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Chromatin accessibility associates with protein-
RNA correlation in human cancer
Akshay Sanghi1, Joshua J. Gruber1,2, Ahmed Metwally 1, Lihua Jiang1, Warren Reynolds3, John Sunwoo 4,

Lisa Orloff4, Howard Y. Chang 1,3, Maya Kasowski1,5,6,7 & Michael P. Snyder 1✉

Although alterations in chromatin structure are known to exist in tumors, how these

alterations relate to molecular phenotypes in cancer remains to be demonstrated. Multi-

omics profiling of human tumors can provide insight into how alterations in chromatin

structure are propagated through the pathway of gene expression to result in malignant

protein expression. We applied multi-omics profiling of chromatin accessibility, RNA abun-

dance, and protein abundance to 36 human thyroid cancer primary tumors, metastases, and

patient-match normal tissue. Through quantification of chromatin accessibility associated

with active transcription units and global protein expression, we identify a local chromatin

structure that is highly correlated with coordinated RNA and protein expression. In particular,

we identify enhancers located within gene-bodies as predictive of correlated RNA and protein

expression, that is independent of overall transcriptional activity. To demonstrate the gen-

eralizability of these findings we also identify similar results in an independent cohort of

human breast cancers. Taken together, these analyses suggest that local enhancers, rather

than distal enhancers, are likely most predictive of cancer gene expression phenotypes. This

allows for identification of potential targets for cancer therapeutic approaches and reinforces

the utility of multi-omics profiling as a methodology to understand human disease.

https://doi.org/10.1038/s41467-021-25872-1 OPEN

1 Department of Genetics, Stanford University, Stanford, CA, USA. 2Division of Oncology, Department of Medicine, Stanford University School of Medicine,
Stanford, CA, USA. 3 Center for Personal Dynamic Regulomes and HHMI, Stanford University, Stanford, USA. 4 Division of Head and Neck Surgery,
Department of Otolaryngology, Stanford University School of Medicine, Stanford, CA, USA. 5Department of Pathology, Stanford University School of
Medicine, Stanford, CA, USA. 6 Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University School of Medicine, Stanford,
CA, USA. 7 Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford University, Stanford, CA, USA.
✉email: mpsnyder@stanford.edu

NATURE COMMUNICATIONS |         (2021) 12:5732 | https://doi.org/10.1038/s41467-021-25872-1 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-25872-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-25872-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-25872-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-25872-1&domain=pdf
http://orcid.org/0000-0002-0155-7412
http://orcid.org/0000-0002-0155-7412
http://orcid.org/0000-0002-0155-7412
http://orcid.org/0000-0002-0155-7412
http://orcid.org/0000-0002-0155-7412
http://orcid.org/0000-0002-8393-4196
http://orcid.org/0000-0002-8393-4196
http://orcid.org/0000-0002-8393-4196
http://orcid.org/0000-0002-8393-4196
http://orcid.org/0000-0002-8393-4196
http://orcid.org/0000-0002-9459-4393
http://orcid.org/0000-0002-9459-4393
http://orcid.org/0000-0002-9459-4393
http://orcid.org/0000-0002-9459-4393
http://orcid.org/0000-0002-9459-4393
http://orcid.org/0000-0003-0784-7987
http://orcid.org/0000-0003-0784-7987
http://orcid.org/0000-0003-0784-7987
http://orcid.org/0000-0003-0784-7987
http://orcid.org/0000-0003-0784-7987
mailto:mpsnyder@stanford.edu
www.nature.com/naturecommunications
www.nature.com/naturecommunications


The central dogma describes that DNA sequences code for
RNA, and RNA is translated to produce protein. However,
additional layers of regulation occur at the level of chro-

matin, as well as at the levels of post-transcriptional and post-
translational control. The general degree to which these levels are
tuned during health and human disease remains to be fully
explored1–3.

Chromatin accessibility is a hallmark of active enhancers, which
are cis regulatory elements of gene expression4. Chromatin acces-
sibility and RNA abundance are often measured together to map
the regulatory context of gene expression, excluding measurements
of the proteome. Although RNA is used as surrogate marker for
protein expression, many studies have shown that RNA and protein
levels are markedly different (~correlation= 0.3)5,6. It remains to be
determined whether the chromatin context associates with the
cancer proteome.

Cancer reprogramming confers drastic changes in RNA and
protein levels6,7 and the chromatin landscape8,9. Cells reprogram
their identity to express growth, migratory, and immune evasion
pathways. Two interesting reprogramming situations occur in solid
tumors: (1) progression from normal tissue to primary tumor and
then metastatic tumor; (2) divergence of primary tumors into
molecular subtypes that develop from the same original tissue
type10,11. In both situations, the tissue of origin transforms its cel-
lular identity, which can be distinguished by its molecular
features12,13. However, it is unclear how dynamic chromatin
landscapes relate to the dynamic protein expression in cancer.

We conducted a multi-omics investigation of how cancer alters
the chromatin accessibility landscape to express different proteins
and furthermore provide a framework to prioritize genes that
define pathological stages and molecular cancer subtypes14. We
studied tumor progression using a cohort of metastatic thyroid
carcinoma, which includes 36 patients’ tissue samples of patient-
matched normal thyroid, primary tumor, and metastatic samples.
Our integrative analytical framework unexpectedly identifies
regulatory elements in the gene body that associate with differ-
ential transcription and translation. We find that proximal
enhancer sites, rather than upstream distal enhancers, have pre-
ferential activity in driving changes in protein abundance that are
likely most important in establishing the malignant state. Proteins
under coordinated gene regulation likely control the cancer
phenotype and thus they could serve as better targets for diag-
nostics and therapeutics.

Results
Curation of clinical samples, data acquisition, and primary
analysis. To investigate the gene expression and other molecular
alterations that are induced in the progression from normal
thyroid to primary tumor and metastases, we analyzed clinical
specimens of patient-matched metastases, primary tumor, and
normal thyroid tissue. We collected 30 primary tumors (Tumor),
28 patient-matched normal thyroids that were taken contralateral
to tumor (Normal), and 35 local lymph node metastases (Met)
(Fig. 1a). Fresh-frozen tissues were aliquoted to collect nuclei,
RNA, and proteins for the downstream multi-omics assays. This
allowed us to identify how chromatin structure relates to the
abundance of transcripts and proteins in thyroid cancer. To
interrogate the chromatin landscape, we conducted assay for
transposase-accessible chromatin using sequencing (ATAC-seq),
which uses a transposase to selectively integrate sequencing
adapters into accessible chromatin15. RNA abundances were
quantified by sequencing ribosomal RNA-depleted RNA16. Pro-
tein abundance was quantified by TMT-labeled shotgun pro-
teomics with data-dependent acquisition17 (see “Methods”).

