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A distributed fMRI-based signature for the
subjective experience of fear
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The specific neural systems underlying the subjective feeling of fear are debated in affective

neuroscience. Here, we combine functional MRI with machine learning to identify and

evaluate a sensitive and generalizable neural signature predictive of the momentary self-

reported subjective fear experience across discovery (n= 67), validation (n= 20) and

generalization (n= 31) cohorts. We systematically demonstrate that accurate fear prediction

crucially requires distributed brain systems, with important contributions from cortical (e.g.,

prefrontal, midcingulate and insular cortices) and subcortical (e.g., thalamus, periaqueductal

gray, basal forebrain and amygdala) regions. We further demonstrate that the neural

representation of subjective fear is distinguishable from the representation of conditioned

threat and general negative affect. Overall, our findings suggest that subjective fear, which

exhibits distinct neural representation with some other aversive states, is encoded in dis-

tributed systems rather than isolated ‘fear centers’.
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Fear is probably the most studied emotion during the last
decades, yet despite considerable advances in animal models
and human neuroimaging research, vigorous debates on

how to define and investigate fear and its facets continue1–4.
When we talk about fear in everyday life, we primarily refer to the
subjective feeling of being afraid3. However, in psychological and
neuroscientific conceptualizations, fear also describes defensive
behaviors, such as freezing, and peripheral physiological changes
that accompany such behaviors5,6.

The neural basis of ‘fear’, or threat behaviors, has been
extensively mapped in animal models using Pavlovian con-
ditioning and predator exposure protocols3,7. These models
provide compelling evidence for a pivotal role of subcortical
systems, particularly the central extended amygdala, as well as the
hypothalamus and periaqueductal gray (PAG), in mediating
threat detection and defensive responses7–13. However, the sub-
jective emotional experience of fear remains ultimately inacces-
sible in animal models, and recent conceptual frameworks argue
that the evolutionarily conserved defensive survival circuits that
account for the behavioral and physiological responses to threats
might be distinct from those underlying the subjective experience
of fear3,6,14–16. The differentiation between the defensive response
and the subjective experience of fear has critical implications for
translational research on pathological fear6, given that animal
models primarily evaluate novel treatments by means of effects
on physiological and behavioral defensive threat reactivity17,
whereas feelings of exaggerated fear or anxiety represent the
primary clinical outcome and reason for patients to seek
treatment18.

In humans, lesion and functional magnetic resonance imaging
(fMRI) approaches have been employed to determine the specific
brain systems that underlie the subjective feeling of fear. Early
studies in a patient with focal amygdala lesions demonstrated
impairments in fear-related processes, including recognition and
experience of fear19,20, which contributed to an amygdala-centric
fear perspective. However, subsequent studies reported variable
fear-related functional consequences in patients with focal
amygdala lesions21. For instance, some patients with focal and
complete amygdala lesions maintain intact fear recognition22 and
experience fear, anxiety and panic in response to breathing CO2-
enriched air23. fMRI studies in healthy subjects suggest that it is
time to move beyond an amygdala-centric fear perspective and
demonstrate that stimuli that evoke subjective feelings of fear
elicit activation not only in the amygdala but also PAG, hypo-
thalamic and frontal regions24–27. However, the conventional
fMRI approach applied in these studies has been limited. In
particular, it is designed to permit the inference of whether a
single brain region (or voxel) is activated conditionally on a sti-
mulus, but does not allow reverse inferences about ‘fear’ states
given brain activity28. Furthermore, mass univariate approaches
are inherently focused on individual regions or, in the case of
connectivity analyses, circumscribed networks yet do not model
joint activity across distributed brain regions working together to
underpin fear experience29, and stimulus-induced activation
changes in single brain regions typically have only modest effect
sizes30–32. These issues raise the question of whether isolated
regions can provide adequate and comprehensive brain-level
descriptions of complex mental processes such as the subjective
feeling of fear.

To provide sufficient and process-specific brain-level descrip-
tions of mental processes with large effect sizes recent studies
have combined fMRI with machine-learning-based multivariate
pattern analysis (MVPA). This approach can capture information
at much finer spatial scales33 and provide considerably larger
effect sizes in brain-outcome associations31 thus allowing the
development of sensitive and specific brain signatures of mental

processes32,34–36, including signatures for acquired defensive
responses37 and subjective emotional states38,39. Moreover, an
initial MVPA study has revealed promising findings suggesting
that offline categorical fear ratings collected before fMRI are
associated with a neural signature that is independent of
online autonomic arousal indices acquired during fMRI40 (hen-
ceforward referred to as animal fear schema signature (AFSS)
in the present study for convenience). The MVPA approach
additionally allows functional separation of mental processes
based on population coding31, despite overlapping univariate
activation35,41,42 and thus offers an opportunity to determine
process-specific neural representations of (often) concurrent fear-
related processes, such as the experience of fear and defensive
responses.

Moreover, the perspective of an isolated fear center in the brain
has additionally been challenged by conceptual perspectives,
including recent appraisal43 and constructionist2 theories of
emotion which suggest that emotional experiences result from
interactions between multiple systems including core affect,
sensory, memory, motor, and cognitive systems44, and by the
two-system model suggesting that interactions of subcortical
defensive systems with prefrontal regions engaged in conscious-
ness are critical to establish a neural representation of the sub-
jective fear experience6.

Here, in the context of ongoing debates about the neural
representations of fear, we capitalize on recent advances in
MVPA-based neural decoding techniques to determine whether
(1) it is possible to develop a sensitive and generalizable neural
representation of the subjective fear experience on the population
level, (2) this neural representation can predict momentary (trial-
wise) fear experience on the individual level, (3) the neural
representation in isolated systems such as the amygdala or ‘cor-
tical consciousness network’ is sufficient to capture the subjective
experience of fear, and (4) the neural representation of the
momentary fear experience is distinct from the representations of
the conditioned defensive threat response and general aversive
states. More specifically, we employed a support vector regression
(SVR) algorithm in healthy participants (n= 67) to identify the
brain signature that predicted the intensity of trial-by-trial rated
subjective experiences of fear elicited by fear-evoking pictures
ranging from low to high fear induction (Fig. 1a). The perfor-
mance of the established visually induced fear signature (VIFS)
was evaluated in (a) an independent validation cohort (n= 20),
who underwent a similar but not identical fear induction para-
digm (Fig. 1b) as well as a generalization cohort (n= 31) from a
previous study that employed a different fear induction paradigm
and MRI system40 and (b) a comparison with the AFSS (Fig. 1c).
To extend the perspective from a population to an individual level
we tested whether the VIFS can predict trial-wise fear experience
for each subject in discovery and validation cohorts separately.
We further systematically identified brain regions that were
associated with (forward model, i.e., expressing the observed data
as functions of underlying variables) and predictive of (backward
model, i.e., expressing variables of interest as functions of the
data) subjective fear experience45 and examined to what extent
single brain systems or networks can capture subjective fear
experience. Moreover, to determine the functional specificity of
the neural fear experience signature we compared the spatial and
functional similarities between the VIFS with the signature of
conditioned defensive threat response37 (mostly referred to as
‘conditioned fear response’ in the literature, but see ref. 3 for a
discussion on the terminology) and general negative emotional
experience32, respectively (Fig. 1c). Together this systematic
evaluation can advance ongoing debates on how the brain con-
structs subjective fear, whether the neural mechanisms of the
conscious experience of fear are distinct from defensive responses
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elicited by conditioning3,6,14–16 or unspecific aversive emotional
experience.

In this work we develop a sensitive and generalizable neural
signature predictive of the momentary subjective fear experience
and systematically demonstrate that accurate fear prediction
crucially requires distributed brain systems, with important
contributions from cortical (e.g., prefrontal, midcingulate and
insular cortices) and subcortical (e.g., thalamus, periaqueductal
gray, basal forebrain, and amygdala) regions. The neural repre-
sentation of subjective fear are distinguishable from the neural
representations of conditioned threat and general negative affect.
Overall, the findings suggest that subjective fear experience

exhibits a distinguishable neural representation from some other
aversive states and is encoded in distributed systems rather than
isolated ‘fear centers’.

