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Network-driven anomalous transport is a
fundamental component of brain microvascular
dysfunction
Florian Goirand 1,2, Tanguy Le Borgne 1✉ & Sylvie Lorthois 2✉

Blood microcirculation supplies neurons with oxygen and nutrients, and contributes to

clearing their neurotoxic waste, through a dense capillary network connected to larger tree-

like vessels. This complex microvascular architecture results in highly heterogeneous blood

flow and travel time distributions, whose origin and consequences on brain pathophysiology

are poorly understood. Here, we analyze highly-resolved intracortical blood flow and trans-

port simulations to establish the physical laws governing the macroscopic transport prop-

erties in the brain micro-circulation. We show that network-driven anomalous transport leads

to the emergence of critical regions, whether hypoxic or with high concentrations of amyloid-

β, a waste product centrally involved in Alzheimer’s Disease. We develop a Continuous-Time

Random Walk theory capturing these dynamics and predicting that such critical regions

appear much earlier than anticipated by current empirical models under mild hypoperfusion.

These findings provide a framework for understanding and modelling the impact of micro-

vascular dysfunction in brain diseases, including Alzheimer’s Disease.
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The brain microvascular network provides an efficient,
highly integrated, and dynamic infrastructure for the dis-
tribution of blood1–3: it supplies oxygen, nutrients, and, if

needed, drugs to all cells in the brain, and ensures the removal of
their metabolic waste4,5. As the brain lacks any substantial energy
reserve, it also acts as a short-term regulation system, which
responds quickly and locally to the metabolic needs of neurons2,6.
In ageing and disease, however, the progressive appearance of
abnormal vessel architectures, including reduced capillary dia-
meters or stalling, and the decrease in regulation efficiency
together reduce blood flow and the availability of oxygen2,5,7–11.
This also alters the clearance of metabolic waste, including neu-
rotoxic forms of amyloid-β centrally involved in the pathogenesis
of Alzheimer’s Disease (AD)4,9,10. Thus, understanding the links
between the microvascular architecture, reduced blood flow, and
impaired oxygen delivery and metabolic waste clearance is a key
challenge to decipher the role of microvascular dysfunction in
brain disease.

The microvascular architecture is structured by tree-like
arterioles and venules that connect to a dense capillary
network3,12,13. While this organization ensures a large surface of
exchange between blood and the brain tissue, it also induces
strong spatial heterogeneities of vessel flows and capillary transit
times, leading to heterogeneous oxygenations14,15. Even in nor-
mal conditions, some vessels with low blood flow rates approach
the hypoxic threshold16,17. These critical vessels may be parti-
cularly vulnerable to further pathological stress17, consistent with
the appearance of small hypoxic regions in the cortex of ageing
and AD mice9,18. Since reduced capillary flow also compromises
metabolic waste clearance, critical vessels with abnormally high
intravascular concentrations of amyloid-β may also be expected.
Yet, it is unknown how such critical vessels may appear under
normal conditions nor how they may progress in response to
pathological stress, such as hypoperfusion10,19,20.

In fact, the dynamics governing oxygen or amyloid-β dis-
tributions in such networks are fundamentally non-local: the
solute concentration in a given vessel depends on the blood travel
time from penetrating arterioles, where blood enters into the
brain cortex, to this vessel, which integrates all blood velocities
along the corresponding pathways. Furthermore, the distribution
of blood flow is also non-local, i.e., driven by the whole vascular
architecture. Because the impact of such non-local dynamics on
relevant network scale processes is difficult to resolve explicitly,
the blood travel time distribution through the microvascular
network has been represented by phenomenological models21,
including early indicator dilution analysis models21–24 and the
recent Capillary Transit Time Heterogenity (CTH) model14.
These models rely on empirical blood travel time distributions,
following mathematical functions chosen to match the experi-
mentally observed distributions25. A key property emerging from
CTH models is that increased transit time heterogeneities induce
a decreased efficiency of oxygen supply14. Consistently, reduced
transit time heterogeneity has been experimentally confirmed in
the cortical layers with the highest levels of metabolic activity26 or
in response to neuronal activation27 while increased transit time
heterogeneity has been inferred, based on such models, from
clinical imaging data in AD patients28. Besides these few exam-
ples, CTH models have been used to interpret a large amount of
experimental data15,18,29–31 thus helping to identify increased
vascular heterogeneity as a key general mechanism of neuronal
injury.

A fundamental limitation of current phenomenological models
is that they do not quantitatively relate the transport dynamics to
the underlying network architecture and flow distributions. This
makes it difficult to understand and predict how changes in vessel
architecture may influence blood travel time heterogeneity and

thus alter oxygen supply and metabolic waste clearance. Fur-
thermore, in vivo measurements are limited to time scales smaller
than the blood recirculation time (~5 s)32, which limits the range
available for the calibration of empirical models. Hence, their
predictive power for the statistics of longer time scales, which
likely control the appearance of vessels with critical oxygen or
amyloid-β concentrations, is strongly dependent on the mathe-
matical functions chosen to parametrize travel time
distributions22,23. Yet, the physical mechanisms shaping these
distributions and how they depend on the network structure21 are
poorly understood.

Theoretical analyses of transport in model random networks
have shown that these systems can exhibit anomalous transport
dynamics, i.e., characterized by slow power-law decays of the
large travel time probabilities33. The latter has been successfully
described by Continuous Time Random Walk (CTRW) theories,
providing analytical expressions of travel time distributions as a
function of the microscale structures and flow distributions33–36.
Although microvascular networks fundamentally differ from such
random networks, their complex structure potentially contains
the fundamental ingredients for anomalous transport dynamics
to develop. To explore this hypothesis, we use highly resolved
simulations of blood flow in such networks, validated from
in vivo measurements, that provide access to the full statistics of
blood flow and transport dynamics in realistic microvascular
networks. We use these insights to uncover the scaling laws of
blood flow distributions arising from the microvascular archi-
tecture and develop an effective transport model at the scale of
the network that captures these properties. This provides analy-
tical solutions for the blood travel time distributions inferred
from the physics of transport in these networks. Our model
predicts that the interplay between the spatial distribution of
arterioles and venules and the mesh-like architecture of the
capillary bed12 leads to the emergence of anomalous transport
dynamics. This implies that the occurrence probability of large
blood travel times is significantly larger than predicted by current
models. We couple this model to the kinetics of oxygen con-
sumption and amyloid-β production in brain cells to show that
these anomalous transport properties control the early develop-
ment of critical vessels with low oxygen or large amyloid-β
concentrations under hypoperfusion. These findings hence pro-
vide a framework to measure, understand and model the onset
and development of brain diseases, such as AD37.

Results
Blood travel times through microvascular networks, i.e., from any
network inlet to any network outlet, are also referred to as tra-
versal times24 or, simply, as transit times14, whereas the dis-
tribution of travel times is sometimes referred to as the impulse
response function, as the transfer function of the system or as the
microvascular response function38. To avoid any ambiguity, we
use below the terms travel times for transport across the whole
network and transit times for transport across a single vessel (as
defined by Eq. (2)).

Vessel flow rates and transit times follow broad distributions.
Our analysis is based on highly resolved simulations of blood flow
in anatomic microvascular networks, validated by comparison
with in vivo measurements (see Methods and Supplementary
Note 1). We first present the results obtained in a microvessel
network (~15,000 vessels) digitized from a 1 mm3 of the mouse
cortex (see Supplementary Figure S1) and then compare the
results to another mouse intracortical microvessel network and to
bio-mimetic networks (Supplementary Notes 3 and 8). The dense
capillary bed in the first network is homogeneous and space-
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filling17,39, with a narrow distribution of vessel diameters
(4.8 ± 0.9 μm). The network is fed and drained by ~15 arteriolar
and ~30 venular trees (Fig. 1a, Supplementary Figure S1 and
Supplementary Movie S1). Simulations integrate the non-linear
blood rheology and red blood cell repartition at diverging vessel
bifurcations (see Methods). The average flow rate is
〈Q〉0= 4 × 10−2 nL/s. The probability density function (PDF)
of blood flow rates in vessels shows a large spread across about
seven decades around the average flow rate (Fig. 1b). This PDF
exhibits two different regimes: it is uniform in the low flow rate
range and decays as a power law with exponent −2 above a
characteristic value Qc= 10−2 nL/s. The number of vessels in
these regimes is approximately P(Q <Qc)= 60% and P(Q >
Qc)= 40%, with large flow rates developing preferentially in the
neighborhood of arterioles and venules (Fig. 1a and Supple-
mentary Figure S1f, Supplementary Movie S2).

