gratings) and then compared according to an abstract decision
rule (e.g., which of the mean estimates is closer to cardinal). It will
be interesting to investigate in future work whether a perceptual
task designed in this way would also reveal that downstream
comparison noise heavily influences confidence reports.

A further contribution of our work is the finding that the
degree of attentional effort in the comparison process is not just a
static subject-specific characteristic as it is usually assumed in the
literature28,36,41, but it is a rather highly dynamic cognitive
function that fluctuates considerably from trial-to-trial. Interest-
ingly, we found that subjects can introspect about their atten-
tional effort which is subsequently reflected in their confidence
reports. In other words, participants can detect whether they
exerted enough effort to compare the two alternatives in a
balanced way (resulting in high confidence judgments), or whe-
ther in any given trial they were “lazy” (that is, lacked effort) and
did not pay enough attention to the options available. This might
be surprising in the light of some studies from the perceptual
decision-making domain indicating that people overestimate
their perceptual sensitivity for unattended stimuli and peripheral
vision in general53–56. This might lead us to believe that meta-
cognitive performance is poor when peripheral vision is con-
cerned and one could hypothesize that since the quality of
peripheral vision is overestimated, confidence ratings based on
peripheral vision are overestimated too. We have not explicitly
tested for systematic overconfidence due to overestimation of the
visibility of the unattended item. However, our results indicate
that metacognition does correctly include information about
peripheral vision in the sense that participants track the amount
of effort they spend to incorporate the unattended item into the
decision process and that more effort correlates with higher
confidence ratings.

We speculate that trial-to-trial variations in attentional effort
are related—at least to some extent—to fluctuations of working
memory utilization during the comparison process. Recall that
when an observer fixates one option, she needs to uphold the
memory of the non-fixated option, which requires higher effort,
but also results in a more balanced comparison and eventually
more rational choice. Thus, we argue that there must exist a tight
relationship between our definition of attentional effort with
working memory and confidence as has been suggested in pre-
vious work57,58.

Our findings extend the intricate relationship between the
accumulation of evidence for decisions and confidence reports50,59.
However, our results additionally indicate that not only is con-
fidence used as an online control process, setting bounds on evi-
dence accumulation, nor is it just a reflection of the quality of the
evidence. Confidence also reflects trial-to-trial fluctuations in the
amount of effort exerted during the accumulation process. Our
results also indicate that metacognitive processes appear to be blind
to the irreducible uncertainty that emerges during the integration of
valuable information, suggesting that people acknowledge their
capacity limitations to process information27,60 and rather use late-
stage processes of the decision formation to guide their metacog-
nitive processes. Indeed, this argument is generally in line with a
range of studies suggesting that confidence depends on late-stage
processing1,6,51,61–65.

Taken together, our study shows compelling evidence that we
can introspect about how much attention we pay to the choice
options available during our decisions, thus, revealing a
mechanistic interplay of endogenous attentional effort and
reward values for guiding decisions and metacognitive awareness
of choice certainty. We argue that our findings might not be

limited to the domain of value-based decisions but might have
important implications for refining models of metacognitive
distortions in psychiatric disorders66, where the interaction
between attention, cognitive effort, and goal-directed processes
play a key role in the characterization of diverse
psychopathologies67.

Methods
Participants. The study tested healthy young volunteers (n= 35, age 19–37 years).
However, due to bad eye-tracking recording quality, two subjects have been
excluded from the analysis. The sample size was determined based on previous
studies using similar stimuli and tasks26,33,34. Participants were instructed about all
aspects of the experiment and gave written informed consent. None of the parti-
cipants suffered from any neurological or psychological disorder or took medica-
tion that interfered with participation in our study. Participants received monetary
compensation for their participation in the experiment (20 CHF/h), in addition to
receiving one food item after the choice task (see below). The experiments con-
formed to the Declaration of Helsinki and the experimental protocol was approved
by the Ethics Committee of the Canton of Zurich.

