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Single-cell normalization and association testing
unifying CRISPR screen and gene co-expression
analyses with Normalisr
Lingfei Wang 1,2,3✉

Single-cell RNA sequencing (scRNA-seq) provides unprecedented technical and statistical

potential to study gene regulation but is subject to technical variations and sparsity.

Furthermore, statistical association testing remains difficult for scRNA-seq. Here we present

Normalisr, a normalization and statistical association testing framework that unifies single-

cell differential expression, co-expression, and CRISPR screen analyses with linear models. By

systematically detecting and removing nonlinear confounders arising from library size at

mean and variance levels, Normalisr achieves high sensitivity, specificity, speed, and gen-

eralizability across multiple scRNA-seq protocols and experimental conditions with unbiased

p-value estimation. The superior scalability allows us to reconstruct robust gene regulatory

networks from trans-effects of guide RNAs in large-scale single cell CRISPRi screens. On

conventional scRNA-seq, Normalisr recovers gene-level co-expression networks that

recapitulated known gene functions.
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Understanding gene regulatory networks and their pheno-
typic outcomes forms a major part of biological studies.
RNA sequencing (RNA-seq) has received particular

popularity for systematically screening transcriptional gene reg-
ulation and co-regulation. Single-cell RNA-seq (scRNA-seq)
provides a unique glance into cellular transcriptomic variations
beyond the capabilities of bulk technologies, enabling analyses
such as single-cell differential expression (DE)1, co-expression2,3,
and causal network inference4,5 on cell subsets at will. Regarding
and manipulating each cell independently, especially in combi-
nation with CRISPR (clustered regularly interspaced short
palindromic repeats) technology6,7, scRNA-seq can overcome the
major limitations in sample and perturbation richness of bulk
studies, at a fraction of the cost.

However, cell-to-cell technical variations and low read counts
in scRNA-seq remain challenging in computational and statistical
perspectives. A comprehensive benchmarking found that single-
cell-specific attempts in DE could not outperform existing bulk
methods such as edgeR8. Generalized linear models (e.g., refs. 1,9)
are difficult to generalize to single-cell gene co-expression, leaving
it susceptible to expression-dependent normalization biases10,11.
Single-cell CRISPR screen analysis can be regarded as multi-
variate DE, but existing methods (e.g., scMageck12 and
SCEPTRE13) take weeks or more on a modern dataset and do not

account for off-target effects. These challenges limit the accuracy,
efficiency, scalability, and flexibility of single-cell data analysis
and the downstream biological discovery.

A potential unified framework for single-cell DE, co-expression
and CRISPR analysis is a two-step normalization–association
inferential process (Fig. 1a). The normalization step (e.g.,
sctransform14, bayNorm15, and Sanity16) removes confounding
technical noises from raw read counts to recover the biological
variations. The subsequent linear association step has been widely
applied in the statistical analyses of bulk RNA-seq and micro-
array co-expression17, genome-wide association studies18,19,
expression quantitative trait loci20, and causal network
inference21,22. Linear association testing presents several advan-
tages: (i) exact P value estimation without permutation, (ii) native
removal of covariates (e.g., batches, house-keeping programs, and
untested guide RNAs (gRNAs)) as fixed effects, (iii) robustness
against read count distribution distortions with enough (>100)
cells23, and (iv) computational efficiency. However, existing
normalization methods were designed primarily for clustering.
Sensitivity, specificity, and effect size estimation in association
testing are left mostly uncharted.

Here we present Normalisr, a normalization–association fra-
mework for statistical inference of gene regulation and co-
expression in scRNA-seq (Fig. 1a). The normalization step

Figure 1 Normalisr overview. a Schematics of biochemical and inferential processes (top to bottom). Normalisr aims to remove technical variations and
normalize raw read counts to estimate the pre-measurement mRNA abundances. Then they can be directly handled by conventional statistical methods,
such as linear models, to infer gene regulation and to unify different analyses. b Normalization step (in a) of Normalisr (left to right). Normalisr starts by
computing the expectation of posterior distribution of mRNA log proportion in each cell with MMSE. Meanwhile, Normalisr appends existing covariates
with nonlinear cellular summary covariates. Normalisr then normalizes expression variance by linearly removing the confounding effects of covariates on
log variance. The normalized expression and covariates are ready for downstream association testing with linear models, such as differential and
co-expression (in c). c Association testing step (in a) of Normalisr, which uses linear models to test gene differential and co-expression.
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estimates the pre-measurement mRNA frequencies from the
scRNA-seq read counts (e.g., unique molecular identifiers
(UMIs)) and regresses out the nonlinear effect of library size on
expression variance (Fig. 1b). The association step utilizes linear
models to unify case–control DE, single-cell CRISPR screen
analysis as multivariate DE, and gene co-expression network
inference (Fig. 1c). We demonstrate Normalisr’s applications in
two scenarios: gene regulation screening from pooled CRISPR
interference (CRISPRi) CRISPR droplet sequencing (CROP-seq)
screens and the reconstruction of transcriptome-wide co-
expression networks from conventional scRNA-seq.

Results
Normalisr overview. For UMI-based assays10,24, we regarded
scRNA-seq as a binomial (approximate of multinomial) mRNA
sampling process Binom(n, p) without zero inflation. Given the
sequencing read counts of all genes as n and of one particular
gene as k in each cell, the key question is to construct an estimator
for log relative expression of this gene as ln p. Since the uniformly
minimum variance unbiased estimator for ln p does not exist
(Supplementary Information), we turned to its Bayesian analog—
the minimum mean square error (MMSE) estimator. Briefly, this
Bayes estimator computes the posterior expectation of ln p for
each gene in each cell (namely, Bayesian log expression) based on
a non-informative (uniform) prior for the binomial mRNA
sampling process (“Methods” and Supplementary Information).
This estimator naturally addresses two drawbacks of the con-
ventional normalization with log(CPM+ constant). First, it
avoids the artificial introduction and choice of constant. Second,
zero-read genes are indifferent after logCPM normalization
regardless of the total read count in each cell but are properly
assigned with higher relative expression in lowly sequenced cells
by MMSE to account for pool size differences. We also inten-
tionally avoided imputations that rely on information from other
genes that may introduce spurious gene inter-dependencies or
from other cells that assume whole-population homogeneity and
consequently risk reducing sensitivity (see below).

To account for potential technical confounders, we introduced
two previously characterized cellular covariates: the number of
zero-read genes1 and log total read count14. These two covariates
comprise the complete set of unbiased cellular summary statistics
up to first order (as L0 and L1 norms of cell read count,
respectively, Supplementary Information) without artificial selec-
tion of gene subsets. Restricting to unbiased covariates minimizes
potential interference with true co-expression networks. The
number of zero-read genes also provides extra information in the
read count distribution for each cell and allows for a regression-
based automatic correction for distribution distortions. This
approach aims for the same goal as quantile normalization but is
not restricted by the low read counts in scRNA-seq.

We modeled nonlinear confounding effects on gene expression
with Taylor polynomial expansion. We iteratively introduced
higher-order covariates to minimize false co-expression on a
synthetic co-expression-free dataset, using forward stepwise
feature selection that is restricted to series expansion terms
whose all lower-order terms had already been included. The set of
nonlinear covariates were pre-determined as such and then
universally introduced for all datasets and statistical tests. We first
linearly regressed out these covariates’ confounding effects at the
log variance level25. Their mean confounding was accounted for
in the final hypothesis testing of linear association (Fig. 1b, c).
Finally, P values were computed from Beta distribution of R2 in
exact conditional Pearson correlation test (equivalent of like-
lihood ratio test) without permutation. Because the conditional
Pearson correlation test was performed between the target

variables of interest, the outcome would not be affected by
potential correlations within covariates themselves.