The flow rate PDF is well approximated by a Cauchy
distribution (Fig. 1b), consistent with the theoretical asymptotic
behavior obtained in large Random Regular Graphs40.

pQðQÞ ¼
2

πQc

1

1þ ðQ=QcÞ2
; ð1Þ

A direct consequence of the broad distribution of flow rates Q
is the broad distribution of advective transit times in vessels (inset
of Fig. 1b), which are defined as:

t ¼ lπd2

4Q
; ð2Þ

where l is the vessel arc length and d is the vessel diameter. As the
flow rate PDF, the vessel transit time PDF is characterized by two

regimes separated by the characteristic time tc=
hlicapπhdi2cap

4Qc
¼ 10−1

s, where 〈l〉cap= 50 μm and 〈d〉cap= 5 μm are taken as
characteristic capillary length and diameter, respectively. Since
the vessel length l and diameter d vary weakly compared to the
flow rate Q, the transit time variability is mainly driven by the
flow rate fluctuations. We thus estimate the PDF of vessel transit
times from the PDF of flow rates as pt(t)= pQ(Q)dQ/dt, also
yielding a Cauchy distribution

ptðtÞ ¼
2
πtc

1

1þ ðt=tcÞ2
; ð3Þ

in good agreement with the simulations (inset of Fig. 1b). The

scaling pt(t) ~ t−2 for long times, t > tc, is induced by the uniform
flow rate PDF pQ(Q) ~ cst at low flow rates, Q <Qc, leading to
pt(t) ~ dQ/dt~ t−2 (Eq. (2)). Equation (3) implies that the probability
of a vessel belonging to this power-law regime is
pðt>tcÞ ¼

R1
tc

dtptðtÞ ¼ 1� 2=πtan�1ð1Þ ¼ 0:5. Hence, half of the
vessels belong to this regime. Since our anatomical networks have
about N= 15,000 vessels, the lowest probability that we can measure
is 1/N= 7e−5. This corresponds to a maximum transit time
tm ¼ tc tanðπ=2ð1� 1=NÞÞ � 104tc. Therefore, the size of the
network allows observing this power-law behavior across up to four
orders of magnitudes in transit times from tc to 104 tc (see inset of
Fig. 1b). This power-law scaling yields a non-negligible probability of
extremely long vessel transit times (e.g., 1% of vessels have a transit
time t > 50 tc= 5 s), which may lead to the emergence of anomalous
transport properties at the network scale33,34.

This vessel transit time PDF pt(t) characterizes the vessel transport
statistics in the absence of diffusion. Diffusion introduces a maximum
cutoff time tD=〈l〉2/D in the transit time PDF, corresponding to
the diffusive transport time over a vessel length. For oxygen and
amyloid-β, the two species considered here, the range of times
tc < t < tD over which the power-law pt(t) ~ t−2 holds thus covers
respectively one and three orders of magnitude (Fig. 1b, inset).
Therefore, this power-law regime affects significantly more amyloid-β
clearance than oxygen supply.

Network trajectory lengths and travel times show anomalous
transport statistics. In addition to the broad distribution of vessel
transit times, solute transport at the scale of the microvascular
network is also controlled by the distribution of trajectory lengths
from arterioles to venules. Our particle tracking simulations (see
Methods, Fig. 1c and 2a and Supplementary Movie S4) show that
trajectories lengths L, expressed in the number of visited vessels,
vary from <10 to ~80 (Fig. 2b). The trajectory length PDF is
characterized by a power-law scaling pL(L) ~ L−2 between two
characteristic lengths L0= 12 and Lc= 50. Above Lc, the PDF
decays sharply as pLðLÞ � expð�L=L�Þ with L*= 5 (Fig. 2b):

pLðLÞ � L�2 L0 <L ≤ Lc
pLðLÞ � expð�L=L�Þ L>Lc

(
ð4Þ

The scale L* characterizes the exponential decay of the PDF of
trajectory lengths at large lengths and is estimated by fitting Eq.

Fig. 1 The blood flow organization in cortical microvessel networks induces broadly distributed flow rates and vessel transit times. a Simulated blood
flow map in a microvascular network feeding 1mm3 of the mouse cortex (see Supplementary Figure S1a, b and Supplementary Movie S1). Vessel flow rates are
represented with blue shades for Q <Qc and red shades for Q>Qc (see also Supplementary Figure S1c, d, f and Supplementary Movie S2). b PDF of simulated flow
rates (black dots) compared with the approximation of Eq. (1) (continuous blue line). The characteristic flow rate Qc separating the uniform and power-law regimes
are indicated as a dotted line. Inset: PDF of vessel transit times. The diffusion coefficients for oxygen and amyloid-β (DO2

= 2 × 10−9m2 s−1 and
DAβ= 6 × 10−11 m2 s−1) yield diffusion times (tO2

D and tAβD ) indicated by the green and red dashed lines, respectively. c Example of trajectories visiting <30 vessels
(orange) and >70 vessels (blue), originating from the arteriole shown by the arrow (see Supplementary Figure S2a–d and Supplementary Movies S3).
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(4) to the simulated PDF (Fig. 2b). This cutoff in trajectory
lengths is likely controlled by a complex interplay between the
topology of the network and the density of venules/arterioles,
which prevents arbitrary large trajectories to develop.

Averaging over multiple trajectories of equal length, we
computed the evolution of the local average transit time along
the trajectory, as a function of the number n of vessels visited
since the inlet arteriole (Fig. 2b, inset). These average local transit
times tL are of the order of 10−2 s close to the inlet arterioles, then
increase, up to two orders of magnitudes for the longest
trajectories, then decrease again in the vicinity of the outlet
venules. The network travel time averaged over all trajectories of

equal length T L
thus increases with the trajectory length L

following two different trends (Inset of Fig. 2c, Supplementary
Note 4 and Supplementary Figure S4a, b),

T LðLÞ � τ1ðL� L0Þ þ T 0 L0 <L ≤ Lc

T LðLÞ � T c
L
Lc

� �4
L >Lc

8<
: ð5Þ

where T 0 ¼ 0:2 s, T c ¼ 1:8 s, and τ1= 0.04 s is on the order of
the mean transit time over particle trajectories.

The broad distribution of vessel transit times, together with the
distribution of trajectory lengths, leads to a broad range of travel
times at the network scale pT ðT Þ (Fig. 2c). Without diffusion,
simulated travel times vary over four orders of magnitudes.
Accounting for the diffusive cutoff transit time (inset of Fig. 1b),
the travel time distribution still covers over two orders of
magnitude for oxygen and three orders of magnitude for
amyloid-β (Fig. 2c).

Flow and transport properties emerge from the physics of
dipole flows in networks. The statistical properties driving these
transport dynamics can be understood as arising from different
topological properties of the flow field, as schematized in Fig. 3.
The measured scaling pQ(Q) ~Q−2 is a characteristic of dipole
flows41 (see Supplementary Note 3, Supplementary Figure S3d).
In the present system, high flow rates are localized around
arterioles and venules that act as multiple sources and sinks
(Fig. 1a and Supplementary Figure S1, Supplementary Movie S1),
driving the flow in the network. Hence, in the large flow range,
Q >Qc, the flow field behaves statistically as a superposition of

dipoles. At low flow rates, Q <Qc, the flow rate statistics differ
from the continuous dipole model and become uniform, a sig-
nature of the network structure (see Supplementary Note 3,
Supplementary Figure S3d). In random networks, the flow rate
PDF is indeed theoretically expected to follow exponential dis-
tributions, driven by the random additions and divisions of flow
at vertices42. In the low flow rate range, this asymptotically leads
to a uniform distribution of flows. Here, the low flow vessels are
far from arterioles and venules. Therefore, their statistics are
dominated by the random fluctuations induced by the network
structure. Noteworthy, similar flow rate PDFs are observed for
dipole flows on space-filling networks with architectures
of increasing complexity, see Supplementary Figure S3b–d.
Thus, the observed flow rate statistics are generic and arise
from the interplay between a structured dipole-like topology for
large flow rates and random network topology for small
flow rates.