Results
Visual stimuli elicited a robust range of subjective fear. The
experience of fear was induced by visual stimuli with varying
levels of subjective fear induction e.g., by stimuli show-
ing threatening or dangerous situations. Subjects were explicitly
instructed to imagine that they were encountering the situation
displayed in the picture to increase the vividness of the stimulus
and were asked to report their current level of fear for each trial

(a) Fear induc�on fMRI paradigm used in the discovery cohort (80 s�muli in total, distributed over 4 runs)

(b) Fear induc�on fMRI paradigm used in the valida�on cohort (60 s�muli in total, distributed over 2 runs)
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Fig. 1 Experimental paradigms and analysis stages. Discovery (a) and validation (b) cohorts underwent two similar but not identical fear induction and
rating paradigms during fMRI acquisition. Of note, examples of the fear-evoking photos are pictures only for display purposes and not included in the
original stimulus set. The pictures have been obtained from pixabay.com under the Pixabay License, and are free for commercial and noncommercial
use across print and digital. c depicts the analytic stages and datasets used in the present study. Specifically, a whole-brain multivariate pattern predictive
of the level of subjective experience of fear was trained on the discovery sample (n= 67) using support vector regression and further evaluated in
discovery (cross-validated), validation (n= 20), and generalization (n= 31) cohorts. We next systematically applied univariate and multivariate analyses to
determine the spatial scale and local contributions of specific regions to the momentary subjective fear representation. Finally, we tested whether
subjective fear was encoded with a neural signature that was distinct from the representation of conditioned threat (CS+ versus CS− cues) and general
negative affect. GLM general linear model, SVR support vector regression, VIFS visually induced fear signature developed in the current study, AFSS animal
fear schema signature developed by Vincent Taschereau-Dumouchel and colleagues, TPS threat-predictive signature developed by Reddan and colleagues,
PINES picture-induced negative emotion signature developed by Luke Chang and colleagues. See ‘Methods’ and ‘Results’ for the details of the datasets and
brain signatures used in this study.
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on a 5-point Likert scale ranging from 1 (neutral/slightest fear) to
5 (very strong fear). To initially test whether the visual stimuli
elicited meaningful and varying levels of subjective fear, we
plotted the number of each selected subjective fear level (across
subjects) for each run (Supplementary Fig. 1a) and for each sti-
mulus category (animal, human and scene; Supplementary
Fig. 1b). We found that the stimuli induced sufficient levels of fear
experience in the discovery cohort (n= 67) which was used to
develop the neural signature of subjective fear (see below for
details), such that over 14% trials of each stimulus type were rated
as 5 (reflecting that they induced strong fear) and self-reported
fear levels were generally evenly distributed across categories
and runs. Moreover, 65 out of 67 subjects reported all 5 levels
of subjective fear whereas the remaining 2 subjects used
ratings ‘1–4’.

A brain signature sensitive to predict visually induced sub-
jective experience of fear. We applied SVR to identify a whole-
brain signature of fMRI activation that predicted the intensity of
self-reported fear ratings during observation of fear-evoking
pictures in the discovery cohort (Fig. 2a). To evaluate the per-
formance of the visually induced fear signature (VIFS), we
applied the VIFS to data from test subjects in both discovery
(10 × 10-fold cross-validated, see ‘Methods’ for details) and vali-
dation (n= 20) cohorts to calculate the VIFS pattern expressions
for individual participants’ activation maps for each of five levels
of reported fear. The developed VIFS accurately predicted ratings

of reported fear in both discovery and independent validation
cohorts. Specifically, for individual participants in the discovery
cohort the average within-subject correlation between predicted
and actual fear ratings (5 or 4 pairs of scalar values per subject)
was r= 0.89 ± 0.01 (standard error (SE)), the mean explained
variance score (EVS) was 72.5 ± 2.1%, the average root mean
squared error (RMSE) was 1.38 ± 0.08 and the overall (between-
and within-subjects) prediction-outcome (i.e., 333 pairs) corre-
lation coefficient was 0.57 (averaged across ten repetitions;
EVS= 17%; bootstrapped 95% confidence interval (CI)= [0.49,
0.63]) (Fig. 2b). Testing the VIFS model developed on the dis-
covery cohort, with no further model fitting, in the validation
cohort (Fig. 1b) revealed comparably high prediction−outcome
correlations (within-subject r= 0.87 ± 0.02; mean EVS= 68.3 ±
5.6%; average RMSE= 1.40 ± 0.14; overall prediction−outcome
r= 0.59, 95% CI= [0.48, 0.69], EVS= 12%, permutation test
one-tailed P < 0.001; Fig. 2c), indicating a sensitive and robust
subjective fear signature on the neural level (see also general-
ization and benchmarking of the VIFS below). To further
determine the sensitivity of the VIFS to predict levels of subjective
fear experience a two-alternative forced-choice test was applied,
comparing pairs of activation maps within each subject and
choosing the one with higher VIFS response as more fearful. The
VIFS response accurately classified high (average of rating 4 and
5) versus moderate (rating 3) and moderate versus low (average
of rating 1 and 2) fear in both cohorts with 88−93% accuracy
(Cohen’s d: 1.18–1.40), and high versus low with 100% accuracy
in both cohorts (Cohen’s d: 2.20–2.58) (Fig. 1b, c; see also Table 1

Fig. 2 Visually induced fear signature (VIFS). a depicts the VIFS pattern thresholded using a 10,000-sample bootstrap procedure at q < 0.05, FDR
corrected. Inserts show the spatial topography of the unthresholded patterns in the left ACC, right PAG, bilateral AMG, and bilateral insula. AMG denotes
amygdala, THAL thalamus, vmPFC ventromedial prefrontal cortex, dmPFC dorsal medial prefrontal cortex, dACC dorsal anterior cingulate cortex, MCC
middle cingulate cortex, ACC anterior cingulate cortex, and PAG periaqueductal gray. b, c depict the predicted fear experience (subjective ratings;
mean ± SE) compared to the actual level of fear for the cross-validated discovery cohort and the independent validation cohort, respectively. Accuracies
reflect forced-choice comparisons. Two-sided binomial tests were used to test whether the classification accuracies were higher than chance level.
r indicates the Pearson correlation coefficient between predicted and true ratings. d, e depict an average peristimulus plot (mean ± SE) of the VIFS response
to the cross-validated discovery cohort and the independent validation cohort. This reflects the average VIFS response at every repetition time (TR; 2 s) in
the time series separated by the fear ratings. Of note, the VIFS reacts with a latency of approximate 4 s after stimulus onset which corresponds to the
timing of the hemodynamic response function (HRF) following stimulus onset. f, g compare the fear prediction (mean ± SE) of AFSS with the VIFS on
discover, validation, and generalization cohorts, respectively. * indicates P < 0.05, **P < 0.01 and ***P < 0.001 (uncorrected). Error bars and shaded regions
indicate SEs. VIFS visually induced fear signature, AFSS animal fear schema signature, SE standard error of mean. Source data are provided as a Source
Data file.
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for a detailed summary of classification performance). Moreover,
the VIFS response could distinguish each successive pair of fear
rating levels (e.g., rating 4 versus 5) with ≥80% accuracy, which
were significantly better than chance level (50%; P < 0.001; except
ratings of ‘1’ versus ‘2’ in the validation cohort) (Fig. 2b, c).

Retraining the decoder excluding the occipital lobe revealed
high prediction accuracies, suggesting that although the fear-
predictive signals might be partly embedded in regions engaged in
visual processing the contribution of visual cortical patterns is
small (Supplementary Results and Supplementary Fig. 2; see also
the prediction using visual network alone in the following
‘Alternative models to determine the contribution of isolated fear
predictive systems’ section, which demonstrated a substantial
lower performance as compared to the whole-brain prediction).
In addition, we applied the VIFS to time series data using dot-
product in the discovery (10 × 10-fold cross-validated) and
validation datasets to determine the specificity of the visually
induced fear pattern with respect to confrontation with imminent
threat (rather than anticipation or cognitive evaluation). Visual
inspection of the VIFS reactivity at each timepoint following
stimulus onset indicated that the VIFS response began approxi-
mately 4 s following picture onset and increased with increasing
levels of reported fear during approximately 6–12 s (Fig. 2d, e).
These findings validate the adequacy of the hemodynamic
response model and confirmed that the VIFS was specific to
brain activity during threat exposure, as opposed to threat
anticipation (pre-stimulus) or cognitive evaluation (response
reporting).

Generalization and benchmarking of VIFS performance. An
important feature of population-level neural signatures is that
their performance can be evaluated in new datasets and para-
digms, although prediction across cohorts, paradigms and dif-
ferent MRI systems has been challenging. Taschereau-Dumouchel
et al.40 developed a neural decoder which predicted the general
subjective fear of different animal categories (assessed before
fMRI) and the authors shared the dataset used for training their
model—which we term the ‘generalization dataset’ here—allow-
ing us to compare the performance of the VIFS with the AFSS
on the discovery, validation and generalization cohorts. We
found that the VIFS predicted all three datasets well (overall
prediction−outcome correlations rs > 0.56) while the AFSS only
performed well on its training dataset (overall prediction−out-
come correlation r= 0.64) but poorly on both discovery and
validation cohorts (overall prediction−outcome correlation rs <
0.27) (Fig. 2f, g; Table 1; see also Supplementary results for
details), indicating a robust generalization and high sensitivity of
the VIFS to predict fear experience across populations, fear
induction paradigms and MRI systems.

Within-subject trial-wise prediction. The feeling of fear is a
momentary, highly subjective and individually constructed
state2,4 and thus a key question is to what extent the population-
level model (i.e., the VIFS), which is a statistical summary of a
highly variable set of instances, can predict momentary (trial-
wise) fear experience for each subject (on the individual level). To
this end we performed single-trial analyses using the Least
Squares All (LSA) approach46 to obtain a beta map for each
stimulus for each subject in both discovery (~80 beta maps per
subject) and validation (~60 beta maps per subject) cohorts (see
‘Methods’ for details). The VIFS was next applied to these beta
maps to calculate the pattern expressions which were further
correlated with the true ratings for each subject separately. The
statistical significance was evaluated by prediction−outcome
Pearson correlation for each subject separately. We found that
the VIFS could significantly predict trial-by-trial ratings for 61
out of 67 subjects in the discovery cohort (cross-validated) and
for 16 out of 20 subjects in the validation cohort. The mean
prediction−outcome correlations were 0.38 ± 0.01 and 0.40 ± 0.03
for the discovery and validation cohorts, respectively. Our find-
ings suggest that although fear experience differs between
individuals2,4 the VIFS could predict the level of momentary fear
experience on the individual level in a large population.