Normalisr detected nonlinear technical confounders with
restricted forward stepwise selection. We downloaded the “UPR
Perturb-seq experiment” dataset of UMI read count and gRNA
assignment matrices of K562 cells6 based on 10× Genomics to
determine the nonlinear confounding of cellular summary cov-
ariates. Perturb-seq was proposed to efficiently quantify the
effects of multiple CRISPR perturbations on the transcriptome by
detecting gene expression and CRISPR gRNA occurrence in the
same single cells. Therefore, this dataset can provide positive
controls in DE for our sensitivity evaluation of different methods
afterwards.

For nonlinear confounding detection, we generated a synthetic
null scRNA-seq dataset to mimic the gRNA-free K562 cells but
without any co-expression, with log-normal and multinomial
distributions, respectively, for biological and technical variations
(Fig. S1 and “Methods”). (For exact gene, cell, and gRNA counts
here and onwards, see Supplementary Data 1.) This simplified
scenario simulates the technical variations from heterogeneous
mRNA sampling rates in multinomial sequencing process on
homogeneous cells. It recapitulated the technical confounding
from read count sparsity on conventional logCPM normalization,
as demonstrated by the 0-biased P values of Pearson correlation
between genes (Fig. S2).

Using the cellular summary covariates as the basis features and
optimizing toward a uniform distribution of (conditional)
Pearson co-expression P values, we confirmed that both the log
total read count and the number of zero-read genes in a cell
strongly confound single-cell mRNA read count (Fig. S3).
Moreover, we identified strong nonlinear confounding from the
square of log total read count. Together, these three extra
covariates were sufficient to recover the uniform null distribution
of co-expression P values. These predetermined nonlinear cellular
covariates allowed Normalisr to perform hypothesis testing
without any parameter or permutation in subsequent evaluations
and applications.

Evaluations in single-cell DE and co-expression. We performed
a wide range of evaluations with the Perturb-seq dataset on
Normalisr, other normalization methods including sctransform14,
bayNorm15, and Sanity16, imputation methods including
MAGIC26, DCA27, DeepImpute28, scDoc29, DrImpute30, and
EnImpute31, and DE methods including Seurat (with default
Wilcoxon test)32, edgeR, and MAST8 (“Methods”). We parti-
tioned the 4622 cells that did not detect any gRNA into two
random groups 100 times to evaluate the null P value distribution
of single-cell DE. This provides better homogeneity than using
cells with non-targeting control (NTC) gRNAs because they may
have unknown and unintended targets (see below). To detect
expression-dependent null P value biases, we grouped genes into
ten equally sized subsets from low to high expression (proportion
of expressed cells) and compared their null P values against the
uniform distribution with Kolmogorov–Smirnov (KS) test
(“Methods”). Normalisr recovered uniform distributions of null
DE P values at all expression levels, as did other normalization
methods and some imputation methods that were followed by the
same linear model (Fig. 1c) and Seurat (Figs. 2a, b and S4). In
contrast, edgeR and MAST, the best single-cell DE methods
benchmarked in ref. 8, had expression-dependent, 0- or 1-biased
null P values. Normalisr was additionally much faster than most
other methods tested, and over 2000 times than Seurat, edgeR,
and MAST (Fig. 2c).
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To detect potential incomplete removal of technical confound-
ing, we compared the distribution of co-expression P values from
the synthetic null dataset for normalization and imputation
methods followed by the same linear model for hypothesis testing
(Fig. 1c and “Methods”). Normalisr recovered uniformly
distributed P values irrespective of expression and better than
log(CPM+1) with or without covariates (Figs. 2d, e and S2),
suggesting the necessities of both the Bayesian log expression and
the nonlinear cellular summary covariates. No other method
could fully account for technical confounding and recover
uniform null P value distributions. Imputation methods may
inflate gene–gene associations because of their inherent reliance
on gene relationships. Normalisr accounted for technical
confounding and correctly recovered the absence of co-
expression.

To evaluate the effect size estimation in terms of log Fold-
Change (logFC), we used synthetic datasets from null co-
expression and from simulations by SymSim33 and Splatter34.
These simulations mimicked the real dataset and also recorded
the biological ground-truths of cell mRNA profiles or logFCs
(Fig. 1a and “Methods”). We decomposed logFC estimation
errors of each method into bias and variance with linear
regression against the ground-truth logFC. Bias indicates the
overall under- or over-estimation errors in logFC scale as the

deviation of regression coefficient from unity. Variance represents
uncertainties in the estimation and was quantified with R2 of the
regression. Although these simulation methods vary by model
and by similarity to the real dataset (Fig. S1), Normalisr
consistently obtained one of the lowest biases and variances
across all expression levels (Figs. 3a, b and S5). BayNorm
underestimated the logFCs of lowly expressed genes, and Sanity
underestimated the logFCs regardless of expression. Their prior
distributions aggregate information across cells under the implicit
assumption of population homogeneity, which may over-
homogenize gene expression and consequently underestimate
logFCs, especially for lowly expressed genes whose fewer reads
possessed less information to overcome the prior. On the other
hand, edgeR recovered the most accurate logFCs for moderately
and highly expressed genes but was susceptible to large bias for
lowly expressed genes and large overall variance. In summary,
Normalisr accurately estimated logFCs with low bias and variance
for genes across all expression levels.

We then assessed the sensitivity or statistical power of different
methods in detecting differentially expressed genes in scRNA-seq.
In the absence of a high-quality gold standard dataset, we focused
on the intended CRISPRi effects on the expression of targeted
gene between cells infected by the corresponding single gRNA
against uninfected cells (excluding cells infected with any other

Figure 2 Normalisr achieved high specificity and speed in single-cell DE and co-expression. a Normalisr had uniformly distributed null P values in single-
cell DE (top X and bottom Y) as shown by histogram density (top Y) and quantile–quantile (Q-Q) plot (bottom). Q-Q plot shows the false positive rate (Y)
at different cutoffs (X). Genes were evaluated in 10 equally sized (≈976) and separately colored bins stratified by expression (proportion of expressed
cells). Gray line indicates the expected uniform distribution for null P value. b Normalisr recovered uniformly distributed null P values for DE, as measured
by the violin plot of P values of KS test (X) on null P values separately for each gene bin (in a). Bars show extrema. c Normalisr was much faster than most
other methods. d Normalisr had uniformly distributed null P value in single-cell co-expression (X) from synthetic data, as shown by histogram density (Y).
Genes were split into ten equal bins from low to high expression. The null P value distribution of co-expression between each bin pair formed a separate
histogram curve. Central curve shows the median of all histogram curves. Shades show 50, 80, and 100% of all histograms. Gray line indicates uniform
distribution. e No other method tested could recover uniformly distributed null P values for co-expression, as measured by the violin plot of P values of KS
test (X) on null P values separately for each gene bin pair (in d). Bars show extrema. This figure uses two-sided raw P values.

Figure 3 Normalisr achieved high sensitivity and high logFC estimation accuracy in single-cell DE. a Normalisr accurately recovered logFCs (Y) when
compared against the synthetic ground-truth (X) for genes from low to high expression (color). Gray line indicates X= Y. b Normalisr accurately recovered
logFCs with low variance (left, Y as R2) and low bias (right, Y as regression coefficient) when evaluated against synthetic ground-truth with a linear
regression model separately for genes grouped from low to high expression (X) on logFC scatter plots (a and Fig. S5). Horizontal gray line indicates optimal
performance. The nonlinear scale in X distributes genes uniformly in ascending order so an average Y reflects average performance over genes. c Normalisr
was the most sensitive among unbiased DE methods (left, see Fig. 2b) in the CRISPRi Perturb-seq experiment. Histogram shades show distributions (Y) of
negative log P values (X) of the targeted gene between KD and unperturbed cells (positive controls with varying strengths). Numbers indicate mean values.
Stronger P values from unbiased methods indicate higher sensitivity. Biased methods (right) are listed in gray.
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gRNA) as positive controls. Although CRISPRi efficiency varies, a
more sensitive method should find a stronger DE P value on
average with the same data. Among the successfully finished
methods with unbiased P values (Fig. 2b), which are necessary to
reflect sensitivity, Normalisr obtained the most significant P
values (Fig. 3c). Sanity, sctransform, and Seurat suffered
sensitivity losses. Imputation methods lost the major effects of
CRISPRi.