Fig. 2 Trajectory lengths and travel times are broadly distributed at network scale. a 3D view of typical particle trajectories (see also Supplementary
Movie S4) with growing numbers of visited vessels (Red: L= 20; Yellow: L= 30; Orange: L= 40; Green: L= 50; Cyan: L= 60; Blue: L= 70; Violet: L= 80).
b Probability Density Function (PDF) of trajectory lengths. Inset: Local vessel transit times t

L
averaged over all trajectories of same length L as a function of

the number n of vessels visited since the inlet arteriole, normalized by L. Results for different trajectory lengths are shown with the same color conventions
as in a). c PDF of travel times through the network for purely advective (black dots), oxygen (green dots), and amyloid-β (red dots) transport. Inset:
Average travel time T L

as a function of trajectory length L (see also Supplementary Note 4 and Supplementary Figure S4a, b). The linear and power-law
tendencies (Eq. (5)) are shown respectively as dashed and dotted blue lines. Note that the linear tendency does not appear as a straight line in logarithmic
coordinates because of the constant T 0 in Eq. (5) (See Supplementary Note 4).

Fig. 3 Schematic illustration of the blood flow organization in the cortical
microcirculation inferred from the observed flow and transport
properties. Arterioles and venules are represented in red and black
respectively. Blood flow paths through the capillary bed are represented as
light purple lines. The characteristic trajectory length Lc is the maximum
length of trajectories that can travel directly from one arteriole to a
neighboring venule (green line).
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The distribution of trajectory lengths (Fig. 2b), is also
consistent with this dipole flow interpretation (see Supplementary
Note 3, Supplementary Figure S3e). For dipole flows on a finite-
size network, the power-law regime pL(L) ~ L−2 develops until a
cutoff length, corresponding to the network size, which sets the
maximum trajectory length. In the present system, the character-
istic trajectory length Lc that sets the transition to the exponential
cutoff (Eq. (4)) is the maximum length of trajectories that can
travel directly from one arteriole to a neighboring venule43

(Fig. 1c and Supplementary Figure S2a, b, Supplementary
Movie S3 (orange trajectories)). These trajectories typically
reach the bottom of the simulated domain and include
on average 20 arteriolar steps, 20 venular steps, and 10 capillary
steps in between (see Fig. 3 and Supplementary Note 2,
Supplementary Figure S2f). Longer trajectories connect more
distant arterioles and venules via the deep capillary bed,
where most vessels are in the low flow regime (Q <Qc) (Figs. 1c,
3 and Supplementary Figure S2c, d, Supplementary Movie S3
(blue trajectories)).

The relationship between average travel times and trajectory

lengths T LðLÞ (Eq. (5)) shows a transition from a linear to a power-
law scaling (Inset of Fig. 2c and Supplementary Figure S4a, b). In the
first linear regime, the number of visited capillaries remains
approximately constant when the trajectory length increases (see
Supplementary Note 2 and Supplementary Figure S2f). This implies
that the additional visited vessels belong to arterioles and venules.

The linear scaling of T LðLÞ indicates that the average transit time t in
such vessels remains approximately constant when trajectories
explore deeper sections of the network. As arterioles penetrate at
depth, their flow rate decreases but so does their diameter and length,
which may explain this finding. This may constitute an evolutionary
advantage contributing to spatially uniformizing the supply and
clearance of solutes across the network while minimizing total
dissipation and blood volume44–46. In the second regime, the power-

law scaling T LðLÞ � L4 is characteristic of dipole flow in 3D systems
(see Supplementary Note 3): in the deep network, blood flows from
the pre-capillary arterioles to the post-capillary venules through a
complex 3D network of capillaries (Fig. 1c, 3, Supplementary
Figure S2c, d and Supplementary Movie S3 (blue trajectories)) where
the number of visited capillaries increases steeply with the trajectory
length (Supplementary Figure S2f).

Mean-field transport dynamics are governed by dipolar tra-
jectory length distributions. The distribution of trajectory lengths
(Eq. (4)), coupled with the relationship between average travel time
and trajectory length (Eq. (5)), provides a mean-field transport model
for the travel time PDF across the network (Supplementary Note 4).
This mean-field description, which neglects random fluctuations due
to the network structure but captures the dipole-driven trajectory
length distribution, is characterized by a transition from power law to
a stretched exponential behavior:

p T ðT Þ � ðT � T 0Þ=τ1 þ L0
� ��2

for T < T c

pT ðT Þ � T
T c

� ��3=4

exp � Lc
L�

T
T c

� �1=4
 !

for T > T c

ð6Þ

with T c ¼ 1:8 s (Eq. (5)). This model captures the travel time dis-
tribution over the first two orders of magnitude (Fig. 4a and Sup-
plementary Note 4, Supplementary Figure S4c). We compare this
prediction to that of a reference CTH model, that assumes a Gamma
distribution of travel times, whose parameters are calibrated from
in vivo data14 (see Supplementary Note 7). Since experimentally
measured travel time distributions are limited to times smaller than
~5 s due to blood recirculation27,32, this CTH model serves here as a
reference to assess the effect of neglecting the experimentally inac-
cessible longest travel times. While it captures relatively well the
shape of the travel time distribution in the low range, the reference
CTH model significantly underestimates the probability of late times
(Fig. 4a). Accounting for the trajectory length distribution via the
mean-field model allows capturing a significant part of this long-time
dynamics. The mean-field model, however, does not capture the
power-law behavior of the longest travel times, driven by vessels with
transit times t > tc in the deep capillary network (Fig. 1c). Since the
oxygen cutoff diffusion time tO2

D is close to tc (inset of Fig. 1b), this
long-time regime does not affect much oxygen transport, which is
well represented by the mean-field model (Fig. 4a).

Random flow fluctuations in the capillary network control
large blood travel times. To obtain a full description of the
transport dynamics, in particular for low diffusivity solutes such

Fig. 4 Long travel times, captured by our mechanistic model, drive the emergence of critical areas with impaired oxygen delivery and amyloid-β
clearance under hypoperfusion. a CTRWmodel predictions (full black line) compared to purely advective, amyloid-β, and oxygen transport simulations (black,
red, and green dots, respectively). The prediction of the mean-field transport model (Eq. (6)) and of the reference CTH model (Supplementary Note 7) are
shown as dashed black and blue lines, respectively. b Fraction fp of network travel times larger than τO2

c for oxygen delivery as a function of average flow rate
〈Q〉/〈Q〉0. Simulations (green dots) are compared to the predictions of the mean-field model (dashed black line) and of the reference CTH model (dashed
blue line). The inset shows the fraction fv of vessels in the network that are only reached by flow paths with travel times to these vessels larger than τO2

c , as a
function of the flow rate. c Fraction fp of network travel times larger than τAβc ¼ 8 s (squares), τAβc ¼ 16 s (dots) and τAβc ¼ 40 s (triangles), as a function of
average flow rate for amyloid-β clearance. The predictions of the CTRW model (Eq. (7)) for each value of τAβc are shown as continuous black lines. The
predictions of the reference CTH model (see Supplementary Note 7) for each value of τAβc are shown as blue dashed lines.
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as amyloid-β, we seek an effective transport model that captures
the heterogeneity of vessel transit times around the average
behavior described above. Fluid elements transported along a
given trajectory in the network move from one vessel to the next
with a broadly varying time step (see Supplementary Notes 5 and
6 and Supplementary Figure S5a)). This closely corresponds to
the conceptual framework of CTRW34,36, which has been proved
relevant as an effective representation of transport in random
networks33,35. However, as a consequence of the dipole structure
of the flow at a large scale, two characteristics of the transport
dynamics differ from a conventional CTRW representation. First,
the number of steps in a given trajectory is broadly distributed
according to trajectory lengths (Eq. (4)). Second, the mean local
transit time at the nth step within a trajectory of length L depends
on the trajectory length (Eq. (5), inset of Fig. 2b and Supple-
mentary Note 4). Fluctuations of local transit times around these
mean local transit times define a noise term that is independent of
trajectory lengths and follows a power-law scaling controlled by
the flow distribution (see Supplementary Note 5). We, therefore,
developed a CTRW framework capturing these two properties
(see Supplementary Note 6).