In cancer, we expect a subset of genes’ expression levels and
associated chromatin accessibility to change in the progression of

thyroid cancer8. Thus, we conduct differential testing at each
omic level to determine which genes and chromatin features are
dynamic in the progression of thyroid cancer (Fig. 1a). We define
a differentially expressed gene if it is significantly differential
(false discovery rate (FDR) < 0.1) between any of the pairwise
comparisons (i.e., Tumor vs Normal, Met vs Normal, or Met vs
Tumor) at either the protein or RNA level. Furthermore, we
quantify differential chromatin accessibility for regions that are
predicted to regulate gene expression.

Our analytical framework (Fig. 1b) aims at measuring
molecules from the flow of information from chromatin to
protein. We identified 5384 proteins, which are detected at the
RNA level and have predicted chromatin features that regulate
expression. Fifty-four samples were profiled for chromatin
accessibility, RNA abundance, and protein abundance (18
Normal tissues, 18 Tumors, and 18 Mets). We conducted two
types of correlation comparisons (1) sample-wise correlation and
(2) gene-wise correlation5. In sample-wise correlation, following
the flow of information for each gene, we compare two
correlation values: correlation between chromatin accessibility
at a regulatory element and RNA abundance, and correlation
between RNA abundance and protein abundance. In gene-wise
correlation, we test correlation of fold changes of differential
accessibility, differential RNA abundances, and differential
protein abundances for all pairwise comparisons. Pairwise
comparisons produce similar results to a standard analysis of
variance test but gives additional information of dynamic changes
between pairs. Our analysis shows that overall tumors and
metastases form a cluster that is distinct from the normal thyroid
samples at the RNA and protein levels (Supplementary Fig. 1)

Chromatin accessibility and RNA abundance are mapped to
the genome as shown on an example genome track (Fig. 1c). The
signal tracks an average across many samples (28 Normal ATAC,
30 Tumor ATAC, 35 Met ATAC, 27 Normal RNA, 30 Tumor
RNA, and 30 Met RNA). Since proteomics quantifies relative
abundance of fragmented peptides, it measures abundance at the
protein level. Thus, we visualize this as bar graphs with bars
summarizing relative protein abundance in each tissue type
(Fig. 1c). These signals are also averaged across samples (21
Normals, 22 Tumors, and 22 Mets). In the example of the
thyroglobulin gene, shown here, the chromatin accessibility
surrounding the transcription start site (TSS) of thyroglobulin
follows a positive correlation with RNA abundance and protein
abundance in averaged levels in normal thyroids, tumors, and
metastases (Fig. 1c).

We next examined whether there is a difference in protein–RNA
correlation between all detected proteins to differentially expressed
RNAs for all pairwise comparisons. The distribution of
protein–RNA correlation across all genes is centered at 0.22, and
85% of genes have a positive correlation (Fig. 1d), and the tissue
type does not affect this correlation (Supplementary Fig. 1e).
Among the detected proteins, 1049 genes at the protein level and
943 genes at the RNA level were significantly differential for all
pairwise comparisons. Analyzing only the genes that are signifi-
cantly differential by either measure of expression, the distribution
of protein–RNA correlation significantly shifted toward higher
correlation with a median spearman correlation of 0.36 and 91%
positive correlations (Fig. 1d). To determine whether transcriptional
activity associates with the protein–RNA correlation of differentially
expressed genes, we plotted the RNA abundance distributions for all
samples in bins of protein–RNA correlations. This showed that
RNA abundance was not associated with protein–RNA correlation
(Fig. 1e). Likewise, the gene-wise correlation analysis showed that
617 genes and 795 instances (including the same genes but different
pairwise comparisons) had significant changes in the RNA and
protein levels. Gene-wise correlation showed 86.4% concordant
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changes in protein and RNA (Spearman correlation= 0.63; Fig. 1f).
This suggests that differentially expressed genes have high
correlation between the RNA and protein levels.

Accessible chromatin peaks inform protein–RNA correlation.
Many approaches have shown that accessible chromatin acts in cis
to regulate transcription9,18,19. Utilizing the genome-wide data of
chromatin accessibility and RNA abundances, we quantified the
regulatory effect of a comprehensive set of loci on transcription. A
promoter or non-promoter (NP) element can have an activating
effect, which can be predicted with correlation values20. We used an
expression-based algorithm to link ATAC-seq peaks, which repre-
sent accessible chromatin, to their expected gene targets. We

defined peaks into two categories, promoter regulatory elements
(−1000 and +100 of its gene’s TSS) and NP regulatory elements
(Fig. 2a)8. A NP element may be assigned to its nearest gene or
linked to a gene that skips over several other genes. Our method of
peak gene linkage identified likely gene targets by testing correlation
of RNA to the cis-ATAC-seq peaks against a null-model for each
gene (see “Methods” for details). Figure 2b provides an example of
peak gene linkages for CDH6 and also the associated RNA and
protein expression. Overall, we identified 66,000 peak gene linkages
(Supplementary Fig. 1f).

Previous research has shown that promoter accessibility is largely
invariable while NP elements change in induced systems and
between cell types21. We examined how regulatory elements
associate with the landscape of differential expression in this