The above evaluations were based on and combined from a
wide range of effective cell/sample counts, which were con-
strained and modulated by the size of the minor group among the
two compared in DE. The number of cells in the minor group
varied greatly across 100 random groupings in null DE evaluation
(from 242 to 2305 for Figs. 2a–c and S4), across different gRNAs
in sensitivity evaluation (from 185 to 1480 for Fig. 3c), and across
100 random groupings in logFC estimation evaluation (from 153
to 3911 for Fig. 3a, b) and were chosen at random four times in
SymSim and Splatter for logFC estimation evaluation (from 519
to 3927 for Fig. S5b, c). The comprehensive design covered all
major evaluation metrics in DE and emulated potential applica-
tions such as marker gene detection and large-scale screens with
different cell count imbalances. Normalisr’s consistent

performance over various effective cell counts suggested reliable
performance in diverse settings.

Our evaluation results were also reproducible on a MARS-seq
dataset35 of dysfunctional T cells from frozen human melanoma
tissue samples (Figs. S1, S3, and S6–S8) that is further explored
for co-expression later. This dataset utilized antibody-based
fluorescence-activated cell sorting prior to well-based scRNA-seq,
with a much smaller library size than the Perturb-seq dataset
(containing 2409/5,132 expressed genes and 9784/32,625 UMIs
per cell among the top 100 cells with the most UMIs). Normalisr’s
superior performance was consistent across multiple scRNA-seq
platforms, library sizes, cell counts, and sample conditions.

To visually compare different normalization and imputation
methods on their technical bias removal effects on cell population
structure, we performed UMAP to embed cells onto low
dimensions from normalized or imputed transcriptome matrix
(“Methods”). Normalisr successfully removed library size con-
founding bias, showing no cell coordinate dependency on the
proportion of expressed genes (Fig. 4). Moreover, only Normalisr
could fully remove technical confounding and recover the
absence of cell population structure on the synthetic null datasets
of homogeneous cells. Normalisr successfully removed technical
bias on low dimensions.

In total, Normalisr provides a normalization framework with
improved sensitivity, specificity, and efficiency than existing bulk
and single-cell methods to allow linear association testing for
single-cell differential and co-expression that removes technical
confounding bias and is consistent across multiple experimental
conditions.

Normalisr reduced the false positives from gRNA cross-
associations in high-multiplicity of infection (MOI) single-
cell CRISPR screens. High-MOI CRISPRi systems are highly
efficient screens for gene regulation, gene function6,36, and reg-
ulatory elements7. However, gRNA–mRNA associations may
have high false positive rates (FPR) when confounded by gRNA
cross-associations, such as from the competition between gRNAs
for dCas9 or for limited read counts, or from selective advantage
due to gRNA presence. Regardless of origin, gRNA cross-
associations can incur false positive upregulation and down-
regulation of genes regulated by other gRNAs or their target genes
(Fig. 5a).

To understand the frequency of gRNA cross-associations, we
utilized one of the largest enhancer-screening CROP-seq datasets
to date7 of 207,324 K562 cells post quality control (QC),
containing 13,186 gRNAs and 10,877 genes. Over 98.7% cells
detected more than one gRNA averaging at 30 gRNAs per cell.
Over 20% cells contained at least 1 of the 101 NTCs. Cells already
containing gRNAs were indeed less likely to include another
gRNA (Fig. 5b, Methods), significantly deviating from a random
gRNA assignment. This was reproducible in a small-scale pilot
screen of the same study with 3,117 gRNAs and 47,650 cells
averaging at 18 gRNAs per cell, including the same NTCs and
transcription start site (TSS)-targeting gRNAs but fewer
enhancer-candidate-targeting gRNAs.

We then used NTCs as negative controls to estimate the
elevated FPR from gRNA–gene associations. A competition-naive
DE analysis using Normalisr that disregarded other, untested
gRNAs lead to a 4.8% overall FPR among NTCs (Figs. 5c and S9,
Storey’s method37). Notably, the FPR was significantly higher
among genes whose TSSs were targeted by another gRNA (Fig. 5c,
10.3% than 4.6% for other genes). This supported our hypothesis
that false positives were mediated by TSS-targeting gRNAs,
because indirect effects through the targeted genes are weaker and
harder to detect (Fig. 5a).

Figure 4 Normalisr removed library size confounding bias in UMAP
embedding on Perturb-seq and MARS-seq datasets as well as their
synthetic datasets. On the original datasets, cell coordinates from
Normalisr’s normalized expression did not have any directional dependency
on the proportion of expressed genes. Synthetic homogeneous datasets
from null co-expression contained homogeneous cells whose uniform
relationships could only be captured by Normalisr with a disc in UMAP
embedding. Color indicates cell ranking in the proportion of
expressed genes.
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Linear models can account for other, untested gRNAs as
additional covariates in a competition-aware model. Inspired by
ref. 38, we also reduced the covariates, when >10,000, to their top
500 principal components (PCs) as an efficient heuristic solution,
which was evaluated to be robust on the small-scale screen (Fig.
S10 and “Methods”). This allowed Normalisr to statistically test
all cis- and trans-regulations between every gRNA–gene pair in
the full-scale screen within a day on a 64-core computer. In
comparison, scMAGECK failed to finish within 2 weeks and
SCEPTRE, Seurat, edgeR, and MAST are projected to need over a

year. Normalisr was uniquely efficient for modern-scale single-
cell CRISPR screens.

Normalisr successfully recovered NTCs’ improved, near-
uniform P value distribution independent of whether the gene
was targeted at the TSS (Figs. 5 and S9, overall FPR= 1.5%). On
the contrary, the competition-naive method under-estimated the
false discovery rate (FDR, controlled by Q-values in this paper),
reporting over 15 times the gRNA–gene associations for NTC
gRNAs and over 4 times for candidate enhancer-targeting gRNAs
at nominal Q ≤ 0.2 than the competition-aware method (Fig. 5d).

Figure 5 Normalisr reduced the false positives from gRNA cross-associations in high-MOI single-cell CRISPR screens. a Example scenario of false
positives of gRNA–gene associations (dashed) arising from negative gRNA cross-associations and true regulation (solid) for genes targeted directly by the
effective gRNA or indirectly through the targeted genes (other gene). b Detection of different gRNAs were anti-correlated across cells in terms of one-
sided hypergeometric P values (left, X) and odds ratios (right, X) between gRNA pairs. Empirical PDFs and CDFs are shown in blue (left Y) and red (right
Y), respectively. c Ignoring untested gRNAs increased FPR, as shown by density histogram (Y) of CRISPRi DE two-sided P values from NTC gRNAs (X).
P value histograms and FPRs were computed separately with competition-naive (ignoring untested gRNAs) and competition-aware (regarding untested
gRNAs as covariates) methods and separately for genes targeted by positive control gRNAs at the TSS and other genes. Gray line indicates the expected
uniform distribution for null P value. Shades indicate absolute errors estimated as 2