In addition to the data collected in our lab, we also analyze the choice data from
Folke et al.4. We used the data from experiment 1 in their study in an attempt to
replicate the contributions of our work. The dataset consists of n= 28 healthy
young volunteers.

Behavioral task. Our experiment consisted of three main phases: (1) rating phase
1, (2) rating phase 2, and (3) the choice task. In rating phase 1, we asked the
participants to provide subjective preference ratings for a set of 64 food items using
an on-screen slider scale (Fig. 1a). All of the food items were in stock in our lab and
participants were notified about this. Importantly, participants saw all food pro-
ducts before the ratings so that they could effectively use the full range of the rating
scale. Moreover, participants knew that all products were randomly drawn from
the two biggest supermarket chains in Switzerland. Based on previous studies in
our lab26,33,34, we selected food items that varied all the way from items that most
participants would find unappealing (e.g., cucumber) to items that most partici-
pants would find highly appetitive (e.g., ice cream). This was important as our
model should capture the full range of subjective values that humans typically
assign to food items on a daily basis.

During the ratings, participants indicated “how much they want to eat the
presented food item at the end of the experiment”. Participants were informed that
the rightmost endpoint would indicate items that they would most love to eat,
whereas the leftmost endpoint would indicate items that they would most hate to
eat. The initial location of the slider was randomized for each item to reduce
anchoring effects.

Rating phase 2 was identical to rating phase 1 and took place immediately after
phase 1. The order of the items’ presentation was randomized. Crucially,
participants were not informed before rating phase 1 that a second rating phase
and a decision-making task would take place. This was important as it prevented
participants from actively memorizing the location of the rating in the slider in the
first phase, thus providing us with a clear measure of the variability in the value
estimates.

Immediately after the two rating phases, a custom made algorithm selected a
balanced set of decision trials divided into four VD levels on the rating scale (rating
difference 5, 10, 15, and 20% of the length of the rating scale), as defined by the
average rating across phases 1 and 2 provided by each participant. Decision-
making trials started with a central presentation of a fixation cross for 1–2 s.
Immediately after this, two food items were displayed simultaneously, one in the
upper and one in the lower part of the screen (Fig. 1a). The food items were
presented until response and participants had up to four seconds to make a choice.
Participants were instructed to choose which of the two items (upper or lower) they
preferred to consume at the end of the experiment. To make these choices,
participants pressed one of two buttons on a standard keyboard with their right
index finger (upper item) or their right thumb (lower item). We defined a
consistent choice as a trial in which the subject chose the item with a higher mean
rating from the prior rating phase. Each experimental session comprised a
maximum of 240 trials (this depended on the rating distribution of each
participant) divided into 6 runs of 40 trials each. The trials were fully balanced
across rating-difference levels and location of consistent response options (Up
or Down).

Participants’ eye movements were recorded throughout the choice task at
1000 Hz with an EyeLink 1000 Plus eyetracker (SR Research). To make sure that
participants deliberated between the two alternatives, we excluded trials where
participants had not fixated on every option available at least once. Based on the
poor quality of the eyetracking data during the whole session, two participants were
excluded from the analyses, thus resulting in a final sample of n= 33 subjects.

After each choice, participants indicated their confidence in their decision on a
continuous rating scale. We informed participants that the leftmost side of the
confidence rating scale means “Not at all” confident and the rightmost side means
“Totally” confident. Neither choices nor confidence ratings were time-constrained.
The experiment was implemented in Matlab R2016b with the use of Psychtoolbox.
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The dataset that we reanalyze here from Folke et al.4 is similar to our value-
based task, except for the following main aspects. First, in their rating task
participant were instructed to indicate their willingness to pay for a given item; in
our task, we asked them to indicate how much they wanted to consume the item.
Second, in their experiment they collected one round of ratings; we collected two.
Here it is important to mention that the lack of more than one rating does not
allow us to test all effects that are specific to item-specific variability in value coding
in the efficient coding model (see below). However, all other analyses related to the
influences of attention can be studied in both tasks. Crucially, these differences
between the two tasks allow us to rule out that the results obtained in our
experiment are due to specific aspects of the design or cultural differences between
Swiss and British food decisions.