Fig. 1 Integrative multi-omic analysis of thyroid cancer cohort. a Cohort description, 93 samples of patient-matched samples of lymph-node metastases,
primary thyroid tumors, and adjacent normal thyroid were assayed. Three omics are integrated to profile chromatin accessibility, transcript abundances,
and protein abundance. b Analytical framework, assay for transposase-accessible chromatin using sequencing (ATAC-seq), RNA-seq, and proteomics
resulted in measurements for 5384 genes, which were used in correlation analyses across omics. c Visualization of the omic data for thyroglobulin (TG).
Biologically independent tissue chunks from each disease stage (i.e., normal, tumor, and met) are averaged to produce the signal plots. d Distribution of
protein–RNA correlation comparing all genes vs differentially expressed genes. e Distribution of RNA abundance for bins of protein–RNA correlations.
f Gene-wise correlation of differentially expressed genes at the RNA level and differentially expressed proteins across all pairwise comparisons.
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metastatic thyroid cancer cohort. Figure 2c shows the distribution of
sample-wise correlations for promoter elements only (left graphs)
and NP elements (right graphs). The y-axis of the graphs is the
protein–RNA sample-wise correlation. The x-axis is the sample-wise
correlation of chromatin accessibility of regulatory elements and
RNA abundance of their gene targets. The regulatory elements that
are graphed are linked to differentially expressed genes at either
measure of expression (i.e., RNA and/or protein). The region of
interest on the graphs is the upper-right quadrant as these gene-
regulatory element pairs show high paired correlation values
(defined as correlation values >0.5, which represents an upper
bound in the data). Differential promoter elements showed

significantly more high paired correlation values compared to not
differential promoter elements (18.4 vs 4.3%, respectively, Fig. 2c).
Furthermore, we conducted linear regression of the protein levels
based on the RNA abundance and regulatory element accessibility.
The model identifies that genes with differential RNA expression
predicts protein levels better than genes with only differential protein
expression, which supports that the chromatin association with
protein levels is mediated through transcription (Supplementary
Fig. 2c, d). In addition, there is significantly more protein
predictability of genes with differential promoters compared to not
differential protomers (protein predictive significance= 8.19e−22,
see “Methods”). The right graphs show that genes with differential
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NPs enrich for highly paired correlation values (42.7 vs 7.5% high
paired correlation values for differential NPs vs not differential NPs,
Fig. 2c). In addition, differential NPs significantly predict protein
levels compared to not differential NPs (protein predictive
significance= 7.50e−15, Supplementary Fig. 2a). The analytical
framework was formatted into an R package that can utilize new
datasets as well (https://github.com/asanghi7/epigenoproteomics).

Given the enrichment of high paired correlation values in
differential NPs and the predictive nature of differential NPs for
protein levels, we further investigated the relationship between
differential NPs and protein levels. Across all pairwise
comparisons, we identified 202 differentially expressed genes
that are significantly changed at the RNA and protein levels and
associate with differential NP (Fig. 2d). Gene-wise correlation for
these genes is higher than gene-wise correlation for all genes
(Spearman= 0.84, 96% concordant directions of log fold changes
vs Fig. 1f, Spearman= 0.64, 86.6% concordant directions). The
differential NP activity score, which summarizes the total log fold
change of the dynamic elements (see “Methods”), matches with
the directionality of the log fold change of gene expression. Also,
the majority of the linked differential NP peaks reside proximal
to the gene. Lastly, the number of gene NPs was largely composed
of comparisons between tumor vs normal (715 pairs) and met
vs normal (1115 pairs), with very few met vs tumor comparisons
(14 pairs).

Attributes such as distance between NP elements and their
gene targets can distinguish how chromatin accessibility regulates
expression22,23. NP elements are known to act upon their gene
targets at variable distances, ranging from several megabases away
to within the transcriptional unit. Evidence suggests that elements
contained within the gene body may be more likely to regulate
expression than elements distal from the gene24–26. Therefore, we
assessed the genetic distance (in kilobases) of NP elements to
the gene body of differentially regulated genes. The differentially
expressed genes at RNA and protein levels map to proximal
differential NPs (Active category on Fig. 2e) compared to not
differential NPs that target not differentially expressed genes (Not
active on Fig. 2e). The violin plot shows that the distance
distribution for these active NP is significantly enriched for
activity within the gene body compared to the NP linked to genes
with no dynamic activity (Fisher’s exact test= 3.71e−69). We
find that, within the active subset, the NPs contained within the
gene body have more protein predictive significance compared to
the protein predictive significance of NPs outside the gene body
(Fisher’s exact test= 3.61e−05).

Much evidence shows that regulatory elements are cell-type
specific, and thus, it is expected that regulatory elements in this
cohort would overlap with independent data on thyroid-specific
regulatory landscapes26,27. The Cancer Genome Atlas (TCGA)
profiled the chromatin accessibility of 32 tumor types and
identified 18 clusters of regulatory landscapes; one cluster is the
thyroid cluster. Comparison of our active NPs with those of the
TCGA’s thyroid cancer ATAC clusters (Fig. 2f) revealed that
27.5% of NPs within the gene body and 19.8% of elements distal
to the gene body overlap with TCGA peaks. These percentages
are not expected according to random overlap with TCGA
thyroid elements because the genome distance covered within
the gene body is less than or equal to the genome distance
analyzed in the distal region that is upstream to the gene.
Furthermore, the number of active gene body-localized NPs
overlapped significantly more with TCGA thyroid peaks
compared to active distal NP elements (Fisher’s exact test=
1.24e−14, see “Methods”). Therefore, the gene body-localized
regulatory elements are more likely to be identified in external
datasets, implying a more important regulatory function
compared to distal elements.

Gene body chromatin accessibility is associated with
protein–RNA correlation. We found that regions of NP acces-
sibility contained within the gene body are associated with
coordinated transcription and translation. Although typically
peaks are used to identify important chromatin features, we also
tested whether dynamic accessibility across the gene body asso-
ciated with changes in gene expression. To measure cumulative
gene accessibility, we utilized a measure employed for RNA
sequencing (RNA-seq): normalized reads per kilobase million
(RPKM) (Fig. 3a), which was quantified per gene for each sample.
RPKM values were then used in sample-wise and gene-wise
correlations similar to the analysis in Fig. 2. As a visual example
of how accessibility appears across the gene, we show signal tracks
for the MET gene and its corresponding RNA and protein levels
(Fig. 3b). Chromatin accessibility profiles of MET show that
chromatin accessibility is clustered within peaks.

Across the landscape of all 5384 proteins detected, we measure the
gene accessibility correlation with RNA abundance and protein
abundance, using the same distribution of sample-wise correlations
as in Fig. 2c. The top subpanel shows the distribution of sample-wise
correlation for genes with no differential gene accessibility in any
pairwise comparison (Fig. 3c). In contrast, differential accessibility in
differentially expressed genes (bottom subpanel) enriches for co-
correlated genes (23.0 vs 2.1% high paired correlation values for
differentially accessible genes vs not differentially accessible genes;
protein predictive significance= 6.551e–09, Supplementary Fig. 2b).