Subjective fear is associated with and predicted by distributed
neural systems. We systematically determined individual brain
regions that were associated with subjective fear ratings and that
provided consistent and reliable contributions to the whole-brain
fear decoding model using different analytic strategies. We first
examined the conventional univariate linear parametric effect of
fear ratings, i.e., voxels that increased (yellow in Supplementary
Fig. 3a) or decreased (blue in Fig. Supplementary 3a) linearly with
within-subject fear ratings across trials, by performing one-
sample t test on the parametric modulation beta maps. Subjective
fear was associated with activation in a broad set of cortical and
subcortical regions, including increased activation in the amyg-
dala and surrounding sublenticular extended amygdala, anterior
insula, anterior midcingulate cortex (aMCC), thalamus, PAG
and surrounding midbrain, ventrolateral prefrontal and lateral
orbitofrontal cortices, and fusiform/ventral occipital-temporal
regions. Conversely, we found negative correlations with fear
ratings in the ventromedial prefrontal cortex (vmPFC), medial
orbitofrontal cortex (OFC), posterior insula/operculum, and
dorsolateral prefrontal cortex (dlPFC), posterior cingulate cortex
(PCC), inferior parietal lobule (IPL) and supplementary motor
area (SMA) (q < 0.05, FDR corrected; Supplementary Fig. 3a).

We then compared these univariate (single-voxel) findings to
multivariate models in several ways. First, we performed a one-
sample t test analysis (treating participant as a random effect) on

Table 1 Comparing performance of VIFS with AFSS.

Classifications VIFS AFSS

Discovery dataset high versus low 100 ± 0%*** (2.58) 79 ± 5.0%*** (0.77)
high versus moderate 88 ± 3.9%*** (1.18) 42 ± 6.0%NS (−0.22)
moderate versus low 93 ± 3.1%*** (1.40) 84 ± 4.5%*** (1.02)

Validation dataset high versus low 100 ± 0%*** (2.20) 95 ± 4.9%*** (1.88)
high versus moderate 90 ± 6.7%*** (1.21) 55 ± 11.1%NS (0.19)
moderate versus low 90 ± 6.7%*** (1.27) 65 ± 10.7%NS (0.78)

Generalization dataset high versus low 87 ± 6.2%*** (1.10) 90 ± 5.5%***(1.56)
high versus moderate 83 ± 6.8%*** (0.97) 87 ± 6.2%*** (0.79)
moderate versus low 83 ± 7.0%*** (0.86) 93 ± 4.7%*** (1.52)

For each dataset we used VIFS and AFSS to classify high, moderate, and low subjective fear using two-alternative forced-choice tests. Performance was shown as accuracy ± SE (Cohen’s d). *** denotes
uncorrected P < 0.001, and NS denotes non-significant based two-sided binomial tests. Source data are provided as a Source Data file.
VIFS visually induced fear signature, AFSS animal fear schema signature.
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the weights from within-subject (ideographic) multivariate pre-
dictive models (for details, see ‘Methods’). Like the univariate
maps, within-subject predictive models (backward models)
included consistent weights in brain regions spanning multiple
large-scale cortical and subcortical systems, which exhibited a
large overlap with the fear regions as determined by the univariate
approach (Supplementary Fig. 3b; q < 0.05, FDR corrected).

Some brain features that make large contributions to the
multivariate models might capture and control for sources of noise
in the data, rather than being directly related to mental events45.
To provide a more transparent comparison between univariate
and multivariate results, we thus calculated within-subject
reconstructed ‘activation patterns’ (forward models; see ‘Methods’
for details), which assess the relationships between each voxel and
the response (fitted values) in the multivariate model. These are
also referred to as ‘structure coefficients’ in the statistical
literature47. Supplementary Fig. 3c shows results of a group
analysis of ‘activation patterns’ across individuals (q < 0.05, FDR
corrected). As Haufe et al.45 suggest, voxels that exhibit significant
predictive weights and structure coefficients are important regions
that are both directly correlated with the outcomes (i.e., fear
ratings) and are predictive after accounting for other brain regions
in the multivariate model. As shown in Supplementary Fig. 3c, the
thresholded ‘model activation pattern’ was remarkably similar to
the univariate parametric effects of fear ratings (Supplementary
Fig. 3a). This suggests that the multivariate model is encoding
activity across distributed regions and confirms that subjective fear
is associated with activity in a large number of cortical and
subcortical regions. Indeed, a formal assessment of overlap
(Supplementary Fig. 3d) showed that virtually all regions with
consistent, significant model weights in the multivariate models
also encoded model information (i.e., showed significant ‘model
activation patterns’). The broad conclusion is that the neural
representation of human fear is not limited to a single or a set of
focal regions (e.g., the amygdala), but rather includes a broad set
of regions spanning multiple systems.

We next determined regions that reliably contributed to the
fear prediction within the VIFS itself by applying a bootstrap test
to identify regions with significant, consistent model weights
(q < 0.05, FDR corrected) 34. In line with within-subject models, a
set of distributed brain regions exhibited significant model
weights (Fig. 3a) and structure coefficients (Fig. 3b), including
amygdala, MCC, insula, inferior frontal cortex (IFG), PAG,
occipital and sensorimotor areas (Fig. 3c).

Overall, regions that were most consistently associated with
subjective fear across the analyses included key regions engaged
in conditioned threat (amygdala, aMCC and PAG), and general
avoidance motivation (anterior insula, posterior ventral striatum)
as determined across species while other regions such as the right
posterior lateral prefrontal cortex/inferior frontal junction and
ventral occipito-temporal stream have been associated with
cognitive emotion construction in humans and dysregulated
emotional experience in mental disorders32,48. Negative associa-
tions with fear were most consistently identified in medial
prefrontal and sensorimotor regions. In conclusion, across both
univariate and multivariate analyses, our results indicate that fear
experience is represented in distributed neural systems involved
in defensive responses, avoidance behavior, negative affect,
emotional awareness as well as pathological fear and anxiety.

Alternative models to determine the contribution of isolated
fear-predictive systems: local searchlights, pre-defined regions
and networks perform considerably worse than VIFS. Given the
continuous debate on the contribution of specific brain regions,
such as amygdala8,13,20,49 and more recently the cortical

consciousness network3,6, to the subjective fear experience, we (1)
located local brain regions that were predictive of subjective fear
experience using both searchlight- and parcellation-based ana-
lyses, and (2) examined to what extent models trained on single
brain region and network could predict subjective fear ratings as
compared with the whole-brain model (i.e., the VIFS). As shown
in Fig. 4a, b, subjective fear experience could be significantly
predicted by activations in widely distributed regions (averaged
across 10 × 10-fold cross-validation procedure). Given that the
uncorrelated P values equivalent to q < 0.05 were liberal in this
case we displayed brain regions that survived at P < 0.001
uncorrected (corresponding to q < 0.004 and 0.003, FDR cor-
rected, respectively). However, none of these local regions pre-
dicted subjective fear to the extent the VIFS did (see also
Supplementary Fig. 4a−d for predictions of models trained on
discovery cohort on validation and generalization cohort).

We next re-trained predictive SVR models (with the identical
cross-validation and prediction procedure as used for the VIFS)
restricted to activations in (a) the bilateral amygdala; (b) a pre-
defined cortical network associated with consciousness6 (see
‘Methods’ for details); (c) a subcortical region group (including
striatum, thalamus, hippocampus and amygdala); and (d) each of
seven large-scale resting-state functional networks50,51. We found
that the amygdala (prediction−outcome correlation r= 0.26,
0.25, and 0.32 for discovery (cross-validation), validation, and
generalization cohorts, respectively) as well as the other brain
networks (see Fig. 4c, d, Supplementary Table 1 and Supplemen-
tary Fig. 4e, f see details) could, to some extent, predict subjective
fear ratings. However, although statistically significant (Ps <
0.001, one-tailed permutation t tests) the effect sizes in terms of
prediction−outcome correlations (including searchlight- and
parcellation-based predictions) were substantially smaller than
those obtained from the VIFS, which used features that span
multiple systems.