This framework allows deriving an analytical solution for the
travel time distribution pT ðT Þ in the network,

pT ðT Þ ¼ p1T ðT Þ þ p2T ðT Þ; ð7Þ
where p1T ðT Þ and p2T ðT Þ are defined in Laplace space as,

~p1T ðsÞ ¼ e�sT 0 ∑
Lc

L¼L0þ1
pLðLÞ Pðsτ1Þ

� �L�L0 ð8Þ

and

~p2T ðsÞ ¼ e�sT 0PLc�L0 ðsτ1Þ ∑
1

L¼Lcþ1
pLðLÞPL�Lc s

T cðL=LcÞ4 � T c

L� Lc

� �
ð9Þ

where s is the Laplace variable, PðsÞ ¼ 2sK2ð2
ffiffi
s

p Þ with K2 the
Bessel function of the second kind and pL(L) is given by Eq. (4).

This CTRW model is fully determined from the trajectory
length PDF (Eq. (4)) and the relationship between average time
and trajectory length (Eq. (5)). It provides an accurate prediction
over a broad range of travel times with no fitting parameter
(Fig. 4a). In particular, it captures the late-time power-law decay:

pT ðT Þ � T �3: ð10Þ
The emergence of this power law is consistent with the CTRW

theory that predicts stable power-law distributions for noises
characterized by power-law exponents equal or smaller than 3
(see Supplementary Figure S5)34,36. Hence, the late-time trans-
port behavior is characterized here by stable anomalous transport,
driven by the broad distribution of flow rates in the network. As
far as we know, no experimental data have been obtained to
confirm this result in brain microcirculation. However, injections
of flow-limited tracers in the coronary network of isolated rabbit
hearts, which avoids blood recirculation, yielded a power-law
decay of the late-time regime with exponent −3.21 ± 0.2747. This
suggests that, despite the variability of microvascular architecture
between organs48,49, the combination of tree-like structures with
a dense capillary network in their global organization is sufficient
to drive this late-time power-law decay.

Simulation of three-dimensional oxygen distribution in
microvascular networks. Assuming that oxygen consumption in
vessels follows first-order kinetics25 (see Methods and Supple-
mentary Note 9), we use our particle tracking simulations to
compute three-dimensional fields of oxygen concentration in
vessels (Fig. 5a, b and Supplementary Movie S5). The char-
acteristic reaction time of the first-order kinetics τO2

r ¼ 1:5 s is
estimated by matching the simulated ratio between oxygen con-
centrations at venular outlets and those at arteriolar inlets to
typical measured values (see Methods). The evolution of the
oxygen concentration along trajectories, averaged over trajec-
tories of equal length (Fig. 5c), is in qualitative agreement with
previous experimental observations17. Oxygen decays close to the
network inlets, as trajectories penetrate down in the cortex, then
reaches a minimum in the capillary bed (except for the shortest
trajectories L= 20), and increases again as blood flows up to the
venular outlets (Fig. 5c). The minimum oxygen value along tra-
jectories decreases with the trajectory length L, as longer trajec-
tories penetrate deeper in the network. This directly results from
the increase of blood travel time with increasing trajectory length
(Eq. (5) and inset of Fig. 2c). The minimal oxygen concentration
in the network, reached in the deep capillaries of the longest
trajectories, is close to 1/12 of the inlet concentration, i.e., 10 mm
Hg of oxygen partial pressure, assuming 120 mm Hg at the inlets.
This value is typically used to identify hypoxic brain regions in
animal experiments50,51. Hence, our results are consistent with
the recent experimental observation that some vessels approach
the hypoxic threshold in the cortex of normal mice17. The
increase of oxygen towards the outlet venules is also consistent
with in vivo observations showing an increase of oxygen

Fig. 5 Simulated distribution of blood oxygen concentration relative to oxygen arteriolar concentration in the microvascular network represented in
Fig. 1. See also Supplementary Movie S5. a Side view. b Top view. c Evolution of the mean vessel oxygen concentration along trajectories of size L,
concentrations are normalized by the arteriolar concentration cAO2

. Red: L= 20; Yellow: L= 30; Orange: L= 40; Green: L= 50; Cyan: L= 60; Blue: L= 70;
Violet: L= 80.
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concentrations with increasing venous diameters17. Although its
origins are debated17, the two minimal ingredients included in
our simulations, i.e., first-order decay of oxygen with travel time
and mixing at vessel intersections, are sufficient to capture this
behavior. Hence, the travel time and trajectory length statistics
explored here are key to explaining the oxygen dynamics.

Anomalous transport drives the early appearance of hypoxic
regions under conditions of hypoperfusion. Hypoperfusion, i.e.,
the decrease of the average blood flow, is a major pathological
stress associated with many diseases19, including early stages of
AD20,37. Schematically, it may be due to reduced perfusion
pressure or increased cerebrovascular resistance, e.g., induced by
capillary occlusions8 or reduced vessel diameters9 in AD. In the
latter case, the total resistance of the capillary bed has been
estimated to increase more than threefold, leading to a ~50%
blood flow reduction. This large hypoperfusion level significantly
increases tissue hypoxia9 and is believed to favor amyloid-β
accumulation in the brain10, thus participating in disease pro-
gression. However, whether lower levels of hypoperfusion
(5–30%), such as induced by capillary occlusions 8, may be
involved in disease onset is debated10. In this context, we use our
modeling framework to quantify the appearance of hypoxic
regions, focusing on the occurrence probability of trajectories
with travel times above the critical travel time f pðT > τO2

c Þ, which
corresponds to the hypoxic threshold cO2

¼ 1=12cAO2

50,51. Using
the first-order kinetic model (Supplementary Note 9, equa-
tion S28), we estimate this critical travel time to be
τO2
c ¼ log ð12ÞτO2

r ¼ 3:7 s. The probability of exceeding τO2
c along

a given flow pathway is derived from our transport model as
f pðT > τcÞ ¼

R1
τc

dT phQiT ðT Þ; where phQiT ðT Þ is the predicted net-
work travel time distribution for any flow rate 〈Q〉. The latter
is derived from the travel time distribution in normal conditions
as phQiT ðT Þ ¼ phQi0T ðT hQi0=hQiÞ, where, 〈Q〉0 is the blood flow
in normal conditions, deduced from the above simulations, for
which all parameters, including the perfusion pressure, corre-
spond to physiological data (see Methods and Supplementary
Note 1). In other words, changing the average flow rate 〈Q〉 is
equivalent to rescaling the critical time as τc〈Q〉/〈Q〉0. This
also holds true when the flow rate change is induced by capillary
occlusions as the shape of the travel time PDFs is similar, not only
for different sets of mouse microvascular networks, but also when
up to 10% of capillaries are occluded (see Supplementary Note 8
and Supplementary Figure S6).

Under normal perfusion, the fraction of travel times larger
than τO2

c is equal to f pðT > τO2
c Þ ¼ 1:3% (Fig. 4b). This fraction

increases non-linearly as the average flow decreases, e.g., by a
factor 4 when 〈Q〉 decreases by a factor 2, an evolution
accurately captured by the mean-field model (Eq. (6)). As
discussed above, oxygen transport is mostly controlled by the
dipole-driven transport regime and its travel time distribution is
relatively well represented by the mean-field transport model
(Fig. 4a). We thus approximate phQi0T by the mean-field travel time
distribution (Eq. (6)), which provides an accurate prediction of
the simulated fraction of critical travel times for all flow rates
(Fig. 4b). Since the latter integrates the broad distribution of
trajectory lengths, it predicts a significantly larger occurrence
probability f pðT > τO2

c Þ than the reference CTH model (Fig. 4b),
which is two orders of magnitude below the simulated
probabilities under baseline perfusion. Noteworthy, the fractions
of trajectories f pðT > T 0Þ measured at the outlet are very close to
the fractions of critical vessels f vðT >T 0Þ within the network, i.e.,

vessels that are only visited by fluid elements taking a time larger
than T 0 to reach them from the inlet arterioles (Supplementary
Note 2, Supplementary Figure S2e). Hence, the travel time
statistics at the outlet venules offer a surrogate for the transport
statistics within the network. As a result, the mean-field model
also provides a good prediction for the probability of occurrence
of hypoxic vessels within the network (inset of Fig. 4b). When
hypoperfusion is induced by capillary occlusions, these hypoxic
vessels may likely add up to the occluded vessels, thus enhancing
their impact at the early stages of AD8.