ffiffiffiffiffiffiffiffiffiffiffi
Nþ 1

p
, where N is the count in each bin. d Competition-naive DE

inflated the number of significant gRNA–gene associations relative to the competition-aware method (Y) at different nominal Q-values (X).
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Figure 6 Normalisr detected robust and specific gene regulation from high-MOI CRISPRi systems. a Guide RNA–gene associations were highly
reproducible among 1857 significant regulations (dot) between the logFCs in small-scale (X) and full-scale (Y) CRISPRi screens. b Normalisr uncovered
gene regulations as secondary effects of TSS-targeting gRNAs, which was significantly stronger than NTCs in terms of histograms (Y) of DE P value (left,
X) and logFC (right, X). Gray lines indicate the expected uniform distribution for null P value. Shades indicate absolute errors estimated as 2

ffiffiffiffiffiffiffiffiffiffiffi
Nþ 1

p
, where

N is the count in each bin. c Normalisr is more sensitive than SCEPTRE on positive control CRISPRi repressions (dots) in terms of P values. Dashed gray line
indicates equal sensitivity. Solid red line is the significance cutoff by Normalisr or SCEPTRE (Bonferroni P < 0.05). d Over half of significant trans-
associations were potential off-target effects at Q < 0.05. The putative off-target rate (X) among the number of inferred trans-associations (Y) is shown for
each gene (dot) that is directly targeted by two gRNAs at the TSS. e Numbers of inferred targets (Y) of top regulators (X) showed different activation and
inhibition preferences. f Gene DE logFC by DDX3X knock-down in CRISPRi screen (Y) were confirmed with that from ENCODE shRNA knock-down (X).
Overlapped targets are highlighted in red (OR= 1.16, hypergeometric P= 0.01). Dashed line passes through DDX3X and the origin. This figure uses two-
sided raw P values.
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Normalisr could account for gRNA cross-associations and reduce
the consequent false positives in gRNA effects.

Normalisr reconstructed causal gene regulatory networks from
high-MOI CROP-seq screens. In order to reconstruct causal gene
regulatory networks, we first verified the quality of the dataset and
the analyses in multiple aspects. First, to validate the reproducibility
of highly significant gRNA–gene associations (Bonferroni P ≤ 0.05 in
each screen), we performed the same inference on the small-scale
screen. We found major overlap between the two screens, with highly
correlated logFCs and all effect directions matched (Fig. 6a). We also
detected unexpected associations of NTCs with gene expression that
were consistent between screens (P < 3 × 10−4 in each screen and
total Bonferroni P < 0.1, Supplementary Data 2). The affected genes
were uniformly repressed suggesting potential off-targeting, with the
exception of ZFC3H1 that plays a major role in RNA degradation39.
Normalisr’s regulation inference was reproducible across the screens.

gRNAs targeting TSS were regarded as positive controls in
ref. 7, and indeed we found 95% (703/738 at Q ≤ 0.05) to
significantly inhibit the expression of targeted genes with varying
efficiencies (Fig. 6b). In comparison with SCEPTRE that was
regarded most sensitive13, Normalisr was even more sensitive at
gene level (Fisher’s method) and could identify most (348/357) of
these positive controls at a stronger P value (Fig. 6c). This lead
remained apparent even after considering SCEPTRE’s P value
lower bound from resampling.

With two gRNAs targeting the same TSS, we quantified the
proportion of off-target effects as the proportion of significant
associations (Q ≤ 0.05) between the weaker gRNA (in association
with the targeted gene) and its trans-genes (over 1Mbp away
from the targeted site or on different chromosomes) that were
highly insignificant for the stronger gRNA (“Methods”). We
found over half of the inferred trans-associations were likely off-
target effects on average (Fig. 6d). The mean off-target rate was
significantly reduced at a more stringent threshold (Q ≤ 10−5,
Fig. S11), suggesting that the putative off-target effects were on
average weaker than genuine trans-associations.

Despite the dataset’s original design as an enhancer screen where
each enhancer-candidate-targeting gRNA tests one regulatory
element, we repurposed it as a gene regulation screen where each
TSS-targeting gRNA tests all the active transcriptomic regulations by
the targeted gene. The search for gene regulations is a long standing
question on its own in systems biology, which also offers molecular
mechanistic insights40. Here, based on causal inference21,22,41, we
reconstructed a gene regulatory network by searching for TSS-
targeting gRNA→ targeted gene→ trans-gene relationships using
gRNA presence as an instrumental variable. This requires simulta-
neous satisfaction of causal dependencies: (i) TSS-targeting gRNA→
targeted gene, (ii) TSS-targeting gRNA→ trans-gene, and (iii) TSS-
targeting gRNA→ trans-gene only through the targeted gene. Since
we already statistically tested (i) and (ii) for all gRNAs and genes
above, we then tested and rejected two major violations of (iii)—
mediation through nearby genes and gRNA off-target effects—by
excluding gRNAs that inhibited another gene within 1Mbp from the
TSS and gene regulations irreproducible across gRNAs targeting the
same TSS or across screens. In total, we recovered 833 high-
confidence putative gene regulations (all four Q ≤ 0.2, “Methods”)
that formed a gene regulatory network (Supplementary Data 3).

Some of the top identified regulators exhibited strong
preferences in upregulation or downregulation of other mRNAs
(Fig. 6e and Supplementary Data 4). TMED10, a.k.a. p24δ1, is
responsible for selective protein trafficking at the endoplasmic
reticulum (ER)–Golgi interface42, and indeed its inhibition
upregulated ER- and Golgi-localized genes. Inhibition of
RBM17, part of the spliceosome and essential for K562 cells

(ranked at 3.8% in CRISPR knock-out screen43), modulated cell
respiration gene expression. RABGGTB upregulated vesicle-
localized genes, in agreement with its role as a Rab geranylgeranyl
transferase subunit44.

We cross-validated Normalisr’s DE against bulk RNA-seq of
K562 cells with DDX3X knock-down and control short hairpin
RNA vectors from the ENCODE consortium45,46 using edgeR
(Q ≤ 0.05). Despite its limited sample size (two each) and
differently engineered cell lines, we observed an agreement in
logFC and significant overlap of DE genes (Fig. 6f). In conclusion,
Normalisr reconstructed specific and robust gene regulatory
networks from high-MOI CRISPRi screens that could be cross-
validated with existing bulk datasets and domain knowledge.

Normalisr discovered functional gene modules with single-cell
co-expression network in dysfunctional T cells. Organisms are
evolved to efficiently modulate various functional pathways,
partly through the regulation and co-regulation of gene
expression17. Manifested at the mRNA level, gene co-expression
may provide unique insights into gene and cell functions. How-
ever, no existing co-expression detection or network inference
method could control for false discovery at the single-cell, single-
time-point level5. As shown with synthetic null datasets, Nor-
malisr can account for nonlinear confounding from library size
and therefore control the FDR in co-expression detection.

We used Normalisr to infer single-cell transcriptome-wide co-
expression networks in dysfunctional CD8+ T cells in human
melanoma MARS-seq35. After removal of low-variance outlier
samples (9 of 15,537, Fig. S12), co-expression predominantly
arose from cell-to-cell variations in housekeeping functions (Fig.
S13 and “Methods”). The top 100 principal genes—those with the
most co-expression edges—were enriched with cytosolic and
ribosomal genes and reflected translational activity differences
across cells (Fig. 7a and Supplementary Data 5). These house-
keeping pathways dominated the correlations in mRNA expres-
sion and obscured the cell-type-specific pathways and
interpretations of the co-expression network. Meanwhile, spike-
ins clustered strongly together and with pseudogenes despite the
unbiased analysis, suggesting limitations of spike-ins as a gold
standard for null co-expression.