This comparison is fair even though the number of features
differ, as models were always tested on holdout participants,
eliminating the problem of overfitting as more predictors are used
(a substantial problem in models trained and tested without
cross-validation). However, to assess the potential effect of the
numbers of features in the prediction analyses (i.e., whole-brain
model uses much more features/voxels), as shown in Fig. 4d, we
randomly selected samples from a uniform distribution spanning
the entire brain (black), consciousness network (red), subcortical
regions (light purple) or a single resting-state network (averaged
over 1000 iterations)31. The asymptotic prediction when
sampling from all brain systems as we did with the VIFS (black
line in Fig. 4d and Supplementary Fig. 4e, f) was substantially
higher than the asymptotic prediction within individual networks
(colored lines in Fig. 4d and Supplementary Fig. 4e, f; see also
Supplementary Table 1 for details). This analysis thus demon-
strated that whole-brain models have much larger effect sizes
than those using features from a single network. Furthermore,
model performance reached asymptote when approximately
10,000 voxels were randomly sampled across the whole-brain,
as long as voxels were drawn from multiple systems, further
emphasizing that subjective fear experience is encoded in
distributed neural patterns that span multiple systems. Impor-
tantly, we found similar results when applying the models trained
on the discovery cohort to the validation and generalization
cohorts, indicating that models trained on ~10,000 randomly
sampled voxels were robust and generalizable. Together the
results from the systematic analyses provide the first evidence that
the subjective experience of fear is represented in distributed
neural systems which argues against fear experience being
reducible to activations in any single brain region or canonical
network.
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Subjective fear and conditioned defensive threat responses
engage distinct neural representations in humans. Translational
fear models are strongly based on threat/fear conditioning para-
digms and conditioned threat is often used synonymous with fear in
the literature (‘conditioned fear’)3. However, recent fear con-
ceptualizations emphasize potential mechanistic and neural dis-
tinctions between acquired defensive responses and the subjective
experience of fear3,6,14–16. Against this background we examined
whether the neural representation of subjective fear and condi-
tioned threat responses were dissociable by applying the VIFS to
two datasets acquired during Pavlovian threat conditioning in
which an auditory cue37 or visual cue52 (see ‘Methods’ for details),
respectively, was paired with a shock (CS+) while a control cue was
unpaired (CS−). We specifically tested whether the VIFS general-
ized to discriminate CS+ versus CS−. Second, Reddan et al.37

developed a threat-predictive signature (TPS) that accurately clas-
sified CS+ versus CS− in new individuals based on brain activity
patterns. We applied the TPS to the fear paradigm data and
assessed its performance in predicting subjective fear ratings by
correlating the overall (between- and within-subjects) signature
responses with the true ratings. We propose that if subjective fear
and conditioned threat share similar neural mechanisms, the VIFS
and TPS should perform well in cross-prediction: i.e., VIFS
responses could predict CS+ versus CS−, and TPS responses
should correlate with subjective fear ratings. Conversely, low cross-
prediction indicates independence of the neural representations for
‘fear’ and ‘conditioned threat’ constructs (for similar approaches see
e.g., refs. 35,36,42,53). As shown in Fig. 5 the VIFS did not classify
CS+ from CS− above chance during auditory (accuracy= 57 ±
6.0%, Cohen’s d= 0.09, permutation test one-tailed P= 0.234, see
also Fig. 5a) or visual threat conditioning (accuracy= 62 ± 6.4%,
Cohen’s d= 0.35, permutation test one-tailed P= 0.265). Given
that the CS+ presentation induces higher autonomic arousal (as e.g.
measured by skin conductance responses54 in the visual threat
conditioning dataset, see Supplementary Methods for details), these
findings additionally suggest that the VIFS is not sensitive to general
emotional arousal per se. Whereas the TPS predicted visual CS+
versus CS− cues with high accuracy (accuracy= 93 ± 3.3%,
Cohen’s d= 1.30, permutation test one-tailed P= 0.003) in the
visual threat conditioning data, it did not predict fear ratings in our
discovery, validation, or generalization cohorts (discovery: r= 0.16,
permutation test one-tailed P= 0.085, Fig. 5b; validation: r= 0.18,

permutation test one-tailed P= 0.111; generalization: r= 0.24,
permutation test one-tailed P= 0.183).

In support of separable brain representations underlying
subjective fear experience and defensive responses towards
acquired threat signals we additionally found that the VIFS and
TPS pattern weights were spatially uncorrelated on the whole-
brain level (r= 0.02, permutation test one-tailed P= 0.125).
Moreover, we explored the joint distribution of normalized (z-
scored) voxel weights of these two patterns by plotting VIFS on
the y axis and the TPS on the x axis (for a similar approach see
ref. 55). As visualized in Fig. 5c, stronger weights across the
whole-brain (sum of squared distances to the origin [SSDO])
were actually observed in the nonshared Octants (1, 3, 5, 7).
Overall these results suggest distinct neural representations for
subjective fear experience and conditioned threat responses.
These findings provide the first evidence for separable whole-
brain fMRI multivariate patterns for subjective experience of fear
and conditioned threat, indicating functionally independent
neural representations for subjective fear and conditioned threat.

In addition to whole-brain models, we re-trained subjective fear
and conditioned threat patterns using data within integrative regions
traditionally related to ‘fear’ but independent of sensory modality. To
this end the automated meta-analysis toolbox Neurosynth56 was used
to a create a mask based on a meta-analysis of previous studies that
frequently use the word ‘fear’. The mask included regions (e.g.,
amygdala, vmPFC, aMCC, PAG and insula) showing consistent
associations with ‘fear’ across 363 published studies (i.e., ‘reverse
inference’; thresholded at q < 0.05, FDR corrected). We found that
the fear pattern trained on a priori ‘fear’ regions could significantly
predict subjective feelings of fear (prediction−outcome rs > 0.30,
Ps < 0.002 for discovery, validation, and generalization cohorts) and
the threat pattern could classify unreinforced CS+ versus CS−
(accuracies > 62%, Ps < 0.008 for auditory and visual conditioning
datasets) although the performances were substantially worse as
compared to whole-brain models. In support of the whole-brain
findings, the two patterns were spatially not correlated (r < 0.01) and
the conditioned threat pattern could not predict subjective fear
(rs < 0.15, Ps > 0.13) and the subjective fear pattern did not
distinguish unreinforced CS+ vs CS− (accuracies < 53%, Ps > 0.69).
Together, these findings further emphasize that subjective fear- and
conditioned threat-related representations within core ‘fear’ regions
are coded by separable neural representations in humans.

(a) VIFS (q < 0.05, FDR corrected)

(b) Reconstructed “ac�va�on pa�ern” from VIFS (q < 0.05, FDR corrected)

(c) Overlap between VIFS and reconstructed “ac�va�on pa�ern” (q < 0.05, FDR corrected)

Fig. 3 Subjective experience of fear is associated with and predicted by distributed brain regions. a shows the thresholded VIFS. b depicts the
threshholded transformed ‘activation pattern’ from the VIFS. c shows the overlap between VIFS and transformed ‘activation pattern’. All images
are thresholded at q < 0.05, FDR corrected. Hot color indicates positive associations (a) or weights (b) whereas cold color indicates negative associations
(a) or weights (b). VIFS visually induced fear signature.
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VIFS responses mediate subjective fear induced by negative
emotion. ‘Fear’ is a highly aversive subjective state and represents
a construct within the negative valence systems domain in the
Research Domain Criteria (RDoC) matrix57. To separate fear
from general negative affect we next investigated the spatial and
functional similarities between the VIFS and PINES (picture-
induced negative emotion signature) which was developed to
track general negative emotion experience32. We found that these
two signatures exhibited a weak positive spatial correlation
(r= 0.08, permutation test one-tailed P < 0.001) and the VIFS was
more sensitive to predict subjective fear rather than general
negative emotion while the PINES more accurately predicted

general negative emotion as compared to fear (Fig. 6a; Table 2;
see Supplementary results for more details).

Given that the experience of fear can be considered as a
prototypical example of a negative emotion and that the PINES
could, to some extent, predict subjective fear (discovery cohort:
r= 0.38; validation cohort: r= 0.37) we next applied multilevel
mediation analysis, which tested whether a covariance between
two variables (X and Y) can be explained by a third variable (M),
to investigate the relation between PINES response, VIFS
response and subjective fear rating. We employed two models
to test (1) whether the VIFS response (mediator M), which
measured subjective fear-specific response, could explain the

Fig. 4 Local brain region and network predictions. a shows brain regions that can significantly (P < 0.001 uncorrected, equivalent to FDR q < 0.004; two-
sided) predict subjective fear ratings revealed by searchlight analysis. Histograms: cross-validated predictions (correlations) from local searchlight analysis.
Red line indicates the prediction-outcome correlation from VIFS. b depicts brain regions which can significantly (P < 0.001 uncorrected, equivalent to FDR
q < 0.003; two-sided) predict subjective fear revealed by parcellation-based analysis. Histograms: cross-validated predictions (correlations) from
parcellations. Red line indicates the prediction-outcome correlation from VIFS. c shows cross-validated predictions (mean ± SE) from amygdala-based
prediction analysis. Error bar indicates standard error of the mean; r indicates overall (between- and within-subjects; i.e., n= 333 pairs) prediction-outcome
Pearson correlation coefficient. d demonstrates that the information about subjective experience of fear is distributed across multiple systems. Model
performance was evaluated as increasing numbers of voxels/features (x axis) were used to predict subjective fear in different regions of interest including
the entire brain (black), consciousness network (red), subcortical regions (light purple) or large-scale resting-state networks. The y axis denotes the cross-
validated prediction-outcome correlation. Colored dots indicate the mean correlation coefficients, solid lines indicate the mean parametric fit and shaded
regions indicate standard deviation. Model performance is optimized when approximately 10,000 voxels are randomly sampled across the whole-brain.
VIFS visually induced fear signature. Source data are provided as a Source Data file.
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association between nonspecific general negative emotion
response (i.e., the PINES response; X) and fear ratings (Y) (our
main hypothesis), and (2) as well as the alternative hypothesis of
whether the general negative emotion response (M), which might
represent the overarching emotional state of fear, mediates the
association between fear signature (X) and fearful rating (Y). We
found that the first model (Fig. 6b) accounted better for our data
than the second one (Fig. 6c) in terms of effect size (model 1:
Cohen’s d= 0.21; model 2: Cohen’s d= 0.06) although only a
partial mediation effect was found as well as the observation that
the first model worked in both discovery and validation cohorts
whereas the second model only worked in discovery cohort (see
Supplementary Results for more details). Our findings thus
suggest that general negative emotion might not fully directly
elicit subjective feeling of fear, and the response of the subjective
fear neural signature could partially explain the association
between negative emotion response and subjective fear rating.