The weak diffusivity of amyloid-β amplifies the impact of
anomalous transport. We use a similar modeling method as for
oxygen to relate the blood travel time statistics to amyloid-β
concentrations (see Methods and Supplementary Note 10).
Owing to its low diffusivity, amyloid-β is highly sensitive to
random flow fluctuations in the capillary network as discussed
above (Fig. 2a). Therefore we approximate phQi0T by the CTRW
model (Eqs. (7–9)). The metabolism and neurotoxicity of amy-
loid-β involve multiple soluble and insoluble isoforms and are
still poorly understood52–54. To account for this uncertainty, we
consider a range of critical times τAβc ¼ 8, 16, or 40 s. This leads
respectively to a three-, five- or tenfold arterio-venous increase of
the total intravascular amyloid concentration (see Methods and
Supplementary Note 10), which is much larger than the measured
physiological increase of ~20% 55, thus yielding different degrees
of compromised clearance. As expected, the probabilities of
occurrence of trajectories with travel times above these critical
times f pðT > τAβc Þ vary significantly with τc (Fig. 4c). Although the
CTH model predicts an exponential evolution of the fraction of
critical travel times f pðT > τAβc Þ with 〈Q〉 (linear in semi-log in
Fig. 4c), the CTRW model captures the clearly non-exponential
trend observed from the simulations. This is a signature of the
power-law scalings of travel time distributions, driven by anom-
alous transport. Hence, the reference CTH model underestimates
the fractions of travel times with inefficient amyloid-β clearance
by several orders of magnitude, while the CTRW model accu-
rately predicts the probability of these critical travel times for all
〈Q〉 and τc.

Discussion
By reducing the complexity of the transport problem in anato-
mically realistic networks while keeping the essential physics of
transport emerging from the network architecture, our analysis
reveals the physical mechanisms by which the microvascular
architecture shapes the blood travel time distribution. This is a
major fundamental open question in microvascular physiology
and a bottleneck for accurate quantification of hemodynamic
parameters from brain imaging data in a broad range of appli-
cations, from clinical studies aimed at improving the diagnosis
and/or staging of brain disease to fundamental studies on cerebral
blood flow and metabolism, neurovascular coupling, cerebral
autoregulation and/or blood–brain barrier function in health and
disease21.

We have demonstrated that the blood travel time distributions
are driven by two fundamental mechanisms constitutive of
anomalous transport dynamics34: broadly distributed blood tra-
jectory length and broadly distributed capillary transit times. As
schematized in Fig. 3, the former is determined by dipolar flow
patterns resulting from the localized connections with upstream
and downstream surface vessels, while the latter is driven by
random-like fluctuations within the capillary network. For high
diffusivity species, such as oxygen, travel time distributions are
cutoff by diffusive transport, a third fundamental mechanism that
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dampens the random-like fluctuations. These fundamental insights
yield the first physics-based analytical solutions for transport at the
scale of cortical microvascular networks, accurately predicting the
statistical distributions of travel times of different solutes, including
oxygen (Eq. (6) and amyloid-β (Eqs. (7–9)).

This offers an alternative to current effective models of trans-
port at the scale of microvascular networks. Such models either
consider simplified networks as combinations of parallel elements
(e.g., 56), overlooking the link between the transport dynamics
and the underlying microvascular architecture, or use empirical
functions (e.g., 14). The latter are calibrated from in vivo mea-
surements, which, due to blood recirculation, are limited to travel
times of 5s. Extrapolation to larger time scales is constrained by
the underlying parametrization chosen for the distribution of
travel times, most often gamma distributions14,25,57. The resulting
exponential decay underestimates the probability of large travel
times that follow a slow power-law decay induced by the
anomalous transport dynamics uncovered here. Such models
predict that a significant level of hypoperfusion, where blood flow
is reduced by ~20% compared with normal perfusion, should be
reached for hypoxic vessels to appear. Even in normal conditions,
we found that a small proportion (~1.2%) of hypoxic vessels
develop in the microvascular network. This finding is consistent
with experimental measurements16,17. Furthermore, accounting
for anomalous transport leads to a regular non-linear increase of
the proportion of hypoxic vessels with the decreased flow. The
impact of anomalous transport is stronger for amyloid-β, which
has a smaller diffusion coefficient. Hence, the probabilities of
occurrence of critical vessels with inefficient metabolic waste
clearance is orders of magnitude larger than predicted by current
empirical models under normal conditions and their increase
under hypoperfusion occurs much earlier than anticipated by
these models.

Overall, these findings underpin the physical mechanisms by
which moderate levels of hypoperfusion yield a non-linear
expansion of hypoxic regions and lead to increased accumula-
tion of amyloid-β in the brain tissue. Crucially, hypoxia and
amyloid-β accumulation are two key ingredients of the amyloid
cascade, the positive feedback loop linking hypoperfusion and
amyloid-related pathways of AD (see, e.g., Fig. 3 in ref. 10).
Combined with the recent discovery that, at early stages of AD,
every single capillary occlusion has a similar, and cumulative,
impact on blood flow, without any threshold effect8, this sug-
gests that capillary occlusions, even in small proportions, may
trigger this positive feedback loop, leading to pericyte activation
and capillary constrictions. Current numerical simulations8

neglecting these pathological stresses as well as any compensa-
tory effects, e.g., variations of the cerebral perfusion pressure,
tend to underestimate the magnitude of hypoperfusion com-
pared to experiments in animal models of AD. Hence, we
speculate that pathological stresses induced by the amyloid
cascade have an outsized impact on disease progression. Our
results suggest that such cascading events may be initiated by
spatial heterogeneities of blood flow. In particular, the critical
regions with abnormally high amyloid-β concentration, which
can be interpreted as hotspots for amyloid species accumulation,
are deterministically located in regions fed by long trajectories.
This could possibly explain why no association between capil-
laries with abnormal/stalled flow and amyloid deposition has
been found experimentally8. Furthermore, as larger travel times
are expected for trajectories feeding the sub-cortical regions, this
may explain their specific vulnerability58,59, as highlighted by
the appearance of white matter hyper-intensities in clinical
imaging, in both cerebrovascular disease and AD28,60. This
suggests that, while the capillary bed is a continuously adapting

network, which remodels to reduce the extent of hypoxic
regions61, strong constraints may be imposed by the architecture
of the vascular network and the associated locations of inlets
and outlets. Besides shedding light on the impact of capillary
occlusions at early stages of AD, and more generally on the role
of hypoperfusion in AD onset and progression, these findings
contribute to explaining the considerable overlap between vas-
cular and neurodegenerative factors in the pathogenesis of brain
disease2,7.

These results will also contribute to improving the quantifi-
cation of physiological parameters from brain perfusion or
functional imaging data, whether acquired by optical imaging,
computed tomography, or magnetic resonance. Such quantifica-
tion generally relies on the choice of mathematical functions to
represent the distribution of intravascular travel times below the
scale of imaging resolution. Our findings hence establish the
physical grounds for defining these travel time functions and
relate them to the microvascular architecture. This may help to
account for vascular alterations, which are currently overlooked
when interpreting human clinical imaging data in patient
populations62, contributing to bridging the gap with knowledge
acquired from animal experiments.

The analysis of transport dynamics in highly-resolved simu-
lations of blood flow in anatomically realistic microvascular
networks is complementary to in vivo experiments in that it
provides access to the full flow and transport statistics, opening a
window to deciphering the underlying non-local physics. With
the fast progress of numerical simulations and imaging capacities,
the presented framework may be further improved. For example,
larger simulations domains, possibly up to the whole mice brain
(see, e.g., 63) may be considered. The diphasic nature of blood or
more realistic reactive intravascular transport dynamics (see, e.g.,
64), simplified here as first-order kinetics and neglecting the
oxygen-binding cooperativity to hemoglobin, could also be con-
sidered in the future, as well as transport and metabolic processes
within the brain tissue (see, e.g., 25,54,65).