To focus on cell-type-specific pathways, we developed a sub-
routine to remove the high confidence but generic co-expression
networks as additional covariates (“Methods”). For this, we
identified the strongest Gene Ontology (GO) enrichment from
the top 100 principal genes. We then introduced the top PC of
expression of the genes in this GO category as an additional
covariate before re-computing the co-expression statistics and the
GO enrichment of top principal genes. Iteratively, we removed
the top PCs of GO processes corresponding to “cytosolic part”
(reflecting translation) and “chromosome condensation” (reflect-
ing cell cycle). The top GO enrichments subsequently reflected
immune system processes, signifying recovery of cell-type-specific
co-expression networks and also the end of iteration (Figs. 7b and
S14, and Supplementary Data 5).

Meanwhile, we performed single-cell DE between dysfunc-
tional and naive T cells and recapitulated upregulation of major
co-receptor genes associated with T cell dysfunction47—TIGIT,
HAVCR2/TIM-3, PDCD1, and LAG3 (Fig. S15 and Supplemen-
tary Data 6). Known gene sets in T cell dysfunction47–49 were
significantly enriched in our upregulated vs. downregulated
genes. Normalisr recovered biologically relevant and validated
DE from human melanoma MARS-seq data.

We integrated the single-cell DE analysis onto the co-
expression network of dysfunctional T cells to understand gene
co-expression and clustering patterns from cell-to-cell variations
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Figure 7 Normalisr revealed gene-level cellular pathways and functional modules in the single-cell co-expression network. a, b Single-cell co-
expression was dominated by house-keeping programs (a), whose iterative removal recovered cell-type-specific programs (b), according to the top 4 GO
enrichments (Y) of the top 100 principal genes in the co-expression network. P values and odds ratios are shown in cyan (top X) and blue (bottom X). c
Single-cell transcriptome-wide co-expression network (major component) after house-keeping program removal highlighted functional gene sets for
dysfunctional T cells. Edge color indicates positive (red) or negative (blue) co-expression in Pearson R. Node color indicates DE logFC between
dysfunctional and naive T cells. Node size indicates average expression level in dysfunctional T cells. Node border annotates known gene functions. Dashed
circles indicate major gene co-expression clusters. d Single-cell co-expression recovered cell-type-specific and generic gene functional similarities,
according to significant over-abundances of edges between genes in the same GO or KEGG pathway, as highlighted in red.
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(Fig. 7c and Supplementary Data 7). We observed two distinct
gene clusters of cell cycle (whose secondary PCs remained evident
in co-expression despite the removal of its top PC) and type I
interferon response (Supplementary Data 8). We annotated the
remaining, interconnected genes according to their known roles
in T cell function in knowledge-base50 and literature into one of
the seven categories: cytokines (and receptors), cytoskeleton,
cytotoxic, major histocompatibility complex (MHC) class I, MHC
class II, T cell receptors (TCRs), and co-receptors. Genes in the
same functional category formed obvious regional co-expression
clusters. Between the clusters, MHC class I genes neighbored
MHC class II and TCR genes, whereas effector genes, including
co-receptor, cytokine, and cytotoxic genes, were more closely
linked and collectively upregulated. CCL5, CSF1, CXCR6, and
IL32 formed a separate co-expression cluster that is negatively
associated with the rest of the cytokine program. Expression of
dysfunctional genes, including CTLA4, LAG3, and TIGIT, were
also correlated with cytokine activity. This cluster comprised a
mixture of immune activation and exhaustion genes as well as
sub-clusters divided by negative correlations. The co-expression
network recovered by Normalisr suggests potential functional
diversification in the dysfunctional T cell population, in
agreement with previous discoveries in this field51.

We then evaluated the functional associations recoverable from
single-cell co-expression based on the over-abundance of co-
expression edges between genes in each GO or Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) annotation. Despite the
previously reported difficulty in recapitulating GO annotations
from single-cell co-expression networks from over 1000 cells52,
we found that genes in 33 GO and 8 KEGG pathways had
significantly more co-expression networks than randomly
assigned annotations (Bonferroni P ≤ 0.05, Supplementary
Data 9). These pathways encompassed a wide range of cell-
type-specific and generic functions (Fig. 7d and Supplementary
Data 7). Overall, this analysis demonstrated that Normalisr
recovered gene-level cellular pathways and functional modules in
high-quality single-cell transcriptome-wide co-expression
networks.

Discussion
The current rise in scRNA-seq data generation represents a tre-
mendous opportunity to understand gene regulation at the single-
cell level, such as through pooled screens or co-expression. Here
we describe Normalisr as a unified normalization–association
two-step inferential framework across multiple experimental
conditions and scRNA-seq protocols with several unique or rare
functionalities (Fig. 8). Normalisr efficiently infers gene reg-
ulatory networks from pooled single-cell CRISPRi screens and

reduces false positives from gRNA cross-associations or off-target
effects. Normalisr removes house-keeping modes in scRNA-seq
data and infers transcriptome-wide, FDR-controlled co-expres-
sion networks consisting of cell-type-specific functional modules.

Normalisr addresses the sparsity and technical variation chal-
lenges of scRNA-seq with posterior mRNA abundances, non-
linear cellular summary covariates, and variance normalization. It
fits in the framework of linear models53 and achieves high per-
formance over a diverse range of frequentist inference scenarios.
Normalisr enables high-quality gene regulation and co-regulation
analyses at the single-cell, single-gene level, and at scale. However,
Normalisr is not designed for hypothesis testing of arbitrary
nonlinear associations54, reconstructing causal regulatory net-
works through v-structures or regularized regression55, or
searching for Granger causality with longitudinal information4.
Integrative studies spanning multiple datasets may also require
additional consideration for batch effects56. We only focused on
UMI-based datasets that are typically easier to scale to many
(≥10,000) cells, e.g., with mature commercial solutions and lim-
ited adjustments, which is a key advantage for studies like single-
cell CRISPR screens and cell-type-specific co-expression net-
works. Full-length-based platforms may produce a different dis-
tribution for read counts57, which may benefit from revalidating
the nonlinear cellular summary covariates in Normalisr (Fig. S3).

We established a restricted forward stepwise selection process
to systematically dissect nonlinear effects of known confounders
at a reduced burden of sensitivity loss or overfitting. This offers
an unbiased and generalizable approach to reduce problem-
specific designs in normalization or association testing methods.
We avoided informative prior or imputation to maintain inde-
pendence between genes or cells for statistical inference but
nevertheless could outperform methods based on such techni-
ques. Consequently, the unbiasedly determined nonlinear cov-
ariates were consistent across different scRNA-seq protocols such
as 10× Genomics, MARS-seq, and CROP-seq at different
sequencing depths.

Linear models possess immense capacities and flexibilities for
scRNA-seq, such as “soft” groupings for DE and kinship-aware
population studies. At the same sequencing depth as bulk RNA-
seq, scRNA-seq additionally partitions the reads between cells
and cell types. This extra information provides substantial sta-
tistical gain and cell-type stratification.

Methods
MMSE estimator of log gene expression. Normalisr regards sequencing as a

binomial sampling in the pool of mRNAs, i.e. the read/UMI count matrix gijj nðgÞj ; ~gij �
BðnðgÞj ; ~gijÞ 2 N0 for gene i= 1,…, ng in cell j= 1,…, nc, where n

ðgÞ
j � ∑kgkj is the

empirical sequenced mRNA count for cell j and ~gij is the biological proportion of
mRNAs from gene i in cell j. With a non-informative prior (standard uniform dis-

tribution), the posterior distribution is ~gijjgij � Betað1þ gij; 1þ nðgÞj � gijÞ. The
MMSE estimator for log relative gene expression (here named Bayesian log expression)

is yij � Eln~gij ¼ ψð1þ gijÞ � ψð2þ nðgÞj Þ, where ψ is the digamma function (Sup-
plementary Information). Natural log is used throughout this paper.