Generative models of confidence. In this section, we describe (i) the sequential
sampling model used to jointly account for RTs and choices, (ii) the generative
models of confidence based on the sequential sampling model, and (iii) the “joint
modeling” approach used to estimate trial-to-trial fluctuations in the relevant latent
variables of the decision process which are then used as inputs to the generative
models.

Sequential sampling model. In order to implement the generative models of con-
fidence, we make use of the GLAM, which allows incorporating RTs, choices, and
gaze information in the decision process41. In brief, the GLAM belongs to the class
of race models and assumes noisy accumulation in favor of each alternative i, j,
where choices are determined once the winner accumulator reaches a decision
boundary B. We define the relative accumulated evidence in favor of alternative i as

eiðtÞ ¼ eiðt � 1Þ þ kRi þ ε; ð3Þ
with ei(0)= 0 and ε ~N(0, σ2), where σ is the standard deviation of an unbiased
normally distributed noise, k is the drift rate and Ri is the average amount of
relative evidence for alternative i at each time point t.

We define the absolute evidence signal Si for alternative i

Si ¼ givi þ ð1� giÞθvi; ð4Þ
where vi is the subjective value readout based on the average ratings of each
alternative i, gi is the proportion of time that the agent looks at item i on each trial,
and θ ≤ 1 is the attentional effort parameter, which determines the strength of
down-weighting when the agent does not fixate item i. If θ= 1, then the agent
exerts high effort to keep item i in memory when she is not looking at it. On the
other hand, if θ= 0, then the agent ignores the evidence of the non-fixated item at
any given moment during the choice process. This suggests that for values of θ
closer to 1 the agent is being fully rational in her choices, which additionally could
be interpreted as exerting effort to keep the unattended items in working memory.
On the other hand for values of θ closer to zero, the agent is being “lazy” and tends
to ignore the unattended alternative in the comparison process.

The GLAM assumes an adaptive representation of the relative evidence signals
via

sðxÞ ¼ 1
1þ expð�τxÞ ; ð5Þ

where τ is a scaling parameter and x≡ Si− Sj, and finally Ri in Eq. (3) is defined as
Ri≡ s(x).

The first passage time density of a single accumulator ei with decision boundary
B is given by

f iðtÞ ¼
λ

2πt3

� �1
2

exp
�λðt � μÞ2

2μ2t

� �
; ð6Þ

with

μ � B
kRi

and λ � B2

σ2
: ð7Þ

Therefore, the probability that accumulator ei crosses B at time t before
accumulator ej is given by

piðtÞ ¼ f iðtÞð1� FjðtÞÞ; ð8Þ
where F() is the cumulative distribution function of f(), which is given by

FðtÞ ¼ Φ

ffiffiffi
λ

t

r
t
μ
� 1

� � !
þ exp

2λ
μ

� �
Φ �

ffiffiffi
λ

t

r
t
μ
þ 1

� � !
; ð9Þ

where Φ() is the standard normal cumulative density function.

Heuristic confidence model. The heuristic confidence reports are based on the
location of the loser accumulator in any given trial. The closer the particle of the
loser alternative is to the decision bound, the lower the confidence of the
observer32,39. In this case, on any given trial confidence is defined as (Eq. (1) in the

main text)

confidence ¼ B� eiðtÞ;
where B is the bound of the accumulator and ei(t) is the location of the loser
accumulator at decision time t (or RT).

On any given trial the experimenter has information about the RT but has no
access to the location of the loser accumulator, therefore we must marginalize over
all possible locations of the loser accumulator. Based on the process model
assumptions of the GLAM, it can be shown that the expected confidence for a
particular RT is given by

E½ confidence jei; t� ¼ B� ðkRiÞt þ
ϕðβÞ
ΦðβÞ σ

ffiffiffiffiffi
ðtÞ

p� �
; ð10Þ

with

β � B� ðkRiÞt
σ
ffiffi
t

p ; ð11Þ

where ϕ() is the density function of the normal distribution (see Fig. 2b).