Specificity of the VIFS for the experience of fear. Given that
emotional stimuli such as the pictures we used can induce a
complex array of negative emotional experiences (e.g. disgust,
anger, nonspecific negative arousal), we further explored whether

the VIFS is most closely related to subjective fear. To this end we
acquired ratings of associated negative emotions (disgust, anger
and sadness) and emotional valence and arousal for the stimuli in
an independent sample of participants (n= 120). The ratings
were acquired online and each participant rated all stimuli with
respect to one emotion (n= 20 subjects per emotion). Ratings
were provided on a 5-point rating scale ranging from ‘1’ (not at
all) to ‘5’ (extremely) for all dimensions except for valence which
was rated from ‘1’ (extremely positive) to ‘9’ (extremely negative)
with ‘5’ indicating neutral.

To determine whether and to which extent the VIFS reacts to
other emotional domains, we correlated the image-by-image
series of normative ratings with the image-by-image variation in
VIFS responses, for each emotion category assessed. Specifically,
we used the single-trial beta maps for each picture and averaged
the cross-validated VIFS responses for each picture. We next
correlated the picture-specific group-average VIFS responses with
the picture-specific group-average ratings for each emotional
domain separately (for a similar approach see ref. 58). The VIFS
response was more strongly correlated with subjective fear
(r78= 0.77) than any other emotional rating (disgust: r78= 0.64;
anger: r78= 0.63; sadness: r78= 0.60; arousal: r78= 0.66; valence:
r78= 0.65) suggesting that the VIFS indeed reacts most strongly
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Fig. 5 Comparing fear- and threat-predictive signatures. a depicts that visually induced fear signature (VIFS) does not distinguish unreinforced CS+
versus CS−. b shows the histograms of prediction of threat-predictive signature (TPS) on fear data from nonparametric permutation test. Histograms show
the distribution of null-hypothesis prediction-outcome correlations, and the red line shows the actual correlation coefficient. c demonstrates the scatter
plot displaying normalized voxel weights for VIFS (y axis) and TPS (x axis). Bars on the right represent the sum of squared distances from the origin (0,0)
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to subjective fear and to a lesser extent to other related negative
emotions or general emotional features such as arousal. More-
over, direct comparisons of the correlations between VIFS and
emotion ratings supported this conclusion and revealed sig-
nificantly stronger correlations with fear than other emotions. For
each subject in the discovery cohort, we correlated the cross-
validated VIFS response for each picture with the picture-specific

group-average ratings for each emotional domain separately. We
found that the VIFS tracked subjective fear ratings significantly
better that any of the other five emotions collected in the online
sample (e.g. fear versus the second best prediction, arousal; paired
t test t66= 7.31, P < 0.001, Bonforroni corrected). Together with
our previous findings showing that (1) the VIFS could not
distinguish CS+ (which induces higher autonomic responses as
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analysis results showing that VIFS response mediates the PINES response—fear rating association in both discovery and validation cohorts. c shows that
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VIFS visually induced fear signature, PINES picture-induced negative emotion signature. Source data are provided as a Source Data file.

Table 2 Comparing prediction (correlation) of VIFS and PINES.

Datasets VIFS PINES

Discovery 0.57 [0.49, 0.63]; 0.89 ± 0.01a 0.38 [0.28, 0.47]; 0.59 ± 0.04
Validation 0.59 [0.48, 0.69]; 0.87 ± 0.02 0.37 [0.21, 0.51]; 0.61 ± 0.07
Generalization 0.56 [0.45, 0.64]; 0.65 ± 0.06 0.20 [0.02, 0.36]; 0.05 ± 0.13
PINES holdout 0.29 [0.17, 0.38]; 0.63 ± 0.04 0.72 [0.65, 0.77]; 0.90 ± 0.01

We applied the VIFS and PINES to subjective fear and general negative emotion holdout datasets and calculated the overall (bootstrapped 95% CI) as well as within-subject (mean ± SE) prediction
−outcome correlations between the pattern expressions and the true ratings. Source data are provided as a Source Data file.
aindicates cross-validated.
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reflected in elevated SCR responses) from CS− and (2) the
prediction accuracy of VIFS on high arousing nonspecific
negative emotion was substantially lower than the prediction
accuracies of the subjective fear, these findings suggest that the
VIFS shows reasonable specificity for subjective fear, but to some
extent also captures aspects of other negative emotions or arousal
which are inherently associated with fear.

To test whether the low-level visual properties of the stimuli
contributed to the prediction performance, we determined several
visual features of the stimuli and tested whether these can be
accurately predicted by the VIFS. In detail, we measured the edge
intensity (MATLAB’s Canny edge detector), the saliency (http://
www.saliencytoolbox.net/) as well as the visual clutters (feature
congestion and subband entropy59) for each picture. Next, we ran
similar correlational analyses as we introduced before. We found
that the group-average VIFS responses were not significantly
correlated with any of the visual features (most significant
r=−0.19, P= 0.09). Moreover, the VIFS tracked ratings of
subjective fear from the online sample significantly stronger than
it tracked any of the visual features (fear versus the next closest
feature, edge intensity; paired t test t66= 22.15, P < 0.001,
Bonferroni corrected). Taken together, our findings suggest that
the prediction performance was not driven by the visual
properties of the stimuli.

Discussion
In the current study we developed and validated a sensitive and
generalizable brain signature for the subjective experience of fear,
which predicted momentary fear on a population and individual
level and thus could have potential for translational applications
aiming at yielding information about individual fear experience.
Furthermore, we challenge the notion that subjective fear is a
product of a single brain region or network and propose that
subjective fear is encoded in brain regions that span multiple
neural systems. Across a series of analyses subjective fear was
both associated with and predicted by distributed brain systems
and fear prediction by isolated brain systems was substantial
lower compared to the whole-brain approach. Driven by recent
debates on whether subjective fear and the defensive response
elicited by conditioned threat involve different brain
circuits3,6,14–16 we, moreover, employed a fine-grained analysis
technique (MVPA) to show distinct neural representations
underlying these two mental processes on the whole-brain level
and in traditional ‘fear’ modules such as the amygdala. Finally,
neural representations of subjective fear and general negative
emotion exhibited shared yet separable representations, with the
VIFS response mediating the association between the general
negative emotion response and subjective fear. Together our
findings shed light both on how subjective experience of fear is
represented in the human brain and how this neural repre-
sentation is separable from conditioned defensive responses and
general negative emotion, respectively.

Machine-learning techniques have been increasingly used to
develop integrated predictive models of activation across multiple
brain systems to predict mental processes with large effect sizes (or
explained variance)29,31. Applying support vector regression, we
developed and validated a sensitive and robust whole-brain sig-
nature (VIFS) that accurately predicted the intensity of subjective
fear experience across different fear induction paradigms and MRI
systems. The identification of this intermediate neural signature of
subjective fear is pivotal, as it may (1) provide objective neuro-
biological measures that can supplement self-report which can be
biased by self-reflection or communicative intentions60 and (2)
promote the development and evaluation of process-specific
interventions that target subjective fear experience.

Our findings have theoretical implications for ongoing debates
about the neural circuits of fear, specifically the neural repre-
sentation of subjective fear experience (for an overview see ref. 1).
For instance, the subcortical fear system theory suggests that
feelings of fear arise from highly conserved amygdala-centered
subcortical circuits8,10,13, while high-order perspectives empha-
size the contribution of the fronto-parietal ‘consciousness net-
work’ to fear experience and propose that subcortical circuits are
not directly responsible for fear experience3,6,16,40. Although
limitations of the structure-centric view are widely
acknowledged44 and appraisal43 and constructionist2 theories
have suggested that fear experience results from interactions
between multiple processes and brain systems, a systematic
empirical comparison of structure-centric versus distributed
representation models of subjective fear was previously lacking.