Gene accessibility integrates several pieces of information that
relate to gene expression such as DNA regulatory elements and
chromatin remodeling as a consequence of RNA polymerase
elongation28. Given that gene accessibility contains information
about the activity of the gene, we expected that the differential
changes in accessibility will match with differential changes in
expression. As shown in Fig. 3d, gene-wise correlation for the subset
of genes with differential gene accessibility has a high correlation of
protein and RNA log fold changes (Spearman= 0.84; 211 genes;
98% concordant log fold changes in expression). In addition, the
gene accessibility matched the directionality of the log fold changes
of expression (Fig. 3d). These results concur with the result in
Fig. 2d, in which the three layers of data showed similarly matched
directionality.

The results so far suggest that gene body accessibility (RPKM)
behaves similarly to the NP peaks. To further assess the
regulatory information contained in gene bodies, we investigated
whether regulatory elements contained within these active gene
bodies enriched for exonic or intronic NP elements. The
expectation based on epigenetic studies is that regulatory
elements follow a distribution based on the length distribution
such that a NP element is more likely to be found in an intron
than at exon at the rate of the ratio of intronic length to exonic
length in the genome. Thus, we enumerated the number of active
exonic and intronic NP contained within differentially accessible
genes (Fig. 3e). For these 124 genes, the mean exonic length
fraction of the gene body length is 0.11, meaning the intronic
regions are on average 9 times longer than exonic regions. The
number of active exonic NP elements is 126 and the number of
active intronic NPs is 622 (Fig. 3e). Thus, the number exonic
active NP elements are marginally more enriched than the
expected density (binomial test p= 1.48e−06)

Both exonic and intronic NP regulatory elements have been
shown to act as enhancer regions29. Indeed, we found the sample-
wise correlation and protein predictive significance support that
exonic and intronic NPs have similar function (Fig. 3f). The high
paired correlation values for exonic vs intronic NPs were similar
(75 vs 72%), and the protein predictive significance was marginally
better in exonic NPs (p value= 3e−4). This supports that
differential accessibility within the gene body corresponds to active
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regulatory elements contained within the gene body and these
elements have protein predictive power. Overall, we observe that
gene body regulatory elements have strong positive correlations with
protein levels.

Mitogen-activated protein kinase (MAPK) transcription fac-
tors (TFs) drive protein–RNA correlation in thyroid cancer.
Regulatory elements mediate gene expression via TF binding.
Within putative functional chromatin-accessible regions, footprints
of TF binding can be detected30,31. We conducted differential TF
footprinting in the ATAC-Seq peaks to identify genome-wide
bound motifs with greatest difference in predicted binding between
every pairwise comparison. First, tumor and metastases had near

identical differential footprints when compared to normal.
Figure 4a shows the most enriched motifs in tumor and met
compared to normal. Given that thyroid cancer is a MAPK-driven
tumor, we expected the tumors to harbor active TFs in the MAPK
pathway bindin11,32. Indeed, we identified a family of MAPKmotifs
(FOS, JUN, JDP, BATF) enriched in tumors and mets, compared to
normal. In contrast, we expect that normal thyroid will enrich for
lineage factors, and we observe thyroid transcription factor 2 (TTF-
2, also known as forkhead box protein FOXE1)33, a thyroid-specific
TF essential for thyroid development, is differentially bound in
normal compared to tumors/mets. Overall, the top most motifs
enriched in normal thyroid are FOXE1, NFATC2, NFATC3, RFX2,
RFX5, TEAD3, and TEAD4. Several of these TFs bind to consensus
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DNA motifs, and our prediction method is insensitive to this
similarity of motifs. Even though several loci are predicted to have
several TFs bound, this does not interfere with the aim to show
the specific genes throughout the genome that are controlled by the
same regulon set. In tumor and met, the top differential TF foot-
prints are FOSL1JUNB, JUNvar.2, FOSL1JUN, FOSL2JUNB, FOS-
JUN, FOSJUND, Smad2Smad3, FOSBJUNB, FOSJUNB, JUNB,
JUND, FOS, FOSL1JUND, BATF, FOSL2JUND, FOSL2JUN, JUN-
JUNB, FOSL1, JDP2, BATFJUN, BATF3, and FOSL2 (Fig. 4a).

Given that a set of TFs are most differentially bound across the
genome, we conditioned active loci on whether there is evidence
of TF binding in a state-specific manner. Thus, to identify
differential footprints at specific loci, we searched for evidence of
state-specific TF binding in one state (e.g., Tumor or Met) and no
evidence of TF binding in the opposite state (e.g., Normal). We
show the genome track ofMET (gene) layered within information
about differential footprints within the gene body (Fig. 4b). There
is one site within an intron that contained the FOS2L motif and
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showed active TF binding (top-right graph Fig. 4b). Furthermore,
genome wide, we saw an enrichment of footprints in tumor and
met compared to normal (bottom-left subpanel of Fig. 4b). This
genome-wide footprinting analysis suggests that TFs in the
MAPK pathway are actively bound significantly more in tumor
and met than in normal.

We expect that the predicted TFs footprinted are expressed in
the samples. The bar graphs show the expression at the FOSL2
RNA level (top right Fig. 4b) and protein level (bottom right
Fig. 4b). As expected, FOSL2 is expressed in tumor and met at
both the RNA and protein levels. However, the differential
activity cannot be explained entirely by differential expression.
We find that the RNA levels are similar between tumor/met
compared to normal. However, the protein level of FOSL2 is
significantly higher in tumor and met compared to normal
(FDR < 0.1). This not only suggests that post-translational
regulation may affect activity of FOSL2 in thyroid cancer but
also indicates that our footprinting approach likely detects
functional TF–chromatin interactions.

Regulatory elements within the gene body likely mediate
function via differential TF binding, and this function results in
gene expression transcriptionally and ultimately translationally.
We tested this hypothesis on differentially expressed genes at the
protein and RNA levels. We show that the distribution of
differential footprints within NPs was significantly shifted toward
locations within the gene body as compared to the distribution of
distances of all NPs linked to differential RNA (Fig. 4c). We
choose differential transcripts’ NPs as the null because this
captures the general distribution of distances between peak to
gene links (Fisher’s exact test p value= 1.3e−17; Fig. 4c). We
found that differentially footprinted gene body NPs significantly
predict protein abundance compared to non-differential NPs
(protein predictive significance= 3.1e−26, Supplementary
Fig. 2e). As a positive control for transcription regulation, we
demonstrated that proximal enhancers regulate the expression of
long noncoding RNA (Supplementary Fig. 3). This suggests that
regulatory information proximal to the gene is crucial for
coordinating transcription and translation.