Cellular summary covariates. To minimize spurious, technical gene inter-
dependencies that may interfere with true co-expression patterns, we hypothesized
and restricted covariate candidates within cellular summary statistics, including log
total read count and the number of 0-read genes, defined as C(orig) here. To
account for their potential nonlinear confounding effects, we used restricted for-
ward stepwise selection with the optimization goal of uniformly distributed (linear)
co-expression P values on null datasets, i.e., simulated read count matrices based on
real datasets but without any underlying co-expression.

Specifically, consider gene expression matrix G 2 Rng ´ nc as Bayesian log
expression, and the original cellular summary covariates CðorigÞ 2 Rncov ´ nc where
ncov is the number of the original cellular summary covariates. Assume that G is
linearly confounded at mean and variance levels by unknown, fixed, nonlinear

column-wise functions CðCðorigÞÞ � C1ðCðorigÞÞ;C2ðCðorigÞÞ; ¼� �T 2 R� ´ nc , leading
to false positives of gene co-expression even under the null hypothesis. We

Figure 8 A list of Normalisr’s featured functions and their availabilities
as reported in other single-cell methods. Normalisr features several
unique functionalities for general-purpose normalization and specifically for
single-cell CRISPR screen or gene co-expression analyses.
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performed a Taylor expansion of each Ci(C(orig)), the nonlinear confounder
function i, as

CiðCðorigÞÞ ¼ ∑
p 2 ðN0Þncov
∑ncov

k¼1 pk
� �

≤ n

αðpÞi

Yncov
k¼1

CðorigÞ
k

� �pk þ ∑
p 2 ðN0Þncov

∑ncov
k¼1 pk

� � ¼ nþ 1

O
Yncov
k¼1

CðorigÞ
k

� �pk !
;

ð1Þ
where operations are element-wise (i.e. cell-wise). The first term represents multi-

variate Taylor expansion up to total order n whose coefficients are defined as αðpÞi ,
and the second term contains higher orders. Therefore, nonlinear confounders C
can be accounted for altogether with higher-order sums of the original covariates
C(orig), provided the series converge quickly (subjecting to validation for the
data type).

Therefore, we can redefine Ci as each of the polynomial terms in the first term
of Eq. (1)’s r.h.s. to determine the important nonlinear covariates. We iteratively

included nonlinear covariates (parameterized by fpj∑iα
ðpÞ
i ≠ 0g). Starting from the

constant intercept covariate set C ¼ f1g, in each step we introduced the optimal
candidate covariate to improve null co-expression P value distribution toward
uniform distribution from the setYncov

k¼1

CðorigÞ
k

� �pk( �����8j 2 fljpl > 0g; CðorigÞ
j

� ��1Yncov
k¼1

CðorigÞ
k

� �pk 2 C
)
: ð2Þ

This restricted the candidate nonlinear covariate set to series expansion terms
whose all lower-order terms had already been included. The restriction reduces the
number of models/covariate candidates to a finite (and small) number, while only
assuming that the aggregated effect of all Ci functions is generically nonlinear, i.e.,
not very close to even or odd. The iteration ends when none could provide obvious
improvement, and then the nonlinear covariate terms Ci (each defined by the
polynomial order vector p) can be recovered from the covariate set C. The
restricted forward stepwise selection avoids unnecessary covariates, which degrade
statistical power and reduce generalizability.

For Normalisr, the forward selection goal was the uniform distribution of null
co-expression P values. The forward selection process introduced three covariates:
log total read count, its square, and the number of 0-read genes.

Existing covariate aggregation. Existing covariates (C(e)) can contain batches,
pathways that are not the analytical focus (see GO pathway removal in co-
expression networks), constant intercept term, etc. Aggregation of existing and
cellular summary covariates is a simple concatenation

CðaÞ ¼ CðeÞT ;CT
� �T

; ð3Þ

followed by an orthonormal transformation (excluding intercept term).

Cell variance estimation. Covariates may confound (Bayesian log) expression at
the variance level in addition to the mean, e.g., due to the sparse multinomial
sampling in sequencing. To account for such effects and to prepare for their
removal in the next step, we estimated the contribution to unexplained expression
variance from covariates. For this, we first modeled Y= α(y)C(a)+ ε(y) in matrix

form for confounding at mean level, where αðyÞ � fαðyÞij g is the matrix of covariate
j’s effect on gene i’s mean expression and is unbiasedly estimated with the max-
imum likelihood estimator (MLE) from linear regression as

α̂ðyÞ ¼ Y CðaÞT ðCðaÞCðaÞT Þ�1
. To compute and model the unexplained variance, as

oppose to independent consideration of each gene i with ðεðyÞi Þ2, we fit a general
variance confounding model for all genes with their combined error variance

vk � ∑iðεðyÞik Þ
2
for each cell k with ln v ¼ αðvÞCðaÞ þ εðvÞ with ε(v) ~ i. i. d N(0, σ2).

This reduces the number of intermediate variables and consequently overfitting.

Then the MLE of the estimated cell variance is v̂ ¼ eα̂
ðvÞCðaÞ

where

α̂ðvÞ ¼ ln v CðaÞT ðCðaÞCðaÞT Þ�1
. Note that maximum likelihood optimization with

α̂ðyÞ and α̂ðvÞ together fails due to overfitting and prioritization of few cells. This
regression-based cell variance estimation retains changes of expression variance
that are due to biological sources.

Gene expression variance normalization. Gene expression levels were trans-

formed to eyij ¼ byij þ ðyij � byijÞ=v̂γi=2j to normalize variance in the second term,

where bY ¼ α̂ðyÞCðaÞ . The scaling factor γi � ~γi=max
k

~γk , with ~γk � #jðgkj ¼ 0Þ,
smoothly scales variance normalization effect to zero on highly expressed genes as
their expressions are already accurately measured in scRNA-seq. Covariates’ var-
iances were also scaled in full to eCij ¼ CðaÞ

ij =v̂j accordingly with the exception of
categorical covariates left unchanged in one-hot encoding.

Gene differential and co-expression hypothesis tests. Using normalized
expression and covariates, DE was tested with linear model eY ¼ αsþ βeCþ ε,

where s= 0, 1 indicates cell set membership (case vs. control) and ε ~ i. i. d N(0, σ2).
LogFC was estimated as α̂ using maximum likelihood. The two-sided P value was
computed for the null hypothesis α= 0 using the exact null distribution of the
proportion of explained variance (by s), as Betað1=2; ðnc � 1� rankðeCÞÞ=2Þ. Co-
expression between genes i, j was tested with eYi ¼ αeYj þ βeCþ ε, with the same set-
up otherwise. Their (conditional) Pearson correlation and P value were computed
from α and are symmetric between i and j.

Outlier cell removal. For outlier removal, inverse of (estimated) cell variance was
modeled with normal distribution. Given the prior bound of outlier proportion as
r, the iterative outlier detection method started with r to 1− r percentiles as non-
outlier cells. In each iteration, a normal distribution was fitted with MLE for the
inverse variances of non-outliers, and was used for outlier test of all cells with two-
sided P values. Cells below the given Bonferroni adjusted P value threshold were
regarded as outliers in the next iteration. This was repeated until convergence and
the prior bound of outlier proportion r was checked. The removal process takes the
prior bound of outlier proportion r and the P value threshold as parameters.

GO pathway removal in co-expression networks. The GO pathway removal took
an iterative process given the significance cutoff for co-expression Q-value. In each
iteration, Normalisr first identified the top 100 principal genes in the co-expression
network, defined as those with most co-expressed genes (passing the significance
threshold). To find the dominating pathway for co-expression, Normalisr per-
formed GO enrichment analysis on these regulators using all genes after QC as
background. The most enriched GO term (by P value) was manually examined for
contextual relevance and house-keeping role. The researcher then chose to proceed
the removal or stop iteration.