Our theoretical framework hence opens perspectives for the
development of predictive, physics-based, transport models at the
scale of brain microvascular networks that account for the
complexity of microvascular architectures. The resulting scaling
laws are generic to a large variety of networks, from simplified
ones to accurate anatomical representations, with or without
capillary occlusions. This suggests that the uncovered anomalous
transport mechanisms are general, even if the parameter values
and pre-factors of scaling laws may be slightly dependent on the
specific assumptions in our blood flow computational scheme.
Thus, the variability of the network architecture, including dif-
ferences between brain areas and between species39,66, differences
due to long term vessel remodeling in hypoxia, aging or
disease61,62,67, as well as passive or active diameter variations
resulting from changes in pressure, blood flow, brain auto-
regulation and/or neurovascular coupling2,6,21,68, is unlikely to
fundamentally alter the nature of the statistical laws that we have
derived. Blood is ultimately transported in the brain capillary
network, the structure of which is highly similar between
species39, so that velocity fluctuations are expected to follow
similar distributions as described here. Interestingly, the predicted
late-time power-law decay of travel time probabilities, with
exponent −3, has even been observed with a similar exponent in
the coronary microcirculation47, despite the much stronger
variability of microvascular architecture between organs48,49.
Hence, anomalous transport induced by velocity fluctuations in
the capillary network provides an alternative fundamental
mechanism for this scaling, previously interpreted as arising from
an underlying fractal organization of blood flow21,69.
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Methods
Brain microvascular networks. We use a first large postmortem data set (~15,000
vessel segments in a ~1 mm3 region) from the mouse vibrissa primary sensory
(vS1) cortex obtained by3,70 (see Supplementary Note 1 and Supplementary
Movie S1) and previously used for simulation studies by8,43,64,71,72. Details on the
procedures used for correcting the vessel’s diameters to match the in vivo dis-
tributions and for classifying vessels into arterioles, capillaries, and venules are
given in the Supplementary Material from8. For comparison, we use a second
dataset from the same cortical region, obtained from another mouse3,70, as well as
dense, space-filling networks of increasing complexity, including randomly gen-
erated networks, which reproduce well the spatial and functional statistics of the
mouse capillary bed39 (Supplementary Notes 3 and 8).

Simulation of blood flow and Lagrangian transport. Blood flow is modeled using
a non-linear network approach accounting for the complex rheology of blood in
the microcirculation8,73, with prescribed boundary conditions (see Supplementary
Note 1 for details on methods and validation procedures). This yields the pressure
P at each vertex and the flow rate Q and haematocrit H in each vessel. We then
simulate the transport of 5 × 107 passive Lagrangian particles, injected from
arteriolar inlets with a probability proportional to their flow rate. We advect these
particles at local average vessel velocity (v=〈Q〉/〈Q〉0Q/πr2), where 〈Q〉/
〈Q〉0 represents the global variation of cerebral blood flow compared with
physiological baseline conditions. We distribute them in downstream vessels using
flux-weighted fractions, i.e., with a probability proportional to the local flow rate
(Supplementary Note 2). For each particle trajectory, we computed the corre-
sponding trajectory length L, i.e., the total number of visited vessels, the Lagrangian
transit time series, i.e., the succession of local advective transit times t from vessel
to vessel in the trajectory (Fig. S5a, Supplementary Note 5), as well as the travel
time τ, i.e., the sum of these local transit times. The effect of diffusion on intra-
vascular transport is taken into account by introducing a maximum transit time
equal to the diffusion time over the vessel length: the local transit times t is set
equal to the local diffusion times (tD= l2/D) if tD < ta, where ta is the local vessel
advection time. Note that to compute the advection time, we considered the
average velocity in each vessel and did not resolve the Poiseuille flow profile in the
direction transverse to the flow in each vessel. Resolving these velocity profiles
within capillaries does not change much the travel time distributions and only
slightly modifies the early travel times64. Hence, at the network scale, the intra-
vessel flow variability is negligible compared to the inter-vessel variability.

All numerical procedures for blood flow simulations have been implemented in
a custom-built C++ code74 and the post-processing algorithms for the Lagrangian
analysis have been developed in Python (V2.7).

First-order kinetics models of oxygen supply and amyloid-β clearance. In
order to evaluate the characteristic times associated with oxygen supply and
amyloid-β clearance, and following14,54,75,76, we assume that they can both be
described by the following first-order kinetics models (see Supplementary Notes 9
and 10):

∂cO2

∂t
¼ �kO2

cO2
ð11Þ

and

dðcAβ
Þ

dt
¼

dðcAβ
� cTAβ

Þ
dt

¼ �kAβ
ðcAβ

� cTAβ
Þ ð12Þ

where k�1
O2

¼ τO2
r and k�1

Aβ
¼ τAβ

are, respectively, the characteristic times for

oxygen consumption in the brain tissue and for amyloid-β clearance.
Coupling these kinetics with the travel time distribution pðT Þ, we obtain the

ratio between oxygen concentration at the outlet (venules), cVO2
, and at the inlet

(arterioles), cAO2
,

cV02=c
A
02
¼
Z 1

0
dT exp �kO2

T
� �

pT ðT Þ ð13Þ

In the same way, we obtain the ratio between the amyloid-β concentration at the
outlet (venules), cVAβ

, and its tissue concentration, cTAβ
,

cVAβ
=cTAβ

¼ 1� R10 dT 1� cAAβ
cTAβ

� �	

exp �kAβ
T

� �
pT ðT Þ

o ð14Þ

Using the measured travel time distribution for oxygen (Green dots in Fig. 2c), we
match Eq. (13) to the typical resting oxygen extraction fraction of ≈30%14, which
gives cVO2

=cAO2
� 0:714, yielding τO2

r ¼ k�1
O2

¼ 1:5 s. Interestingly, this time is of the
same order as the decay time measured in a single cell in vitro measurements of
RBC oxygen desaturation dynamics77, equal to 800 ms. Similarly, using typical
amyloid-β concentration values (see, e.g., 54,78) and an arterio-venous increase of

20%55 yields τ
Aβ
r ¼ k�1

Aβ
¼ 97 s. This estimated time is of the same order as can be

deduced by abluminal-to-luminal permeability measurements in an in vitro
blood–brain barrier model (hCMEC/D3 endothelial monolayers)79, which yielded

a permeability P≃ 18 × 10−5 cm/min. Assuming an endothelial thickness of ~1 μm,
this leads to a characteristic time of 33 s. By contrast, previous estimates based on a

compartmental model yielded τAβr ¼ 3000 s76, i.e., two orders of magnitudes above
the in vitro results. Hence, despite the simplified reaction kinetics considered here,
capturing the full range of travel times appears to be a key element for modeling
reactive processes in the cortex.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The flow simulation data analyzed in this manuscript and the corresponding Lagrangian
trajectories have been made available on Harvard Dataverse (https://doi.org/10.7910/
DVN/QJDUUA).

Code availability
The C++ flow simulation code and the custom Python (V2.7) post-processing
algorithms are available within 2 months from the corresponding authors upon request
subject to a nonexclusive, revocable, non-transferable, and limited right to use for
research and evaluation purposes only, excluding any commercial use.

Received: 17 February 2021; Accepted: 18 November 2021;

References
1. Duvernoy, H. M., Delon, S. & Vannson, J. Cortical blood vessels of the human

brain. Brain Res. Bull. 7, 519–579 (1981).
2. Iadecola, C. Neurovascular regulation in the normal brain and in Alzheimer’s

disease. Nat. Rev. Neurosci. 5, 347–360 (2004).
3. Blinder, P. et al. The cortical angiome: an interconnected vascular network

with noncolumnar patterns of blood flow. Nat. Neurosci. 16, 889–897 (2013).
4. Tarasoff-Conway, J. M. et al. Clearance systems in the brain–implications for

Alzheimer disease. Nat. Rev. Neurol. 11, 457 (2015).
5. Kisler, K., Nelson, A. R., Montagne, A. & Zlokovic, B. V. Cerebral blood flow

regulation and neurovascular dysfunction in Alzheimer disease. Nat. Rev.
Neurosci. 18, 419–434 (2017).

6. Attwell, D. et al. Glial and neuronal control of brain blood flow. Nature 468,
232–243 (2010).

7. Zlokovic, B. V. Neurovascular pathways to neurodegeneration in Alzheimer’s
disease and other disorders. Nat. Rev. Neurosci. 12, 723–738 (2011).

8. Cruz-Hernández, J. C. et al. Neutrophil adhesion in brain capillaries reduces
cortical blood flow and impairs memory function in Alzheimer’s disease
mouse models. Nat. Neurosci. 22, 413–420 (2019).

9. Nortley, R. et al. Amyloid beta oligomers constrict human capillaries in
Alzheimer’s disease via signaling to pericytes. Science 365, eaav9518 (2019).