Given that NPs are more common in intronic vs exonic
regions, we expected to observe a similar trend with differential
footprinting. Based on the mean direction of differential gene
accessibility, we identified matched differential footprints within
the gene body. Figure 4d delineates by color that the differential
footprint almost entirely matches the mean direction of
expression change at the protein and RNA levels. Interestingly,
metastases had several more differential footprints compared to
tumors (51 vs 18), suggesting that metastases have more induced
changes than tumors. Furthermore, we show that intronic
footprints make up the large majority of differential footprints
in the gene set with differential accessibility. Overall, 88 out of
161 differentially accessible genes were significantly enriched
relative to the number of not differentially accessible genes with
any differential footprints in NP regions (Fisher’s test p value=
3.6e−07). Therefore, the gene body-accessible chromatin proper-
ties associated with high protein–RNA correlation also extend to
TF binding.

Differential gene accessibility could have a predicted biological
impact if the regulated protein targets interact with one another
in gene networks. We observed that gene body accessibility and
regulatory activity selected for gene networks relevant to thyroid
cancer (Fig. 4e). We found that the top gene sets enriched in all
differential proteins are non-specific and likely not relevant to
thyroid cancer biology. These top gene sets are generic
mitochondrial and metabolic pathways (left graph Fig. 4e).
However, when we specifically examined the differentially
expressed proteins that contain active footprints within their

gene body, then the most enriched gene sets are known thyroid
cancer genes (middle graph Fig. 4e). Furthermore, the genes
contained within these thyroid cancer gene sets had expected
protein expression and gene accessibility as the genes upregulated
in thyroid cancer had increased gene accessibility and protein
expression in tumor and met compared to normal. Similarly,
genes downregulated had decreased accessibility and protein
expression (left graph Fig. 4e). Given that these gene sets are
largely derived from transcript microarray data, this is orthogonal
validation that integrated epigenomics and proteomics identifies
cancer-type-specific gene sets.

Integrated epigeno-proteomics identifies cancer gene regulons.
Much information about dysregulated genes in cancer has been
historically derived from transcriptome data. For example, ERK-
driven tumors, which encompass a large fraction of cancer types,
including thyroid cancer, are clustered based on expression of
specific genes from microarray data34,35. Although proteomics is
gaining traction in cancer, many tumor types have yet to be
profiled with shotgun proteomic technologies. From our inte-
gration of epigenomics and proteomics, we find a subset of highly
regulated and coordinated differentially expressed proteins in the
progression of thyroid cancer. We used these proteins to build a
protein–protein interaction subnetwork, focusing on nodes that
are modulated by differential regulons between tumor and
metastases compared to normal (permuted p value= 9.96e−06)
(Fig. 4f)36. We found that many proteins under regulation of
thyroid-specific MAPK TFs are predicted to interact in tumors.
Several of the listed genes are known to be involved in thyroid
cancer progression (FN1, LGALS3, and TNC)34,37. Our network
adds connected genes that also have coordinated flow of infor-
mation from gene accessibility and differential footprints to gene
expression. This set of proteins potentially form regulons that are
essential for thyroid cancer. Furthermore, we identified several
interacting genes that are downregulated in thyroid tumors and
mets that are under regulation of the normal thyroid regulon
(Fig. 4f).

Application of integrated epigeno-proteomics in breast cancer
(BRCA) subtypes. Our results indicate that the landscape of open
chromatin associates with protein–RNA correlation in thyroid
cancer. To examine whether this is the case for other cancers, we
analyzed the TCGA BRCA cohort, which has the largest set of
samples that are jointly profiled for chromatin accessibility, RNA
abundance, and protein abundance (Fig. 5a). However, TCGA did
not profile normal breast samples for epigenomic and proteomic
information, making tumor–normal differential calling impos-
sible. Instead, we performed differential omics analysis between
the BRCA PAM50 molecular subtypes, which in this case
includes luminal A, luminal B, and basal. These three subtypes
are based on a 50-gene RNA abundance classifier called
PAM5010. Because these molecular subtypes harbor unique his-
tological and clinical properties, knowledge of differential reg-
ulons between them could inform clinical care.

TCGA conducted ATAC-seq on 78 BRCA samples and used
the corresponding RNA-seq data from these samples to assign
ATAC-seq peaks to genes. Furthermore, iTRAQ-labeled proteo-
mics was conducted on 22 out of the 78 samples in the CPTAC
project, and their method detected 6120 proteins in all the
samples. We used our analytical framework on these 22 samples
to validate whether gene body enhancers coordinate gene
expression in BRCA subtypes.

Figure 5b shows that the luminal subtypes of BRCA distinguish
themselves from basal subtype based on their TF footprints.
Luminal A/B tumors have a higher level of FOX activity (FOXB1,
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FOXC1, FOXA3, FOXA2, FOXA1, FOXP1, FOXD2, FOXO3,
FOXF2, FOXC2, Foxj3, FOXE1, FOXK2, Foxl2, Foxf1, FOXD1,
FOXO6, FOXL1, FOXP3, FOXO4, FOXI1, FOXK1, FOXG1,
FOXP2, Foxj2, FOXN3, GRHL1). Basal tumors have a higher
level of nuclear factor-kB activity (REL, RELA, RELB, SPIC,
NFKB1, NFKB2, SOX4, SOX6).

These observations suggest that footprints contained within the
gene body of differentially active genes can be used to distinguish
BRCA subtypes. An example is shown for the EGFR locus, which
is known to be important in the basal subtype (Fig. 5c)38.
Contained within the EGFR locus were basal-specific REL

footprints (highlighted in Fig. 5c), and these footprints associated
with basal-specific gene expression at the RNA and protein levels.
These footprinted enhancers have previously been linked to gene
expression of EGFR8.

Our hypothesis is that BRCA subtypes would utilize a similar
regulatory mechanism as we have shown in thyroid cancer
progression. Since we have identified specific TFs that distinguish
BRCA luminal and basal types, we test whether gene body
accessibility and transcript abundance predict protein levels for
genes that harbor the expected TF-binding sites within the gene
body of their targets. Using a similar linear model statistical test,
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we find that active footprints contained within the gene body
enriched for high paired correlation between accessibility and
expression (44.6 vs 8.9% high paired correlation values for
differentially active genes vs not differentially active genes;
modified protein predictive significance= 4.23e−19; Fig. 5d).