The present findings challenge the structure-centric and
network-centric models of subjective fear by demonstrating that
subjective fear is represented in distributed brain regions,
including but not limited to amygdala, prefrontal, subcortical and
sensory cortices. Whereas previous predictive models focused on
identifying brain regions that reliably contributed to the model
for interpretation purpose32,34 we updated and extended the
characterization of the predictive model. We divided voxels into
different classes based on the combination of predictive weights
and reconstructed ‘activation patterns’45 and revealed that dis-
tributed brain regions, which exhibited significant predictive
weights and reconstructed ‘activations’, contribute to both, pre-
dictions of and associations with the outcome. Second, we
demonstrated that isolated regions (e.g., amygdala) and networks
(e.g., ‘consciousness network’) predicted subjective fear to a
substantially lower extent than the whole-brain signature (VIFS).
Finally, around 10,000 voxels that were randomly sampled across
the whole-brain could achieve high performance of predicting
subjective fear, which could also be generalized to new data col-
lected with different paradigms. Together our findings suggest
that the fear circuits identified in previous studies may only
represent aspects of the subjective fear experience, as reflected by
comparably low effect sizes, yet that the subjective feeling of fear
requires engagement of distributed brain systems. Our findings
are consistent with recent MVPA studies demonstrating that
affective processes including general negative emotion32,
vicarious35 and self-experienced pain31 are distributed across
regions, and meta-analytic evidence suggesting that emotional
experience is constructed in a set of highly interacting brain
regions44.

The RDoC matrix suggests several paradigms to study acute
threat (or ‘fear’), including fear conditioning and exposure to
emotional evocative stimuli. Indeed, subjective feelings of fear and
conditioned threat exhibit a pattern of similar brain activation
particularly in subcortical and prefrontal cortices24–26,37,52.
However, recent conceptualizations propose that due to the fact
that the conditioned automatic defensive response represents an
innate, fixed action pattern which does not necessarily require
consciousness (as opposed to subjective fear which is a conscious
experience), the underlying neural mechanisms might be
distinct3,6,14–16. Traditional univariate activation analyses lack
anatomical specificity and thus cannot determine whether the
neural representations of overlapping activations are similar or
distinct36,61, while the MVPA approach can extract information
at finer spatial scales29,33 and permits support for or rejection of
claims about neural mechanisms that are shared between mental
processes62. Our findings indicate separable neural representa-
tions of subjective fear and the conditioned defensive response
not only on the whole-brain level but also in ‘core fear regions’.
Our study supports and extends current conceptualizations of
neurobiologically orthogonal processes and implies that

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26977-3 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:6643 | https://doi.org/10.1038/s41467-021-26977-3 | www.nature.com/naturecommunications 11

http://www.saliencytoolbox.net/
http://www.saliencytoolbox.net/
www.nature.com/naturecommunications
www.nature.com/naturecommunications


conditioned threat and subjective fear are distinct constructs
within the negative valence system.

In line with the RDoC matrix suggesting that fear is a construct
of the negative valence systems, the VIFS shared similar yet dif-
ferent characteristic functions with the PINES which tracks
general negative emotional responses including sadness, anger,
disgust and fear32. The VIFS was more sensitive to predict sub-
jective fear as compared to other emotional domains including
disgust, anger, sadness, arousal and negative valence, together
with the observation that VIFS failed to predicted conditioned
threat versus safety signals and VIFS responses mediated the
association between PINES responses and fear ratings, suggesting
that the VIFS is a more robust and specific brain marker for
subjective feelings of fear.

A previous study40, which aimed at comparing the neural
representations of subjective fear and the physiological threat
response, developed a decoder predictive of reported fear (i.e.,
AFSS) as assessed by offline ratings to different animal categories.
The VIFS generalized well to the dataset used to train the AFSS,
but the AFSS did not generalize to the same extend to the datasets
used to train the VIFS. This might be due to the fact that the
AFSS reflects more “stable” fear schemas (e.g. the general fear of
spiders) while the VIFS is more accurate to capture fear across
different stimulus classes and contexts. Nevertheless, both studies
have consistently demonstrated that activation patterns in dis-
tributed brain systems including e.g., prefrontal regions, insula
and hippocampus are predictive of subjective fear and that acti-
vation in the ‘fear center’ (i.e., amygdala) is not sufficient to
represent subjective fear experience. These findings are consistent
with a growing number of studies demonstrating that brain
activation in isolated regions or specific subsystem is neither
necessary nor sufficient for predicting subjective emotional
experiences (see e.g. also findings from a “virtual lesion” approach
in ref. 32). Moreover, in line with our findings showing that
subjective fear and conditioned threat responses engage distinct
neural representations in humans Taschereau-Dumouchel et al.40

reported distinguishable neural representations of subjective fear
and its physiological correlates, together suggesting separable
neural representations of subjective fear experience and hard-
wired defensive responses.

The present study used IAPS-type static images as stimuli.
Although ratings revealed that these images could elicit a relative
robust range of subjective fear experience, the types of variations
in stimuli that lead to distinct vs. similar neural encoding are still
not well understood. It is for instance conceivable that video
stimuli could activate the VIFS in proportion to the fear-inducing
properties of the videos, or it is possible that the brain encodes
dynamic stimuli differently. These possibilities could be tested in
future studies. In addition, in the current study we used a SVR
model to develop the VIFS and to explore the neural basis of
subjective fear, however, the prediction accuracy and the con-
tributing brain regions could be further explored by means of
other candidate techniques such as SOS-LASSO which imposes a
prior that the neural pattern should be sparse but also locally
structured63. Moreover, the amygdala is often considered to be a
‘fear center’ or ‘threat center’ in animal models (for a critical
discussion on the role of the amygdala in fear and threat (see also
ref. 6). Although a direct translation of threat-related neural
representations in rodents to human emotional experiences is
limited, a number of human lesion studies in patients with
complete bilateral amygdala lesions underscores the complex role
of the amygdala in fear processing in humans. In line with the
‘fear center’ perspective, an early human lesion study showed that
a patient with focal bilateral amygdala lesions never endorsed
feeling more than minimal levels of fear20. However, other studies
in patients with bilateral focal and complete amygdala lesions

demonstrated that the amygdala was not critically required to
experience panic triggered by a CO2 challenge23, subjective
affective experience64 or the modulation of the acoustic startle
reflex by fear-inducing background stimuli22, which together
raise the question of whether the amygdala is causally necessary
and sufficient for the experience of subjective fear in humans (for
an in-depth discussion, see also ref. 6). Whereas our findings
indicate that the amygdala per se is not sufficient to represent
subjective experience of fear in humans, the question of a causal
role of the amygdala in subjective fear in humans cannot be
ultimately addressed in the present study given the indirect nat-
ure of fMRI measurements and lack of direct experimental
manipulations of the brain. In addition to a widely distributed
pattern of activity, voxels in the amygdala were identified across
our analytic approaches, suggesting that the amygdala may
represent a part of a larger network for initiating or integrating a
coordinated fear and threat response on different levels (see e.g.,
ref. 65).

Pre-registration has been increasingly advocated in the field of
neuroimaging prediction studies (see e.g., also recent recom-
mendations by Poldrack et al.66) and might help to reduce ana-
lytic flexibility in neuroimaging analyses67. The analytic protocols
for the present study have been established in our previous stu-
dies see e.g., refs. 32,34,68 and only the single final model was
tested on the validation and generalization datasets, however, pre-
registration in future studies could further facilitate analytic rigor.
Moreover, in the current study we showed that subjective fear and
nonspecific negative emotion shared common yet also distinct
neural representations. Our findings are based on cross-
prediction models and training joint-models over the emotional
domains in datasets that have been acquired with matched
paradigms and on an identical MRI system may help to further
determine common and separable neural representations between
fear experience and other emotional domains. Moreover,
although we identified distinct neural representations for sub-
jective fear and conditioned threat on the whole-brain level the
corresponding decoders were developed based on studies
employing different paradigms and stimuli. The independence of
common neurofunctional representations of subjective fear and
conditioned threat thus needs to be further evaluated. Future
studies could, e.g., align the paradigms by using categorical sti-
muli across the paradigms (e.g., high fear vs. neutral stimuli) to
further explore whether subjective fear and conditioned threat
share common neural representations, particularly in local
regions. However, the specificity of the shared neural basis (if one
is found) to threat- and fear-related processes of interest would
require further testing.

In conclusion, we identified a whole-brain neural representa-
tion for the subjective experience of fear. This visually induced
fear signature was validated and generalized across participants,
paradigms and fMRI scanners. Our findings demonstrate the
neural basis of subjective fear is not represented by isolated brain
regions or networks but instead best captured by activations in
distributed regions spanning multiple brain systems. The speci-
ficity of the fear signature was further tested with conditioned
defensive responses and general negative emotion experience.
Our work may provide objective neurobiological measures that
can supplement self-report fear and potentially be used as
intermediate markers for treatment discovery that target
pathological fear.

Methods
Participants in the discovery cohort. Seventy healthy, right-handed participants
were recruited from the University of Electronic Science and Technology of China
in this study. Exclusion criteria included color blindness; current or regular sub-
stance or medication use; current or history of medical or psychiatric disorders; any
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contraindications for MRI. Due to the excessive head motion (>1 voxel) during
fMRI scanning data from three participants were excluded, leading to a final
sample of n= 67 participants (34 females; mean ± SD age= 21.5 ± 2.1 years). All
participants provided written informed consent, and the study was approved by the
local ethics committee at the University of Electronic Science and Technology of
China and was in accordance with the most recent revision of the Declaration of
Helsinki. After the experiment, participants were compensated 80 RMB for
participation.