10. Korte, N., Nortley, R., & Attwell, D. Cerebral blood flow decrease as an early
pathological mechanism in Alzheimer’s disease. Acta Neuropathol. 140,
793–810 (2020).

11. Cortes-Canteli, M. & Iadecola, C. Alzheimer’s disease and vascular aging. J.
Am. Coll. Cardiol. 75, 942–951 (2020).

12. Lorthois, S. & Cassot, F. Fractal analysis of vascular networks: insights from
morphogenesis. J. Theor. Biol. 262, 614–633 (2010).

13. Hirsch, S., Reichold, J., Schneider, M., Szekely, G. & Weber, B. Topology and
hemodynamics of the cortical cerebrovascular system. J. Cereb. Blood Flow.
Metab. 32, 952–967 (2012).

14. Jespersen, S. N. & Østergaard, L. The roles of cerebral blood flow, capillary
transit time heterogeneity, and oxygen tension in brain oxygenation and
metabolism. J. Cereb. Blood Flow. Metab. 32, 264–277 (2012).

15. Erdener, Ş. E. & Dalkara, T. Small vessels are a big problem in
neurodegeneration and neuroprotection. Front. Neurol. 10, 889 (2019).

16. Parpaleix, A., Houssen, Y. G. & Charpak, S. Imaging local neuronal activity by
monitoring PO2 transients in capillaries. Nat. Med. 19, 241–246 (2013).

17. Sakadžić, S. et al. Large arteriolar component of oxygen delivery implies a safe
margin of oxygen supply to cerebral tissue. Nat. Commun. 5, 5734 (2014).

18. Moeini, M. et al. Compromised microvascular oxygen delivery increases brain
tissue vulnerability with age. Sci. Rep. 8, 8219 (2018).

19. Dong, S. Cerebral hypoperfusion and other shared brain pathologies in
ischemic stroke and Alzheimer’s disease. Transl. Stroke Res. 9, 13 (2011).

20. Bracko, O., Cruz-Hernandez, J. C., Park, L., Nishimura, N. & Schaffer, C. B.
Causes and consequences of baseline cerebral blood flow reductions in
Alzheimer’s disease. J. Cereb. Blood Flow Metab. 41, 1501–1516 (2021).

21. Zierler, K. Indicator dilution methods for measuring blood flow, volume, and
other properties of biological systems: a brief history and memoir. Ann.
Biomed. Eng. 28, 836–848 (2000).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27534-8 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:7295 | https://doi.org/10.1038/s41467-021-27534-8 |www.nature.com/naturecommunications 9

https://doi.org/10.7910/DVN/QJDUUA
https://doi.org/10.7910/DVN/QJDUUA
www.nature.com/naturecommunications
www.nature.com/naturecommunications


22. Lassen, N. A., Henriksen, O. & Sejrsen, P. Indicator methods for measurement
of organ and tissue blood flow in Comprehensive Physiology (ed. Terjung, R.)
(John Wiley & Sons, Inc., 2011).

23. Lassen, N. A. & Perl, W. Tracer kinetic methods in medical physiology. pp 189
(Raven Press, 1979).

24. Lipowsky, H. H., Mckay, C. B. & Seki, J. Transit time distributions of blood
flow in the microcirculation in Microvascular Mechanics (eds Lee J.-S. &
Skalak, T. C.), 13–27, (Springer New York, 1989).

25. Angleys, H., Østergaard, L. & Jespersen, S. N. The effects of capillary transit
time heterogeneity (CTH) on brain oxygenation. J. Cereb. Blood Flow. Metab.
35, 806–817 (2015).

26. Li, B. et al. More homogeneous capillary flow and oxygenation in deeper
cortical layers correlate with increased oxygen extraction. eLife 8, e42299
(2019).

27. Gutierrez-Jimenez, E. et al. Effect of electrical forepaw stimulation on capillary
transit-time heterogeneity (CTH). J. Cereb. Blood Flow. Metab. 36, 2072–2086
(2016).

28. Eskildsen, S. F. et al. Increased cortical capillary transit time heterogeneity in
Alzheimer’s disease: a DSC MRI perfusion study. Neurobiol. Aging 50,
107–118 (2017).

29. Østergaard, L. et al. The capillary dysfunction hypothesis of Alzheimer’s
disease. Neurobiol. Aging 34, 1018–1031 (2013).

30. Mundiyanapurath, S. et al. Capillary transit time heterogeneity is associated
with modified Rankin scale score at discharge in patients with bilateral high
grade internal carotid artery stenosis. PloS One 11, e0158148 (2016).

31. Gutiérrez-Jiménez, E. et al. Disturbances in the control of capillary flow in an
aged APPswe/PS1δE9 model of Alzheimer’s disease. Neurobiol. Aging 62,
82–94 (2018).

32. Merkle, C. W. & Srinivasan, V. J. Laminar microvascular transit time
distribution in the mouse somatosensory cortex revealed by dynamic contrast
optical coherence tomography. NeuroImage 125, 350–362 (2016).

33. Kang, P. K., Dentz, M., Le Borgne, T. & Juanes, R. Spatial Markov model of
anomalous transport through random lattice networks. Phys. Rev. Lett. 107,
180602 (2011).

34. Metzler, R. & Klafter, J. The random walk’s guide to anomalous diffusion: a
fractional dynamics approach. Phys. Rep. 339, 1–77 (2000).

35. De Anna, P. et al. Flow intermittency, dispersion, and correlated continuous
time random walks in porous media. Phys. Rev. Lett. 110, 184502 (2013).

36. Dentz, M., Kang, P. K., Comolli, A., Le Borgne, T. & Lester, D. R. Continuous
time random walks for the evolution of lagrangian velocities. Phys. Rev. Fluid
1, 074004 (2016).

37. Iturria-Medina, Y. et al. Early role of vascular dysregulation on late-onset
Alzheimer’s disease based on multifactorial data-driven analysis. Nat.
Commun. 7, 11934 (2016).

38. Van Osch, M. J. et al. Model of the human vasculature for studying the
influence of contrast injection speed on cerebral perfusion MRI. Magn. Reson.
Med. 50, 614–622 (2003).

39. Smith, A. F. et al. Brain capillary networks across species: a few simple
organizational requirements are sufficient to reproduce both structure and
function. Front. Physiol. 10, 233 (2019).

40. Goirand, F., Georgeot, B., Giraud, O. & Lorthois, S. Network community
structure and resilience to localized damage: application to brain
microcirculation. Brain Multiphysics 2, 100028 (2021).

41. Kurowski, P., Ippolito, I., Hulin, J., Koplik, J. & Hinch, E. Anomalous
dispersion in a dipole flow geometry. Phys. Fluids 6, 108–117 (1994).

42. Alim, K., Parsa, S., Weitz, D. A. & Brenner, M. P. Local pore size correlations
determine flow distributions in porous media. Phys. Rev. Lett. 119, 144501
(2017).

43. Schmid, F., Tsai, P. S., Kleinfeld, D., Jenny, P. & Weber, B. Depth dependent
flow and pressure characteristics in cortical microvascular networks. PLoS
Comput. Biol. 13, e1005392 (2017).

44. Murray, C. The physiological principle of minimum work I. The vascular
system and the cost of blood volume. Proc. Natl. Acad. Sci. 12, 207–214
(1926).

45. Durand, M. Architecture of optimal transport networks. Phys. Rev. E 73,
016116 (2006).

46. Meigel, F. J. & Alim, K. Flow rate of transport network controls uniform
metabolite supply to tissue. J. R. Soc. Interface 15, 20180075 (2018).

47. Bassingthwaighte, J. B. & Beard, D. A. Fractal 15O-labeled water washout from
the heart. Circ. Res. 77, 1212–1221 (1995).

48. Augustin, H. G. & Koh, G. Y. Organotypic vasculature: from descriptive
heterogeneity to functional pathophysiology. Science 357, eaal2379 (2017).

49. Waters, S. L. et al. Theoretical models for coronary vascular biomechanics:
progress and challenges. Prog. Biophys. Mol. Biol. 104, 49–76 (2011).

50. Nishimura, N. et al. Targeted insult to subsurface cortical blood vessels using
ultrashort laser pulses: three models of stroke. Nat. Methods 3, 99–108 (2006).

51. Shih, A. Y. et al. The smallest stroke: occlusion of one penetrating vessel leads
to infarction and a cognitive deficit. Nat. Neurosci. 16, 55–63 (2012).