Normative confidence model. The normative confidence model is based
on the statistical definition of confidence. In this case, it is assumed that the
decision-maker estimates the probability that the decision is correct by using
the information of the decision time, alongside the parameters of the decision
process and the contextual statistics of the task. More formally, one can
calculate the log-posterior odds of a correct response for all possible combinations
of RTs and decision variables utilized by the observer in a given context or
environment

log
pða1j e!; tÞ
pða2j e!; tÞ

" #
¼ log

∑ipð e!; tja1;ΩiÞpðΩiÞ
∑ipð e!; tja2;ΩiÞpðΩiÞ

" #
; ð12Þ

where Ω are the set of parameters of the decision model, e! are the evidence
levels of the correct and incorrect decision alternatives at the decision time t, and a1
and a2 are the correct and incorrect decision alternatives, respectively (see also
Fig. 2c).

Once again, given that the experimenter has no access to the exact evidence of
the losing accumulator in each trial, the best estimation the experimenter can
assume is the expected evidence. In this case, one must gather information about
the statistics of the decision process, and marginalize the location of the loser. In
this case, confidence is defined as (Eq. (2) in the main text)

p̂ðcorrect jC; t;ΩÞ ¼
Z
E
p̂ðcorrect j e!;C; t;ΩÞpð e!jC; t;ΩÞ de;

where C is the observed type of choice from the experimenter’s perspective (correct
or incorrect) and p̂ð correct j e!;C; t;ΩÞ represents the contextual association
between the probability of being correct and the dynamics of the choice process.

Joint modeling approach. In order to derive confidence predictions based on
the generative models defined above, we implemented the “joint modeling”
approach43, which allows us to enforce reciprocal statistical relationships
between the confidence reports and the parameters of the sequential sampling
models by modeling these random variables simultaneously. Specifically, we adopt
a “covariance approach” which allows describing the joint distribution of the
decision model parameters Ω and the confidence reports c through a statistical
constraint, and crucially, where confidence is not treated as a fixed point
estimate, but as a random variable. That is, we impose an overarching
distribution governed by parameters Ψ which are used to describe the patterns
of the joint distribution (Ω, c). This is achieved via a linking function M with
parameters Ψ

ðΩ; cÞ � MðΨÞ: ð13Þ
Here, we assume that the linking function M is given by the multivariate

normal distribution, and the goal in this statistical model is to find the
hyperparameters of the mean vector μ and the variance-covariance matrix Σ.
For instance, if one would like to investigate potential trial-to-trial co-fluctuations
between attentional effort θ, evidence gain k, and confidence c, the goal is to find
the set of hyperparameters

μ ¼
μc
μθ
μk

0
B@

1
CA ð14Þ

Σ ¼
σ2c ρcθσcσθ ρckσcσk

ρcθσcσθ σ2θ ρkθσkσθ
ρckσcσk ρkθσθσk σ2k

0
B@

1
CA ð15Þ

Conveniently, this method allows to automatically evaluate the statistical
dependency between decision model parameters and confidence through the
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correlation parameter ρ. It was implemented in a Bayesian framework using JAGS
in R. The model has nine parameters that need to be estimated, we placed
uninformative priors between sensible limits on all parameters as follows:

μc � Normalð0; 10�5Þ
μθ � Normalð0; 10�5Þ
μk � Normalð0; 10�5Þ
σc � Uniformð0; 10Þ
σθ � Uniformð0; 10Þ
σk � Uniformð0; 10Þ
ρcθ � Uniformð�1; 1Þ
ρck � Uniformð�1; 1Þ
ρkθ � Uniformð�1; 1Þ

ð16Þ

Confidence predictions and model comparison. We obtained trial-to-trial predic-
tions in parameters θ and k by sampling from the distribution

ðc; θ; kÞ � Mðμ;ΣÞ: ð17Þ
Predictions of θ and k were then plugged into the confidence generative models
described above—alongside all other GLAM parameters fitted using the joint
approach—in order to derive confidence predictions on a trial-by-trial level. In
order to account for differences in the use of the confidence rating scale, the
predicted values were re-scaled via a simple linear regression. The predictions from
these models were used to generate the qualitative predictions presented in Fig. 3e,
g and Supplementary Figs. 4–6. Model comparison was carried out via computa-
tion of the BF estimated based on the bridge sampling approach using the brms
package in R68. For completeness, the LOO information criterion was also
computed.