Stimuli and paradigm used in the discovery cohort. The fear rating task con-
sisted of 4 runs with each run encompassing 20 photographs (including humans,
animals, and scenes) from the IAPS (International Affective Picture System), NAPS
(Nencki Affective Picture System), and internet. A total of 80 stimuli was
employed, with each presented once. Stimuli were presented using the E-Prime
software (Version 2.0; Psychology Software Tools, Sharpsburg, PA). Participants
were instructed to pay attention to the pictures when they came on the screen. Each
trial consisted of a 6 s presentation of the picture followed by a 2 s fixation-cross
separating the stimuli from the rating period. Participants then had 4 s to report the
fearful state they experienced for the stimuli using a 5-point Likert scale where 1
indicated neutral/slightest fear and 5 indicated most strongly fear. Finally, there
was a 6-s rest period (fixation-cross) before the presentation of the next picture
(Fig. 1a). All of the subjects reported ‘1−4’ in their responses while 2 out of
67 subjects did not use rating ‘5’.

Discovery cohort MRI data acquisition and preprocessing. MRI data were
collected on a 3.0-T GE Discovery MR750 system (General Electric Medical Sys-
tem, Milwaukee, WI, USA) (see Supplementary Methods for details). Functional
MRI data were preprocessed using Statistical Parametric Mapping (SPM12 v7487,
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/). The first five volumes of each
run were discarded to allow MRI T1 equilibration. Prior to preprocessing of
functional data, image intensity outliers resulting from gradient and motion-related
artefacts were identified using CanlabCore tools (https://github.com/canlab/
CanlabCore) based on meeting any of the following criteria: (a) signal
intensity >3 standard deviations from the global mean or (b) signal intensity and
Mahalanobis distances >10 mean absolute deviations based on moving averages
with a full-width at half maximum (FWHM) of 20 image kernels. Each time-point
identified as outliers was included as a separate nuisance covariate in the first-level
model. Then, functional images were corrected for differences in the acquisition
timing of each slice and spatially realigned to the first volume and unwarped to
correct for nonlinear distortions related to head motion or magnetic field inho-
mogeneity. The anatomical image was segmented into gray matter, white matter,
cerebrospinal fluid, bone, fat and air by registering tissue types to tissue probability
maps. Next, the skull-stripped and bias-corrected structural image was generated
and the functional images were co-registered to this image. The functional images
were subsequently normalized the Montreal Neurological Institute (MNI) space
(interpolated to 2 × 2 × 2mm voxel size) by applying the forward deformation
parameters that were obtained from the segmentation procedure, and spatially
smoothed using an 8-mm full-width at half maximum (FWHM) Gaussian kernel.

First-level fMRI analysis used in the discovery cohort. We conducted two
separate subject-level GLM (general linear model) analyses. The first GLM model
was used to obtain beta images for the prediction analysis. In this model we
included five separate boxcar regressors time-logged to the presentations of pic-
tures in each rating (i.e., 1–5), which allowed us to model brain activity in response
to each fear level separately. To model any effects related to motor activity the
model also included one boxcar regressor indicating the rating period. The
fixation-cross epoch served as implicit baseline. The second GLM model included
two regressors of interest, with one modeling the picture viewing period and the
other modeling the fear rating period. Additionally, the design matrix included fear
ratings (1−5) reported for each picture as a parametric modulator for the picture
viewing period.

All task regressors were convolved with the canonical HRF function and a high-
pass filter of 128 s was applied to remove low frequency drifts. Time series from
multiple runs were concatenated using SPM’s spm_fmri_concatenate.m function,
which included an intercept for each run and corrected the high-pass filter and
temporal non-sphericity calculations. Regressors of non-interest (nuisance
variables) included (1) six head movement parameters and their squares, their
derivatives and squared derivatives (leading to 24 motion-related nuisance
regressors in total); and (2) indicator vectors for outlier time points (see above for
details).

Participants in the validation cohort. Twenty-two healthy, right-handed parti-
cipants were recruited from the University of Electronic Science and Technology of
China in this study. Due to excessive head motion (>1 voxel) during fMRI scanning
data from two participants were excluded leading to a final sample of n= 20
participants (6 females; mean ± SD age= 21.75 ± 2.61 years). All participants
provided written informed consent, and the study was approved by the local ethics
committee at the University of Electronic Science and Technology of China and

was in accordance with the most recent revision of the Declaration of Helsinki.
After the experiment, participants were compensated 90 RMB for participation.

Stimuli and paradigm used in the validation cohort. The fear rating task con-
sisted of 2 runs with each run encompassing 30 photographs (60 in total) from the
IAPS, NAPS, and internet. Fifty-eight out of 60 stimuli were overlapped with the
stimuli used in the discovery cohort. Stimuli were presented using the E-Prime
software. Participants were instructed to pay attention to the pictures when they
came on the screen. Each trial consisted of a 6 s presentation of the picture followed
by a jittered fixation-cross (1, 2 or 3 s). Participants then had 4 s to report the
emotional state they experienced for the stimuli using a 5-point Likert scale where
1 indicated minimal fear/neutral and 5 indicated very strong fear. Finally, there was
a jittered fixation-cross epoch (4, 5, or 6 s) before the presentation of the next
picture (Fig. 1b). All of the subjects reported rating ‘1−5’ in their responses.

Validation cohort MRI data acquisition, preprocessing, and first-level fMRI
analysis. Imaging data acquisition, preprocessing, and subject-level GLM analysis
were identical to the discovery cohort.

Generalization cohort. The details of the generalization cohort were reported in
previous studies40. Briefly, 31 participants (15 females; mean ± SD age= 23.29 ±
4.21 years) underwent a 1 h fMRI session (see Supplementary Information for the
MRI acquisition details) where they were presented with 3600 images consisting of
30 animal categories and 10 object categories (90 different images per category).
The stimuli were grouped in blocks of 2, 3, 4 or 6 images of the same category with
each stimulus presented for 1 s (no interblock or interstimulus interval). Subjective
fear ratings (0= ‘no fear’ to 5= ‘very high fear’) for each category were established
before the fMRI procedure without presenting any fearful stimuli. We used labels
1–6 instead of 0–5 in Fig. 2f, g for display purposes (of note, this procedure changes
only the intercept/bias but not the pattern weights of the predictive model and has
no effects on the prediction−outcome correlation or the forced-choice classifica-
tion). The least-square separate single-trial analysis approach was employed to
iteratively fit a GLM to estimate the brain response to the first image of each block
and then the within-subject beta images with the same fear ratings were averaged,
which resulted in one beta map per rating for each subject (for paradigm, MRI
acquisition and analysis details see ref. 40).

Multivariate pattern analysis. We applied whole-brain (restricted to a gray
matter mask36,69) multivariate machine-learning pattern analysis to obtain a pat-
tern of brain activity that best predicted participants’ self-reported fear ratings. Of
note, the findings were comparable with a whole-brain mask with white matter and
cerebrospinal fluid included. We employed the support vector regression (SVR)
algorithm using a linear kernel (C= 1) implemented in the Spider toolbox (http://
people.kyb.tuebingen.mpg.de/spider) with individual beta maps (one per rating for
each subject) as features to predict participants’ fear ratings of the grouped pictures
they viewed while undergoing fMRI. Of note, we only used data from the discovery
cohort to develop the VIFS. To evaluate the performance of our algorithm, we used
a 10 × 10-fold cross-validation procedure on the discovery cohort during which all
participants were randomly assigned to 10 subsamples of 6 or 7 participants using
MATLAB’s cvpartition function. The optimal hyperplane was computed based on
the multivariate pattern of 60 or 61 participants (training set) and evaluated by the
excluded 7 or 6 participants (test set). This procedure was repeated ten times with
each subsample being the testing set once. To avoid a potential bias of training-test
splits, the cross-validation procedures throughout the study were repeated ten
times by producing different splits in each repetition and the resultant prediction
performance were averaged to produce a convergent estimation36,70. Several
metrics have been proposed to evaluate the predictive power of multivariate pre-
dictive signatures (see e.g., ref. 66); however, the advantages and disadvantages of
each metric are still a matter of debate, and metrics vary subtly in their properties.
To facilitate a robust determination of the predictive accuracy of the neurofunc-
tional signature we therefore employed various metrics including correlation,
RMSE, EVS and forced-choice classification accuracy. Specifically, we used overall
(between- and within-subjects; 333 pairs in total) and within-subject (5 or 4 pairs
per subject) Pearson correlations between the cross-validated predictions and the
actual ratings to indicate the effect sizes and the RMSE and explained variance
score to illustrate overall prediction error. The explained variance score was
assessed using the following formula: explained variance score= 1− (var[y− ŷ]/
var[y]), where y is the true rating, ŷ is the VIFS response (plus intercept) and var
indicates the variance (as implemented in software packages such as scikit-learn).
In addition, we assessed classification accuracy of the VIFS using a forced-choice
test, where signature responses were compared for two conditions tested within the
same individual, and the higher was chosen as more fearful. We also applied the
fear-predictive pattern (trained on the whole discovery cohort) to the validation
and generalization cohorts to obtain a signature response for each map (that is, the
dot-product of the VIFS weight map and the test image plus the intercept) to assess
the prediction performance of the VIFS using a permutation test with 10,000
random shuffles. Given that the cross-validated permutation test is very time
consuming the inferences on model performance were only performed using
permutation testing on the validation and generalization cohorts.
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Comparing the performance of VIFS with the AFSS. A previous study has
developed a whole-brain fear decoder40. To compare the performance of VIFS with
the AFSS we applied both patterns to the discovery, validation and generalization
cohorts and assessed the overall prediction−outcome correlation as well as two-
alternative forced-choice classification accuracies between low, moderate and high
fear based on the pattern expressions.