If removal was elected, Normalisr first removed existing covariates linearly from
the (Normalisr normalized) transcriptomic profile. Then Normalisr extracted the
top PC of the subset transcriptomic profile of genes in the GO term. This PC was
added as an extra covariate, before producing a new co-expression network and
repeating the iteration.

This process was performed iteratively until the most enriched GO term was
contextually relevant, as judged by the researcher. Here we stop the iteration when
the GO term is specific to the cell type (dys)function (immune function for
dysfunctional T cells). The only manual input of the iterative process was when to
stop iteration.

Random partition for null DE. Homogenous cells from the same dataset, cell type,
and condition were partitioned to two sets randomly for 100 times for null DE.
Each random partition had a different partition rate, sampled uniformly between 5
and 50%.

Existing normalization and imputation methods. We used the default config-
urations in DrImpute (1.0), EnImpute (1.1), scDoc (0.0.0.9), DeepImpute (1.2),
sctransform (variance stabilizing transformation, 0.2.1), bayNorm (separately with
mode_version or mean_version, 1.2.0), Sanity (1.0), DCA (0.2.3), and MAGIC
(1.2.1), with 50 latent dimensions for MAGIC. Their differential and co-expression
used the same linear model but without cellular summary covariates.
Log(CPM+ 1) transformation was applied on DeepImpute and DrImpute outputs
because they still contained zeros. EnImpute could not connect with scImpute,
Seurat, and ALRA and was based only on the remaining methods. Sctransform’s
log10 expression was converted to natural log for logFC comparison. ScImpute58

and ZINB-WaVE59 were not included because they could not accommodate the
data size with excessive memory and/or time requirements. ScVI60 could not fit
into our comparison because it did not recommend P value-based FDR estimation.
Existing methods were evaluated on their intended usage in publications and/or
tutorial because their combinatorial uses are exponentially many but the statistical
motivation and assumption behind the combination is often less clear and less
scrutinized.

Existing DE methods. For edgeR and MAST, we exactly replicated the codes in
ref. 8, using edgeRQLFDetRate for edgeR (3.26.8)9 and MASTcpmDetRate for
MAST (1.10.0)1. DE with Seurat (4.0.3) included its normalization and DE func-
tions (NormalizeData, ScaleData, and FindMarkers with the default Wilcoxon test)
from raw read counts according to its tutorial. Log2 fold change from edgeR and
Seurat was converted to natural log for comparison.

Evaluation of null P value distribution in hypothesis testing. For differential
gene expression, we split genes to ten equally sized groups by the number of
expressed cells, low to high. We then evaluated the null distribution of P values for
each group separately. This can reveal null P value biases that depend on the
expression level. For the same purpose, we evaluated the null distribution of gene
co-expression P values for each pair of gene groups separately.

Two-sided KS test was performed on each of the 10 groups of null P values for
DE, or 55 groups for co-expression, to evaluate how they represent a standard
uniform distribution. The resulting 10 or 55 KS test P values were drawn and
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compared across different methods with violin plot. Larger KS test P values
indicate better recovery of uniform null P values.

Running time evaluation. Each method was timed after QC on a high-
performance computer of 256 CPU cores. Initial and final disk read/write was
excluded for timing for methods natively in Python.

Synthetic null co-expression dataset of homogeneous cells. To produce a
synthetic read count matrix ~G ¼ f ~gijg without co-expression of ~nc cells and ~ng
genes, yet mimicking a real, pre-QC dataset with read count matrix G= {gij}, of nc
cells and ng genes, we took the following steps.

1. Compute empirical distributions of read counts per cell (∑i gij) as Dc and
total read proportions per gene (∑j gij/∑ij gij) as Dg .

2. nj: Sample/simulate each cell j’s total read count from Dc and scale them by
~ng=ng .

3. pi: Sample each gene i’s mean read proportion from Dg .
4. bij ~ i. i. d N(0, σ2): Simulate biological variations.
5. ~pij ¼ pie

bij : Compute expression proportion.
6. ~gij : For cell j, sample nj reads for all genes, with weight ~pij for gene i.

The simulation contains three hyperparameters: the number of cells ~nc, the number
of genes ~ng , and biological variation strength σ. The simulation model is
parameterized by the distributions of read counts per cell and read proportions per
gene, which are estimated with the empirical distributions Dc and Dg in step 1.
This simulation reflects the confounding effect of sequencing depth in real datasets
on a homogeneous cell population, which is lost by permutation-based null
datasets. This model is similar with powsimR’s negative binomial model61, except
that it separates biological variations from the binomial detection process, allows
for extra method evaluations with the ground-truth of biological mRNA
proportions ~pij , and accepts biological variation strength σ as input. The ground-
truth logFC for gene i based on the simulation data is defined as the difference in

mean log expression proportion, i.e., 1
∑jmj

∑jmjln
~pij

∑k~pkj
� 1

∑j1�mj
∑jð1�mjÞln

~pij
∑k~pkj

where mj= 0, 1 indicates cell j’s binary membership of two cell subsets to be
compared.

Synthetic datasets from SymSim and Splatter. We used SymSim (0.0.0.9) and
Splatter (1.14.1) for simulating datasets with known logFC in DE. The parameters
were first estimated with BestMatchParams (for SymSim) or splatEstimate (for
Splatter) from a given dataset (Perturb-seq or MARS-seq). The estimated para-
meters were then used to simulate a dataset of given gene and cell counts following
their tutorial for DE datasets. Their internal ground-truth logFCs were stored
besides the simulated raw count matrix to benchmark logFC estimation by dif-
ferent methods. The numbers of cells in the minor group for simulating DE were
generated with random keystrokes as 519, 1134, 2656, and 3927 in totally
8472 cells.

DE logFC estimation evaluations. Estimated logFCs were compared against the
known ground-truth in synthetic datasets for method evaluation. To decompose
estimation errors into bias and variance, we trained a univariate, intercept-free
linear model to predict estimated logFCs with the ground-truth logFCs. The
resulting regression coefficient represents the overall bias in logFC scale estimation.
The goodness of fit (Pearson R2) indicates the variance of logFC estimation. This
evaluation was performed on separate gene groups from low to high expression
levels (in terms of proportion of expressed cells) to better characterize method
performances. The ideal method should provide low bias, low variance, and stable
bias that changes minimally with expression level.

Reproducibility across scRNA-seq protocols and experimental conditions. We
used the MARS-seq dataset35 of human melanoma tissue samples at a lower
sequencing depth to evaluate Normalisr’s performances across different scRNA-seq
protocols and experimental conditions. Only annotated non-live, dysfunctional
T cells from frozen samples were selected as a relatively homogeneous population
for method evaluation. All compatible evaluations were repeated on the MARS-seq
datasets.

Technical bias removal effects on cell population structure on UMAP
embeddings. We reduced the normalized or imputed transcriptome matrix to the
top 50 PCs with PC analysis and then to the top two UMAP dimensions. Cov-
ariants were removed at mean level before dimension reduction, if present.

ScRNA-seq QC. In this study, we restricted our analyses to cells with at least 500
reads and 100 genes with non-zero reads, and genes with non-zero reads both in at
least 50 cells and in at least 2% of all cells for 10× technologies, or in at least 500
cells and in at least 2% of all cells for MARS-seq, due to their different read count
distributions in this study. The QC was performed iteratively until no gene or cell is

removed. Simulated datasets followed the criteria of the corresponding real dataset
technology.

FDR control and estimations of FPR and Q-value. FPR was estimated with π̂1 in
Storey’s method37 using fdrtools62. For CRISPRi analyses, this was performed
separately for each gRNA–gene pair type.