Using the subset of genes with predicted protein levels based
on transcription and differential footprint activity contained
within the gene body, we display heatmaps of the gene
accessibility and protein abundance for each sample (Fig. 5e).
The top figure shows that gene accessibility clusters approxi-
mately according to subtype (basal and luminal subtypes).
Furthermore, the genes detected in our analysis overlapped with
known BRCA gene sets as shown in the row annotations. The
bottom heatmap shows that protein expression clustered basal
and luminal subtypes. Similar to gene accessibility, gene
expression clustered according to known BRCA gene sets.

We applied our methodology to identify regulons that
differentiate basal and luminal subtypes (Fig. 5f). Using
differential proteins associated with subtype-specific footprints,
we build a protein–protein interaction network that is centered
around known PAM50 genes (Fig. 5f: green dots) (permuted
p value for luminal network= 1.86e−07 and for basal network=
6.04e−06). The luminal network includes 19 genes, not used in
PAM50, that are connected to the PAM50 genes. The basal
network includes 15 genes that are connected to 2 known PAM50
genes that define the basal subtype. Therefore, integrated
epigeno-proteomics could potentially be used to identify
important protein–RNA regulons that distinguish biological
subsets in cancers.

The gene body contains important regulatory information that
distinguishes BRCA subtypes and thyroid cancer progression.
The gene body enhancers, although proximal to gene, operate
further distances than promoters and are expected to interact
within the chromatin looping architecture. We analyzed whether
predicted gene body enhancers in our data landed within
conserved contact domains across human cell types. Using the
published ENCODE ChIA-PET data, we identified that 24 out of
25 genes (excluding IGF2BP2) in the metastatic thyroid cancer
gene network (Fig. 4f) harbored gene body enhancers within
conserved domains3. Likewise, 56 out of 56 genes in the BRCA
subtype gene networks had gene body enhancers within
conserved contact domains. Gene body enhancers are likely in
contact with their upstream promoter, because, across the
proteome, 82% of all genes have their entire gene body contained
within these conserved contact domains.

Discussion
We report an integrated epigeno-proteomic dataset from meta-
static thyroid cancers based on chromatin accessibility, tran-
scriptomics, and proteomics. Our utilization of normal thyroid
tissue for these omics assays allowed us to derive tumor-specific
regulatory principles. In particular, we find that chromatin
structure can be used to predict highly correlated protein–RNA
regulons. We identify that the most likely location of an enhancer
site associated with differential gene expression is within the gene
body of its target, which is unexpected given the preponderance
of studies that emphasized chromatin looping from distal
enhancers as a key mode of transcriptional regulation. Impor-
tantly, previous studies have been based solely on transcriptional
readouts, which is distinguished from our study that integrates
RNA and protein data.

Our integrative analytical framework results in a model in
which proximal enhancers are associated with coordinated tran-
scription and translation of differentially expressed genes in
cancer. These enhancers putatively bind their state-specific TFs,

which likely directly or indirectly associated with the coordinated
expression. Although enhancers contained within the transcrip-
tion unit have been identified, it is not known whether these
enhancers are necessary for driving coordinated transcription and
translation. In fact, it is plausible that the accessible regions define
key genes whose expression reflects rapid and direct response to
protein levels independent of other regulatory mechanisms. We
speculate that, in rapidly dividing cells, direct response to gene
regulation at proximal enhancers is subjected to less regulation
downstream and thus protein levels more directly correlated with
both gene expression and chromatin accessibility. Nonetheless,
this approach allowed us to identify protein–RNA regulons that
likely distinguish important disease groups.

We observe these effects in two scenarios: (1) progression from
normal thyroid to metastatic thyroid cancer and (2) divergent
development of three molecular subtypes of BRCA. We identify
dynamic enhancers in thyroid cancer tumors that putatively drive
thyroid cancer programs as shown in our functional analysis of
these gene sets. These gene sets connect to our existing knowledge
of the mutation-based drivers of disease, particularly MAPK
activation. Thyroid cancer, much like many other cancers,
requires better diagnostics and therapeutics that target metastatic
disease, and the set of genes that have coordinated regulation and
expression likely are targets that should be tested for clinical
validity.

For the second scenario, we identify highly regulated and
coordinated genes in PAM50 molecular subtypes of BRCA.
Molecular characteristics of these tumors are based on tran-
scriptome studies, which may inherently miss molecular infor-
mation related to phenotype. Our integrative approach isolates
active gene regulation that likely drives transcriptional output and
results in translational output. We identify a protein–protein
interaction that expands the known PAM50 genes and known
gene sets assigned to basal and luminal subtypes and shows that
our method can connect genes to known molecular features. This
study raises hypotheses about the molecular features that define
cancers and the mechanisms that coordinate the induced
phenotypes.

The clinical impact of this study alludes to a clearer map of
regulatory features that connect gene expression to tumor phe-
notype. In this study, we present a model that identifies important
cancer genes that have correlated RNA and protein within an
epigenetic context which supports that they are actively induced
in the cancer system. This prioritizes the gene targets that
determine the tumor phenotype and also offers epigenetic targets
that may be leveraged as precision therapeutic targets. Further-
more, as we move to more molecular-based stratifications of
tumor types, we envision that our model will be important for
determining the phenotypes of aggressive tumors and also sub-
types that are not determined by cancer mutation drivers.

Ultimately, this study reinforces that the intronic information
within the transcriptional unit coordinates the gene’s expression.
Our model uses evidence of co-correlation between chromatin
regulatory elements to RNA and protein and evidence that
accessibility matches with RNA and protein abundances. The
evidence advocates for a model in which enhancer elements
within the gene body actively regulate gene expression, which
ultimately leads to coordinated transcription and translation. This
study informs the relatively understudied field of how the global
chromatin landscape regulates protein expression especially in the
context of cancer phenotypes that arise from malignant pro-
gression and divergence into molecular subtypes.

Methods
Thyroid cancer cohort selection. This study was approved by the Institutional
Review Board of Stanford University (IRB-11402). Informed consent was obtained
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prior to enrollment of all subjects. The study was conducted according to the
principles of the Declaration of Helsinki (2008). Patients had confirmed diagnosis
of papillary thyroid carcinoma. At the time of surgery, tissues were harvested and
flash-frozen and stored at −80 °C.