52. Dahlgren, K. N. et al. Oligomeric and fibrillar species of amyloid beta peptides
differentially affect neuronal viability. J. Biol. Chem. 277, 32046–32053 (2002).

53. Blennow, K., Hampel, H., Weiner, M. & Zetterberg, H. Cerebrospinal fluid
and plasma biomarkers in Alzheimer’s disease. Nat. Rev. Neurol. 6, 131–144
(2010).

54. Potter, R. et al. Increased in vivo amyloid 42 production, exchange, and loss in
presenilin mutation carriers. Sci. Transl. Med. 5, 189ra77–189ra77 (2013).

55. Xiang, Y. et al. Physiological amyloid beta clearance in the periphery and its
therapeutic potential for Alzheimer’s disease. Acta Neuropathol. 130, 487–499
(2015).

56. King, R. B., Raymond, G. M. & Bassingthwaighte, J. B. Modeling blood flow
heterogeneity. Ann. Biomed. Eng. 24, 352–372 (1996).

57. Park, C. S. & Payne, S. J. A generalized mathematical framework for
estimating the residue function for arbitrary vascular networks. Interface Focus
3, 20120078 (2013).

58. Li, B. et al. Two-photon microscopic imaging of capillary red blood cell flux in
mouse brain reveals vulnerability of cerebral white matter to hypoperfusion. J.
Cereb. Blood Flow. Metab. 40, 501–512 (2020).

59. Hartung, G. et al. Voxelized simulation of cerebral oxygen perfusion elucidates
hypoxia in aged mouse cortex. PLoS Comput. Biol. 17, e1008584 (2021).

60. Gorelick, P. B. et al. Vascular contributions to cognitive impairment and
dementia: a statement for healthcare professionals from the american heart
association/american stroke association. Stroke 42, 2672–2713 (2011).

61. Secomb, T. W., Alberding, J. P., Hsu, R., Dewhirst, M. W. & Pries, A. R.
Angiogenesis: an adaptive dynamic biological patterning problem. PLoS
Comput. Biol. 9, e1002983 (2013).

62. D’Esposito, M., Deouell, L. Y. & Gazzaley, A. Alterations in the BOLD fMRI
signal with ageing and disease: a challenge for neuroimaging. Nat. Rev.
Neurosci. 4, 863–872 (2003).

63. Kirst, C. et al. Mapping the fine-scale organization and plasticity of the brain
vasculature. Cell 180, 780–795 (2020).

64. Berg, M., Davit, Y., Quintard, M. & Lorthois, S. Modelling solute transport in
the brain microcirculation: is it really well mixed inside the blood vessels? J.
Fluid Mech. 884, 1–43 (2020).

65. Holter, K. E. et al. Interstitial solute transport in 3D reconstructed neuropil
occurs by diffusion rather than bulk flow. Proc. Natl. Acad. Sci. 114,
9894–9899 (2017).

66. Hartmann, D. A., Hyacinth, H. I., Liao, F.-F. & Shih, A. Y. Does pathology of
small venules contribute to cerebral microinfarcts and dementia?. J.
Neurochem. 144, 517–526 (2018).

67. Steinman, J., Sun, H.-S. & Feng, Z.-P. Microvascular alterations in Alzheimer’s
disease. Front. Cell. Neurosci. 14, 618986 (2021).

68. Lorthois, S., Cassot, F. & Lauwers, F. Simulation study of brain blood flow
regulation by intra-cortical arterioles in an anatomically accurate large human
vascular network. Part II: Flow variations induced by global or localized
modifications of arteriolar diameters. NeuroImage 54, 2840–2853 (2011).

69. Beard, D. A. & Bassingthwaighte, J. B. The fractal nature of myocardial blood
flow emerges from a whole-organ model of arterial network. J. Vasc. Res. 37,
282–296 (2000).

70. Tsai, P. S. et al. Correlations of neuronal and microvascular densities in
murine cortex revealed by direct counting and colocalization of nuclei and
vessels. J. Neurosci. 29, 14553–14570 (2009).

71. Gould, I. G., Tsai, P., Kleinfeld, D. & Linninger, A. The capillary bed offers the
largest hemodynamic resistance to the cortical blood supply. J. Cereb. Blood
Flow Metab. 37, 52–68 (2016).

72. Sweeney, P. W., Walker-Samuel, S. & Shipley, R. J. Insights into cerebral
haemodynamics and oxygenation utilising in vivo mural cell imaging and
mathematical modelling. Sci. Rep. 8, 1373 (2018).

73. Pries, A. R., Secomb, T. W., Gaehtgens, P. & Gross, J. Blood flow in
microvascular networks. Experiments and simulation. Circ. Res. 67, 826–834
(1990).

74. Peyrounette, M., Davit, Y., Quintard, M. & Lorthois, S. Multiscale modelling
of blood flow in cerebral microcirculation: details at capillary scale control
accuracy at the level of the cortex. PLoS One 13, e0189474 (2018).

75. Gagnon, L. et al. Modeling of cerebral oxygen transport based on in vivo
microscopic imaging of microvascular network structure, blood flow, and
oxygenation. Front. Comput. Neurosci.10, 82 (2016).

76. Shibata, M. et al. Clearance of Alzheimer’s amyloid beta1-40 peptide from
brain by LDL receptor related protein 1 at the blood-brain barrier. J. Clin.
Investig. 106, 1489–1499 (2000).

77. Di Caprio, G., Stokes, C., Higgins, J. M. & Schonbrun, E. Single cell
measurement of red blood cell oxygen affinity. Proc. Natl Acad. Sci. 112,
9984–9989 (2015).

78. Roberts, K. F. et al. Amyloid efflux from the central nervous system into the
plasma: Brain efflux of amyloid. Ann. Neurol. 76, 837–844 (2014).

79. Swaminathan, S. K. et al. Insulin differentially affects the distribution kinetics
of amyloid beta 40 and 42 in plasma and brain. J. Cereb. Blood Flow. Metab.
38, 904–918 (2018).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27534-8

10 NATURE COMMUNICATIONS |         (2021) 12:7295 | https://doi.org/10.1038/s41467-021-27534-8 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Acknowledgements
Research reported in this publication was supported by the European Research Council under
ERC grant agreements 615102 (BrainMicroFlow) and 648377 (ReactiveFronts) and by the
NIH (awards R21CA214299 and 1RF1NS110054). We gratefully acknowledge P. Blinder, P.
Tsai, and D. Kleinfeld for sharing anatomical networks, C.B. Schaffer and N. Nishimura for
inspiring discussions, N. Nishimura for critically reading a previous version of this manu-
script, and M. Berg who developed the network flow solver. The funders had no role in the
study design, data collection, and analysis, decision to publish, or preparation of the
manuscript.

Author contributions
All authors contributed equally to the conceptual aspects of this work and to manuscript
writing. F.G. developed the numerical methods and analyzed the data. T.L.B. and S.L. designed
the research, jointly supervised the work, and contributed to data analysis and interpretation.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41467-021-27534-8.

Correspondence and requests for materials should be addressed to Tanguy Le Borgne or
Sylvie Lorthois.

Peer review information Nature Communications thanks Stephen Payne and the other,
anonymous, reviewer(s) for their contribution to the peer review of this work. Peer
reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2021

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27534-8 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:7295 | https://doi.org/10.1038/s41467-021-27534-8 |www.nature.com/naturecommunications 11

https://doi.org/10.1038/s41467-021-27534-8
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Network-driven anomalous transport is a fundamental component of brain microvascular dysfunction
	Results
	Vessel flow rates and transit times follow broad distributions
	Network trajectory lengths and travel times show anomalous transport statistics
	Flow and transport properties emerge from the physics of dipole flows in networks
	Mean-field transport dynamics are governed by dipolar trajectory length distributions
	Random flow fluctuations in the capillary network control large blood travel times
	Simulation of three-dimensional oxygen distribution in microvascular networks
	Anomalous transport drives the early appearance of hypoxic regions under conditions of hypoperfusion
	The weak diffusivity of amyloid-β amplifies the impact of anomalous transport

	Discussion
	Methods
	Brain microvascular networks
	Simulation of blood flow and Lagrangian transport
	First-order kinetics models of oxygen supply and amyloid-β clearance

	Reporting summary
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