Within-subject trial-wise prediction. Here we tested whether the VIFS could
predict individual trial-by-trial subjective fear. To this end we performed a single-
trial analysis, which was achieved by specifying a GLM design matrix with separate
regressors for each stimulus. Each task regressor was convolved with the canonical
hemodynamic response function. Nuisance regressors and high-pass filter were
identical to the above GLM analyses. One important consideration for single-trial
analysis is that the beta estimates for a given trial could be strongly affected by
acquisition artifacts (e.g., sudden motion) that co-occur during a trial. For each
subject we therefore excluded trials with variance inflation factors (a measure of
design-induced uncertainty due to multicollinearity with nuisance regressors) >3
from subsequent analyses (overall ~6% trials were excluded). Next, we calculated
the VIFS pattern expressions of these single-trial beta maps (i.e., the dot-product of
vectorized activation images with the VIFS weights), which were finally correlated
with the true ratings for each participant separately. For subjects in the discovery
cohort we used the 10 × 10-fold cross-validation procedure to obtain the VIFS
response of each single-trial beta map for each subject.

Determining brain regions associated with and predictive of subjective fear.
To identify neural circuits underlying subjective experience of fear, we employed a
series of analyses. Firstly, we performed one-sample t test on the first-level uni-
variate parametric modulation beta maps to see which brain regions’ activation was
associated with fear ratings. Next, we used multivariate analyses to locate brain
regions that predictive of and associated with fear ratings separately as well as brain
regions showing an overlapping effect. Specifically, we evaluated the consistency of
each weight for every voxel in the brain across within-subject multivariate classi-
fiers (developed with single-trial data) using a one-sample t test. The thresholded
map (q < 0.05, FDR corrected) showed the consistent fear-predictive brain regions
across subjects. To this end we performed a prediction analysis (linear SVR with
C= 1) for each subject in the discovery cohort separately using their single-trial
data (10 × 10-fold cross-validated) and only included participants whose fear rat-
ings could be significantly predicted by their brain data (evaluated by prediction
−outcome Pearson correlation; n= 60). Of note, similar results were found when
including the entire sample.

Given that the predictive brain regions could be related to (in this case) fear
processing as well as suppressing the noise in the data45, we transformed the
within-subject patterns to ‘activation patterns’ using the following formula:
A= cov(X) ×W × cov(S)−1, where A is the reconstructed activation pattern, cov(X)
is the covariance matrix of training data, W is the pattern weight vector, and cov(S)
is the covariance matrix of the latent factors, which is defined as WT × X. This
reconstructed activation is also similar to the ‘structure coefficients’ in the statistical
literature. Previous studies have argued that both betas and structure coefficients
are necessary to interpret the model47. Essentially, the beta indicates the predictive
slope and direction of effect controlling for other variables in the model whereas
the structure coefficients indicates the direction of the relationship between the
variable and the model without controlling for other variables—i.e., in the current
study, which voxels are positively and which are negatively related to the predicted
subjective fear. The significant brain regions (one-sample t test thresholded at
q < 0.05, FDR corrected) exhibited the consistent fear-associative effect. In parallel
with with-subject models we conducted bootstrap tests, where we took
10,000 samples with replacement from the discovery cohort, repeated the
prediction process with each bootstrap sample, and calculated Z scores and two-
tailed uncorrected P values with the mean and standard deviation of the sampling
distribution, on the population-level fear-predictive pattern (i.e., the VIFS) as well
as the transformed ‘activation pattern’ from the VIFS to identify the reliable fear
predictive and associative brain regions of the VIFS (thresholded at q < 0.05, FDR
corrected). To facilitate the determination and interpretation of a subjective fear
signature convergent univariate and multivariate approaches were implemented.
Spatial patterns (or regions) that were consistently observed across backward and
forward models were considered as reliably and consistently associated and
predictive of subjective fear.

Furthermore, we asked whether fear processing could be reducible to activations
in a single brain region (e.g., amygdala) or network (e.g., subcortical regions). To
examine this hypothesis, we employed whole-brain searchlight (three-voxel radius
spheres)71—and parcellation (274 cortical and subcortical regions)72—based
analyses to identify local regions predictive of fear and compared model
performances of local regions with the whole-brain model (i.e., the VIFS). In
addition, we compared prediction performances of amygdala (based on Anatomy
Toolbox version 2.2c; available online in the Cognitive and Affective Neuroscience
Laboratory Github repository at https://github.com/canlab/
Neuroimaging_Pattern_Masks) and large-scale networks to the whole-brain
approach. The networks of interest included seven resting-state functional
networks50,51, a subcortical network (including the striatum, thalamus,
hippocampus and amygdala) and a ‘consciousness network’ proposed by LeDoux

and Pine6, which composed of anterior cingulate cortex, inferior frontal gyrus,
middle frontal gyrus, superior frontal gyrus, orbitofrontal gyrus, rectus, olfactory
and insula from the AAL atlas and the posterior parietal cortex from Shirer et al.73.
For these analyses we trained and tested a model for each searchlight sphere,
parcellation, brain region or network separately using the discovery data (10 × 10-
fold cross-validated).

Comparing the similarities of the VIFS and a threat-predictive signature. To
examine the functional and spatial similarities between the VIFS and the TPS
threat-predictive signature37; which predicts the defense responses elicited by threat
conditioning, we (1) applied VIFS to distinguish unreinforced CS+ versus CS− and
predicted subjective fear ratings using the TPS, and (2) examined the voxel-level
spatial similarity between these two signatures. Inference on model performance
was performed using permutation testing with 10,000 random shuffles. Given that
the fear and threat conditioning studies employed visual and auditory cues,
respectively, we next tested whether the dissociable effects based simply on differ-
ences in sensory processing by applying both signatures to an independent visual
threat conditioning dataset52. If the predictions were sensory-dependent the TPS
would not distinguish visual (unreinforced) CS+ versus CS− whereas the VIFS
might predict visual CS+ from CS−. To this end we included two datasets that
employed an auditory and visual threat conditioning paradigm during which a
previously neutral stimulus was paired with an unpleasant shock (CS+) while
another matched stimulus was not paired (see Supplementary Methods for details).

Multilevel two-path mediation analysis. In order to test the relationship between
VIFS response, fear rating and the PINES response, we conducted two multilevel
mediation analyses using the Mediation Toolbox (https://github.com/canlab/
MediationToolbox). A mediation analysis tests whether the observed covariance
between an independent variable (X) and a dependent variable (Y) could be
explained by a third variable (M). Significant mediation effect is obtained when
inclusion of M in a path model of the effect of X on Y significantly alters the slope
of the X–Y relationship. That is, the difference between total (path c) and direct
(non-mediated, path c′) effects of X on Y (i.e., c− c′), which could be performed by
testing the significance of the product of the path coefficients of path a × b, is
statistically significant. The multilevel mediation analysis is designed to explain
both within- and between-subject variations in the same model by treating the
subject as a random effect61. The first-level accounts for the mediation effects
within each individual participant and the second-level tests for consistency across
participants and allows for population inference. In the current study we tested
whether (1) VIFS response mediated the association between PINES response and
fear rating and (2) PINES response mediated the relationship between VIFS
response and fear rating. To this end the VIFS and PINES responses were calcu-
lated by dot-product of the single-trial beta maps with the VIFS (through cross-
validation procedure for the discovery cohort) and PINES patterns respectively for
each subject. We used bias-corrected accelerated bootstrapping (10,000 replace-
ments) for significance testing.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The visually induced fear signature (VIFS), the discovery cohort that has been used to
develop and test the VIFS and the thresholded statistical maps are available at https://
figshare.com/articles/dataset/Subjective_fear_dataset/13271102. The data from the
validation cohort are from an ongoing project and are available from the corresponding
authors upon request. The data from the generalization cohort are from a previous
study40 and are available from the ATR repository (https://bicr.atr.jp/decnefpro/) and
from the corresponding authors upon reasonable request. Source data are provided with
this paper.

Code availability
Data were analyzed using CANlab neuroimaging analysis tools available at https://
github.com/canlab/ and from https://github.com/zhou-feng/fMRI-studies/tree/main/
Fear_experience_signature.
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