Reverse inference of latent variables based on confidence. We investigated
whether confidence reports—used in this case as observed (independent) variables
—serve to back-engineer potential fluctuations in latent variables of static decision-
making models (i.e., models that do not explicitly consider RT information). We
emphasize that in this case, it is not possible to establish generative models of
confidence, but the goal is to study how observed confidence allows us to make
inferences about the decision-making process.

Random utility model (RUM). In the standard RUM, the agent faces two options i
and j, where each option has a subjective value vi and vj, respectively. In standard
neuroeconomic experiments, v is assumed to be the outcome of their willingness to
pay for a given option4, or the desirability to consume a given item26,28. In stan-
dard RUMs, it is usually assumed that a given option i is corrupted by some general
noise ηi, with the usual assumption ηi ~N(0, σi). If σ is assumed to be constant for
all universe of goods in a given context, then the probability of choosing option i
over j is given by

Pðvi > vjÞ ¼ Φ
vi � vj
σ
ffiffiffi
2

p
� �

: ð18Þ

If one would like to take into account the fact that when making decisions,
people tend to look back and forth between choice alternatives, then one must take
into consideration these potential shifts in attention between the choice
alternatives. Recently, Smith et al. developed a variant of the RUM that allows
taking into account the proportion of time that participants spend looking at a pair
of choice alternatives45. Let Ai be the fraction of time spent looking at option i
(with Aj= 1− Ai). Then it can be shown that the probability of choosing option i
over j while considering the effects of attention is given by

Pðvi > vjÞ ¼ Φ
Aivi � Ajvj þ θðAjvi � AivjÞ

σ
ffiffiffi
2

p
� �

; ð19Þ

where θ ≤ 1 is defined here as the attentional effort parameter.
Given that in our study we use a hierarchical Bayesian data analyses framework,

this allows the convenient possibility of studying the effects of an observed variable
(e.g., confidence) on a latent variable (e.g., θ). For simplicity, we investigate such
influences via linear relationships. Thus, in order to study the link between
confidence reports and attentional effort, we assume

θn ¼ θbase þ βθs � cn; ð20Þ

where βθs is the effect of confidence cn on attention in a given trial n. The subscript s
denotes that the effect is participant-specific which is modeled as a random-effects
factor under the assumption that it is drawn from a population distribution
βθs � Nðβθ ; σθÞ, where βθ and σθ determine the mean and the s.d. of the population
distribution, respectively. In this case, positive values of βθ would indicate that
higher levels of attentional effort θ are reflected in higher levels of confidence.

Likewise, we can study the relationship between confidence and reward value
variability as defined by the RUM (σ in Eqs. (18) and (19), which directly influences
the consistency of the choices). Defining k � 1

σ
ffiffi
2

p , we study the influence of trial-to-

trial fluctuations of the evidence gain k on confidence as follows

kn ¼ kbase þ βks � cn: ð21Þ

As before, the possible influence of confidence βks � cn is drawn from a population
distribution N(βk, σk). Here, we list the uninformative priors placed the population
distribution

θbase � Normalð0; 10�10Þ
σθbase � Uniformð10�10; 5Þ
βθ � Normalð0; 10�10Þ
σθ � Uniformð10�10; 5Þ
βk � Normalð0; 10�10Þ
σk � Uniformð10�10; 5Þ