Sample characteristics. Our collection involves a range of patients with mostly
first diagnosis (n= 33) of thyroid cancer and a few recurrence cases (n= 3). For all
first-diagnosis cases, we collected adjacent normal thyroid, the primary tumor, and
one to three cervical lymph nodes metastasis. These samples were processed and
cut by a trained pathologist. Samples were collected from 36 patients, in total,
including 35 metastatic neck lymph node tumors, 30 primary tumors, and 28
adjacent normal thyroids. Based on histological diagnoses, 32 cases were papillary
thyroid carcinoma, 2 were follicular thyroid carcinoma, and 2 were poorly dif-
ferentiated thyroid carcinoma.

ATAC-seq sample and library preparation. Each tissue sample was cut from a
larger tissue chunk on dry ice to aliquot 10 mg pieces for ATAC-seq preparation
and nuclei were isolated according to published protocols8. All of the steps were
carried out at 4 °C. A frozen tissue fragment ∼20 mg was placed into a pre-chilled
2-ml Dounce homogenizer containing 2 ml of cold 1× homogenization buffer
(320 mM sucrose, 0.1 mM EDTA, 0.1% NP40, 5 mM CaCl2, 3 mM Mg(Ac)2,
10 mM Tris pH 7.8, 1× protease inhibitors (Roche, cOmplete), and 167 μM β-
mercaptoethanol, in water). Homogenized tissue was transferred to a pre-chilled
2 ml Lo-Bind Eppendorf tube. An equal volume (400 μl) of a 50% iodixanol
solution (50% iodixanol in 1× homogenization buffer) was added and mixed by
pipetting to make a final concentration of 25% iodixanol. In all, 600 μl of a 30%
iodixanol solution (30% iodixanol in 1× homogenization buffer containing
480 mM sucrose) was layered underneath the 25% iodixanol mixture. Another
layer of 40% (40% iodixanol in 1× homogenization buffer containing 480 mM
sucrose) was pipetted at the bottom of the tube. In a swinging-bucket centrifuge,
nuclei were centrifuged for 20 min at 3000 r.c.f. The interface between the 29 and
35% iodixanol solutions was collected as the band of nuclei. Nuclei tagmentation
was done with Tn5 transposase and TD buffer from Illumina (cat# FC-121-1030).
After reaction clean-up, library fragments were amplified using 1× NEBnext PCR
master mix and 1.25 μM of custom Nextera PCR primers 1 and 2 (Supplementary
Data 1), using the following PCR conditions: 72 °C for 5 min; 98 °C for 30 s; and
thermocycling at 98 °C for 10 s, 63 °C for 30 s, and 72 °C for 1 min. Processing of
samples was performed in case batches of 12 samples such that every sample for an
individual were included in a batch and with approximately equal numbers of
tumors, normals, and metastases in each batch. For each tissue sample, at least
100,000 nuclei were isolated such that 50,000 nuclei replicates could be used to
generate technical replicates.

ATAC-seq library preparation and high-throughput sequencing. After library
preparation, library concentration was checked by quantitative PCR using the
KAPA Library Quantification Kit. Libraries were sequenced to 50,000–200,000
reads on an Illumina MiSeq Sequencer to check library quality. Library quality was
assessed by the TSS enrichment score with a cutoff of 7 was used to determine
whether a library was of sufficient quality to deep sequence based on ENCODE
performance metrics39,40. After quality control, we generated 230 libraries that
were pooled together at equal molar concentrations, and this pool was purified on a
6% poly-acrylamide TBE gel (BioRad cat# 4565015) as described in the TCGA
ATAC-seq paper to remove excess primers8. After purification, each library pool
was quantified by Bioanalyzer and sequenced on two lanes of NovaSeq6000 S2
using paired-end 101-bp reads to an average depth of 25 million reads per replicate.

ATAC-seq data analysis. ATAC-seq FASTQ reads were processed by the
ENCODE pipeline for ATAC-seq v1.5.0 (https://github.com/ENCODE-DCC/atac-
seq-pipeline). For each sample, peak calling was performed on the Tn5-corrected
single-base insertions using the MACS2 callpeak command with parameters–shift
−75–extsize 150–nomodel–call-summits–nolambda–keep-dup all -p 0.01. The
peak summits were then extended by 100 bp on either side to a final width of
200 bp. From all 230 libraries (2–3 technical replicates per sample), we merge the
peak summit regions to create a complete peak set for the thyroid cancer cohort.
We identify 611,754 peaks with an average size of 328 base pairs. To obtain the
number of independent Tn5 insertions in each peak, each corrected insertion site
was counted using bedtools coverage. This was done for all individual technical
replicates and 611,754 × 230 counts matrix was compiled. The counts matrix was
then normalized by using edgeR’s cpm(matrix, log= TRUE, prior.count= 5) fol-
lowed by a quantile normalization using preprocessCore’s normalize.quantiles in R.
Lastly, we merged technical replicates using the log2 average from the normalized
counts matrixs8. Differential analysis for peaks between normal, tumor, and met
was conducted with limma, and FDR was set to 1% with Benjamini–Hochberg
(BH) correction41. This FDR was chosen because ATAC-seq is sensitive similar to
other next-generation sequencing approaches, but it is subject to noise in using a
union peak set to identify differential peaks. A FDR of 0.01 with BH correction
would mitigate false positives from our peak analysis strategy.

Identifying ATAC-seq peak-gene linkage. Given that there is an intractably large
space of peaks and genes (611,754 peaks and 28,000 genes) in our experiments, we
must reduce the space of potential peaks that regulate their gene targets. We linked
ATAC-seq peaks to their genes using a RNA-correlation approach8,20. For each
gene, we quantify the Pearson correlation of the RNA count’s rlog transformed
value from DESeq2 with every peak in the pan-thyroid cancer peak set that is
within 500 kb, 250 kb in each direction, of the gene’s first TSS42. We calculated
correlations separately for each tissue type (normal, tumor, and met). The corre-
lation is tested against a null model, which is the gene expression with 10,000
random trans peaks (i.e., peaks on other chromosomes) that are expressed in the
thyroid cancer cohort, and this distribution of the correlations with random peaks
is used to construct a Gaussian null model, which was used to calculate p values.
Random peaks are a reasonable approach because peak values do not confound
correlation values. Like the experimental correlation, the null model is generated
for each tissue type. Since the null model is calculated for each gene, it controls for
any bias contained within the gene and its expression. We set our FDR to 0.05 with
BH correction to identify the correlated peaks to genes. This FDR was chosen based
on prior studies in cancer data and optimization based on our samples8. By sub-
sampling our data, we identified that setting FDR to 0.05 results in a similar
number of peak-gene links across the tissue types (i.e., normal, tumor, met) (see
below). In all, 96% of all peaks assigned to genes lie within conserved contact
domains3.