True FDR is unknown without ground-truth but can be estimated and
statistically controlled. For the purpose of FDR control, we used Q-values estimated
with Benjamini–Hochberg procedure. To account for variations in gRNA
specificity and gene role in CRISPRi analyses, Q-values were estimated for all
gRNA–gene pairs in the “TSS, target” type together and separately for each gRNA
in other types. We also used other statistical measures such as Bonferroni-adjusted
P values at different stringency levels when the goal was not controlling the FDR in
a single set of exact hypothesis tests.

Gene Ontology. GO enrichment with GOATOOLS (0.8.4)63 was restricted to post-
QC genes as background, except in co-expression network modules where all
known genes were used. To avoid evaluation biases for our expression-based
analyses, for all GO analyses we excluded GO evidences that may also have an
expression-based origin (IEP, HEP, RCA, TAS, NAS, IC, ND, and IEA). All three
GO categories were used. GO enrichment P values are raw unless stated otherwise.
Gene names were converted with mygene when needed.

High-MOI single-cell CRISPRi screen dataset. UMI read count and gRNA
assignment matrices were downloaded from Gene Expression Omnibus (GEO) and
used for all analyses. Meta-data of gRNAs were downloaded from the Supple-
mentary Materials of ref. 7.

gRNA cross-association test. Odds ratio of gRNA intersection was computed for
every gRNA pair, with one-sided hypergeometric P values.

Types of gRNA–gene pairs.

● Naive/aware, target: NTC gRNA vs. genes targeted by any gRNA at its TSS
● Naive/aware, other: NTC gRNA vs. genes not targeted by any gRNA at

its TSS
● TSS, target: TSS-targeting gRNA vs. the gene it targets
● TSS, other: TSS-targeting gRNA vs. genes it doesn’t target
● NTC: NTC gRNA vs. any gene
● Enhancer: Enhancer-candidate-targeting gRNA vs. any gene

Association P value and logFC histograms in single-cell CRISPR screen ana-
lysis. Histograms were constructed with 50 bins, while being symmetric for logFC.
Separate histograms were drawn for different gRNA–gene pair types. Absolute
histogram errors were estimated as 2

ffiffiffiffiffiffiffiffiffiffiffiffi
N þ 1

p
, where N is the number of occur-

rences at each bin.

Competition-aware method in single-cell CRISPR screen analysis. The
competition-aware method regards all other, untested gRNAs as covariates. For
efficiency, these covariates were introduced at the time of association testing and
were assumed to only affect the mean expression, and all covariates were reduced
to top 500 PCs if >10,000. Other numbers of top PCs have been tried and found
reliable against no dimension reduction on the small-scale dataset.

Comparison with existing single-cell CRISPR screen analysis methods. We
downloaded the author’s deposition of SCEPTRE’s gene-level P values on the same
full-scale K562 study for comparison of sensitivity on the repression effects of TSS-
targeting gRNA as positive controls. To enable comparison with SCEPTRE, gRNA
level P values from Normalisr were combined to gene level with Fisher’s method. P
value strength comparison was limited to positive control genes that were highly
significant according to either Normalisr or SCEPTRE (Bonferroni P < 0.05). P
values for non-cis-effects (including from NTCs) were not available from SCEP-
TRE for sensitivity or specificity comparison.

ScMAGECK was not compared for sensitivity because it did not finish
computation within 2 weeks and scMAGECK’s P values were not publicly available
for the same study. Running time projections were based on ref. 13 for SCEPTRE
and Fig. 2c for Seurat, edgeR, and MAST.

CRISPRi off-target rate. For each gRNA-targeted gene, a weaker and a stronger
gRNA targeted its TSS, according to the P value of their linear associations. Trans-
genes that associated significantly (Q ≤ 0.05 or 10−5 as specified in figure legend)
with the weaker gRNA but highly insignificantly (P ≥ 0.1) with the stronger gRNA
were regarded as off-targets. The raw off-target rate for each weaker gRNA was
defined as the proportion of off-targets among significant trans-targets of the
weaker gRNA (under the same Q threshold). It is also the FDR when evaluating the
weaker gRNA’s associations using the stronger one as gold standard. The estimated
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off-target rate for each weaker gRNA was defined as minðraw off -target rate=ð1�
0:1Þ; 1Þ to extrapolate and account for the proportion of insignificant associations
with the stronger gRNA that was lost in choosing P ≥ 0.1. The (overall) off-target
rate for a screen was defined as the average estimated off-target rate across the
weaker gRNAs.

Inferring gene regulations from trans-associations in single-cell CRISPR
screen. Inferred gene regulations must satisfy all the following conditions for both
gRNAs in both screens.

● Significant repression of targeted gene: Q ≤ 0.05 and logFC ≤−0.2.
● Significant association with trans-gene: Q ≤ 0.2, logFC

�� �� ≥ 0:05, relative
(to logFC of targeted gene) logFC

�� �� ≥ 0:05.
● No other gene repressed within 1Mbp up- and down-stream window of

targeted TSS: P ≤ 0.001 and logFC ≤−0.1. This aims to avoid identifying
the scenario: intended target ← gRNA→ cis-gene→ another gene, which
would otherwise become a false positive of gene regulation: gRNA→
intended target→ another gene.

Dysfunctional T cells in human melanoma dataset. We downloaded the read
count matrix and meta-data from GEO, after QC from the original authors. We
regarded the following as categorical covariates that may confound gene (co-)
expression: batches from amplification, plate, and sequencing, as well as variations
from patient, cell alive/dead, sample location, and sampling processing (fresh or
frozen). In our QC, cells from donors that had <5 cells of the same cell type were
discarded. With the prior bound for outlier proportion as 2%, low-variance outlier
cells with Bonferroni P ≤ 10−10 were removed from downstream analyses with
Normalisr. Pseudo-genes and spike-ins were treated indifferently in statistical
inference.

Dysfunctional gene overlap testing. Overlap testing was performed between
known dysfunctional genes (from literature) and genes upregulated (Q ≤ 0.05) in
dysfunctional vs. naive T cells. Background gene set of this dataset was selected as
upregulated or downregulated genes (Q ≤ 0.05). Only known dysfunctional genes
found in the background set were considered for hypergeometric testing P value.

Gene co-expression network in dysfunctional T cells. We computed Q-value
networks from raw P values separately for each gene against all other genes, to
account for different gene roles such as principal genes or master regulators22. For
co-expression network in dysfunctional T cells, we used a strong cutoff (Q ≤ 10−15)
to prioritize more direct gene interactions. The final co-expression network focused
on the major connected component of the full co-expression network after two
iterations of GO pathway removal. Within the final network, we also removed a
relatively separate cluster consisting solely of non-coding mRNAs and spike-ins
(Fig. S14).

Over-abundance of co-expression networks within annotation group. We used
GOATOOLS63 and BioServices64 for GO and KEGG pathways, respectively.
We restricted the gene sets to having at least two edges but at most half in the given
co-expression network. To reduce multiple testing, for each GO term, its parent
term is excluded if it has the same annotation on the network. P values for edge
over-abundance were computed with random annotation assignment with the
same number of annotated nodes in the network.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The Perturb-seq data used in this study are available in the Gene Expression Omnibus
database under accession code GSM2406681. The MARS-seq data used in this study are
available in the Gene Expression Omnibus database under accession code GSE123139.
The CROP-seq data used in this study are available in the Gene Expression Omnibus
database under accession code GSE120861. The shRNA DDX3X knock-down and
control data used in this study are available in the Gene Expression Omnibus database
under accession codes GSM2406681 and GSM2138876 or the ENCODE database under
accession codes ENCSR000KYM and ENCSR913CAE. SCEPTRE results were
downloaded from https://drive.google.com/drive/folders/
1ynZRMvGtFxfBiD0zAcuIYjNeS8Jj4AP9 in ref. 13.

Code availability
Normalisr is publicly available at https://github.com/lingfeiwang/normalisr65.
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