ð22Þ

Efficient RUM. Different from the simple RUM, here we assume that the input
reward values v in the inference process are not the observed ratings, but rather the
most likely input values of a resource-constrained generative model that leads to
the generation of noisy value estimates v̂ This is an important consideration that is
different from classical approaches in perceptual decision making since experi-
menters have no direct access to the “true” value v of the presented object to an
observer. Here we assume that this “true” value v has been shaped by each
observer’s personal history of experiences with this type of object and is therefore
entirely subjective. Based on studies supporting the notion of contextual adaptation
of valuation circuits given capacity limitations, we assume optimal use of the
underlying neuronal scale to represent reward values given the expected/learned
natural distribution of values in the given environment, i.e., the prior p(v). Under
assumptions of mutual information maximization at the encoding stage and
minimization of the Bayesian mean squared error at the decoding stage, one can
obtain approximate expressions for the expected value and variance that explain
the generation of noisy estimations v̂ conditional on a particular input stimulus
with value v0

E½v̂jv0� � v0 þ ϕ00 � σ2enc ð23Þ

Var½v̂jv0� � ðϕ0Þ2 � σ2enc; ð24Þ
where σenc is the noise of the limited system that encodes reward values (which we
assume to be constant across the dynamic neural range, i.e., one free parameter),
and ϕ is the quantile function of the prior p(v; ω), where ω are the parameters of
the prior (for details about exact derivation of these expressions see26). In the rating
task, the experimenter does not directly observe the decoded values v̂ but the rating
values �v on the physical bounded scale. The joint probability density ð�v; v0Þ on the
rating scale is thus given by26

�pð�v; v0;ω; σenc; σcompÞ ¼ Nðg�1ð�vÞ; E½v̂jv0�;Var½v̂jv0� þ σ2compÞ � pðv;ωÞ � ðg�1ð�vÞÞ0;
ð25Þ

where g(⋅) is the logistic function that provides a one-to-one mapping of the
estimate v̂ from the subjective to the physical scale on any given trial. In addition to
internal noise σenc in the coding of value, we also account for late noise in the
decision stage (i.e., post-decoding noise), which may capture any unspecific forms
of downstream noise occurring during the response process that are unrelated to
the valuation process per se, which can include for instance late comparison noise.
This external noise is represented as σcomp in the variance term of the normal
distribution (Eq. (25)) which captures the random fluctuations. Thus a key feature
of this inference model specification is that it allows separating noise in the
encoding of values (which is by definition value specific) and value-unspecific noise
that might be related to downstream processes.

In order to fit the efficient coding model to the rating data, we found the
stimulus values v1,…,M, parameters of the prior ω, encoding noise σenc and external
noise σcomp that maximized the likelihood function �pð�v; v0;ω; σenc; σcompÞ (Eq. (25))
of the observed set of ratings for each participant under the constraint that v1,…,M is
distributed following p(v; ω). Posterior inference of the parameters for this model
can be conveniently performed via the Gibbs sampler.

Subsequently, we used the stimulus values v1,…,M and prior parameters ω fitted to
the rating in order to predict choices in the two-alternative choice task. Please note
that this strategy alleviates any concern for allowing an arbitrary choice of priors and
likelihood functions in the choice models, given that the prior distribution is fully
determined by out of sample data (i.e., the rating task) and the likelihood is fully
constrained by the prior and our efficient coding specification. Based on this model,
over many trials, the probability that an agent chooses an alternative with stimulus
value vi over a second alternative with stimulus value vj is given by

Pðv̂i>v̂jjvi; vjÞ ¼ Φ
E½v̂ijvi� � E½v̂jjvj�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var½v̂ijvi� þ Var½v̂jjvj� þ σ2comp

q
0
B@

1
CA; ð26Þ

where Φ(⋅) is the CDF of the standard normal distribution and the expressions for
E[] and Var[] are given in Eqs. (23) and (24) (see above). Thus, the input values of
the choice model are fully constrained by the efficient coding model based on the fits
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to the rating data and therefore the choice model has only two free parameters,
namely the resource noise of the encoder σenc and the external noise σcomp.

This choice model can be naturally extended to incorporate the effect of the
attentional discounting parameter θ

Pðv̂i > v̂jjvi; vjÞ ¼ Φ
AiE½v̂ijvi� � AjE½v̂jjvj� þ θðAjE½v̂ijvi� � AiE½v̂jjvj�Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var½v̂ijvi� þ Var½v̂jjvj� þ σ2comp

q
0
B@

1
CA ð27Þ

As before, to study the possible link between confidence reports and variable “x”,
we assume a linear relationship

xn ¼ xbase þ βxs � cn; ð28Þ
where βxs is the effect of confidence cn on variable x in a given trial n. The βxs
parameters are drawn from a population distribution N(βx, σx). Here, we list the
uninformative priors of the population distributions

θbase � Uniformð�0:5; 1:5Þ
σθbase � Uniformð10�10; 2Þ
βθ � Normalð0; 10�10Þ
σθ � Uniformð10�10; 5Þ

σenc base � Uniformð10�10; 5Þ
σσenc base � Uniformð10�10; 5Þ
βσenc � Uniformð�0:2; 0:5Þ
σσenc � Uniformð10�10; 1Þ

σcomp base � Uniformð10�10; 5Þ
σσcomp base � Uniformð10�10; 5Þ
βσcomp � Normalð0; 10�10Þ
σσcomp � Uniformð10�10; 10Þ

ð29Þ

Behavioral analyses and statistics. Rating variability in the data from our study
was computed as the variance for each item across the rating phases 1 and 2. To
investigate the influence of VD, rating variability, and reward value on the con-
sistency of choices in each trial, we performed a hierarchical logistic mixed-effects
regression of choices (defining consistent= 1, inconsistent= 0) on the above-
mentioned regressors of interest, namely: VD, summed-variability (Var, defined as
the sum of the two variances of the two food items presented in each trial), and the
TV (defined as the sum of mean rating values of the two food items presented in
each trial). All regressors of interest were included in the same model. Similarly, the
influence of the same regressors on confidence was based on a hierarchical linear
mixed-effects regression approach. All data analyses were performed in R 3.6.3,
using RStudio and JAGS 4.3.0. BFs reported for these regressions were estimated
based on the bridge sampling approach using the brms package in R68.

All mixed-effects regressions in this study had varying subject-specific constants
and slopes for the linear models, the joint modeling approach, and the RUMs
parameter estimates, where the random effects parameter estimates are denoted in
this work as β unless otherwise specified. Posterior inference of the parameters in
the hierarchical models was performed via the Gibbs sampler using the Markov
Chain Monte Carlo (MCMC) technique implemented in JAGS, assuming flat
priors for both the mean and the noise of the estimates. For each model, a total of
100,000 samples were drawn from an initial burn-in step and subsequently, a total
of new 100,000 samples were drawn with three chains (each chain was derived
based on a different random number generator engine, and each with a different
seed). We applied a thinning of 100 to this final sample, thus resulting in a final set
of 1000 samples for each parameter. We conducted Gelman-Rubin tests for each
parameter to confirm the convergence of the chains. All latent variables in our
Bayesian models had R̂ < 1:05, which suggests that all three chains converged to a
target posterior distribution. We checked via visual inspection that the posterior
population-level distributions of the final MCMC chains converged to our assumed
parametrizations. For all random effects β reported here, the reported value
corresponds to the median of the posterior distribution, the ±values refer to
1 s.d. of the posterior distributions and the “p-values” reported for these regressions
are not frequentist p-values but instead directly quantify the probability of the
reported effect differing from zero. They were computed using the posterior
population distributions estimated for each parameter and represent the portion
of the density functions that lies above/below 0 (depending on the direction of
the effect).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data generated in this study have been deposited in the Open Science Framework
database (https://doi.org/10.17605/OSF.IO/N7CUS)69. The data published by Folke
et al.4 is publicly available at (https://github.com/BDMLab/
Folke_De_Martino_NHB_2016_Github) and (https://doi.org/10.6084/
m9.figshare.3756144.v2). Source data are provided with this paper.
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