ATAC-seq peak visualization. We merged all the insertion sites across all samples
and replicates for each tissue type and visualize a summary of ATAC-seq by tissue
type. To do this, the genome was binned into 100-bp intervals using the bedtools
genome function43. Windows and number of insertions per tissue type were
counted using bedtools coverage. The coverage was normalized to the total number
of insertions. The normalized data were converted to bigwigs. All track figures in
this paper show groups of tracks with matched y-axis scales.

Gene accessibility metrics. We develop metrics to measure the chromatin
accessibility across variable-sized regions defined by the transcription units. To
measure gene accessibility, we count the ATAC-seq reads across the gene excluding
all promoter regions identified from our peak analysis. The counts are divided by
the gene length in kilobases and by number of reads in the sample per million,
which results in an RPKM. Across the cohort and all gene accessibility RPKMs, we
quantile normalize using preprocessCore’s normalize.quantiles in R.

TF footprinting. We merged all the bam files across all samples and replicates for
each tissue type and subsampled the reads to 350 million reads per tissue type.
These three bams (i.e., normal, tumor, and met) were processed by TOBIAS, which
conducts TF footprinting analysis from ATAC-seq reads30. Peaks were called using
macs:–nomodel–shift -75–extsize 150–broad; broad setting was used to better
capture the regions with footprints. We utilized the eighth release (2020) of JAS-
PAR position frequency matrices to identify TF motifs44.

RNA-Seq sample preparation and high-throughput sequencing. Each tissue
sample was cut from a larger tissue chunk on dry ice to aliquot 10 mg pieces for
RNA-seq preparation. We extracted RNA using the AllPrep DNA/RNA Mini Kit
(cat#: 80204). RNA sample RINs were confirmed to be >7 by Bioanalyzer. Libraries
were prepared using Illumina TruSeq Stranded Total RNA LP Gold and IDT-
TruSeq RNA UD Idx (cat# 20020598 and 20020598). The libraries were prepared
in house on the semi-automatic Agilent Bravo NGS in a single batch. We pooled all
88 libraries at equal ng concentrations and sequenced the pooled library on the
NovaSeq6000 S2 using paired-end 101-bp reads with compatible primers (Sup-
plementary Data 1). On average, we achieve 45 million reads per sample. Differ-
ential analysis was conducted with DESEQ2 in R and FDR was set to 10% (BH
correction)42. This FDR was chosen based on prior RNA-seq experiments, which
show a good sensitivity from the next-generation sequencing approach, but the
optimal FDR also accounts for false positives due to normalization42.

RNA-seq data analysis. Reads were mapped to hg38 genome, and GENCODE
version 32 was used to annotate genes. Reads were mapped using default para-
meters from STAR45. From the mapped reads, transcripts were counted at a gene
level using HTSeq used to enumerate the number of reads per sample46. Transcript
counts per million was used in downstream analysis. Differential analysis between
tissue types was conducted with DEseq2 in R and FDR was set to 10% (BH
correction)42.

RNA-seq data visualization. Reads from BAM files of samples from the same
tissue type were merged together and then subsampled to 200 million reads. The
subsampled reads were converted to big wigs for visualization using deeptools
bamCoverage47.

Proteomics sample preparation. Each tissue sample was cut from a larger tissue
chunk on dry ice to aliquot 20 mg pieces for proteomics. Tissue samples were
disrupted using bead beating and sonication in lysis buffer (6 M guanidine, 10 mM
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TCEP, 40 mM CAA, 100 mM Tris pH 8.5). The supernatant was collected and
heated at 95 °C for 5 min. After protein reduction and alkylated, protein con-
centration was measured using the BCA Kit (ThermoFisher). Protein extract was
cleaned up by acetone precipitation at −20 °C overnight. The protein pellet was
washed with acetone three times and air-dried. The pellet was resuspended in 6 M
guanidine and 100 mg was digested using LysC (1:100 protease to protein ratio) for
2 h followed by trypsin (1:50) digestion overnight at 37 °C. Peptides were cleaned
up using Waters HLB column and subsequently labeled using TMT11 Plex
(ThermoFisher) in 100 mM TEAB buffer. An equal amount of protein from each
tissue were pooled together as a reference sample. Tissue samples were randomized
such that all samples from the same patient were in the same batch and equal
number of normal, tumor, and met were in each batch (three samples per tissue
type) and equal amount of them and one common reference sample and a GTEx-
thyroid reference was multiplexed into one sample. To ensure equal mix, we mixed
a small amount of each sample first and adjusted the amount of each sample for the
final run based on the mass spectrometry results of the small mix. Each sample was
run in multiple batches with different TMT labels and in different runs with other
samples.

About 15 µg of multiplexed sample was loaded to Waters 2D LC system for
online fractionation. Peptides were separated by reverse-phase chromatography at
high pH in the first dimension, followed by an orthogonal separation at low pH in
the second dimension. In the first dimension, the mobile phases were buffer A:
20 mM ammonium formate at pH 10 and buffer B: acetonitrile. Peptides were
separated on an Xbridge 300 µm × 5 cm C18 5.0 µm column (Waters) using 12
discontinuous step gradient at 2 µl/min. In the second dimension, peptides were
loaded to an in-house packed 75 µm ID/15 µm tip ID × 25 cm Sepax GP-C18
1.8 µm resin column with buffer A (0.1% formic acid in water). Peptides were
separated with a linear gradient from 5 to 30% buffer B (0.1% formic acid in
acetonitrile) at a flow rate of 300 nl/min in 180 min. The LC system was directly
coupled in-line with an Orbitrap Fusion (Thermo Fisher Scientific).

Mass spectrometry data acquisition. The Orbitrap Fusion was operated in a
data-dependent mode for both MS2 and MS3. MS1 scan was acquired in the
Orbitrap mass analyzer with resolution 120,000 at m/z 400. Top speed instrument
method was used for MS2 and MS3. For MS2, the isolation width was set at 0.7 Da
and isolated precursors were fragmented by collision-induced dissociation (CID) at
a normalized collision energy (NCE) of 35% and analyzed in the ion trap using
turbo scan. Following the acquisition of each MS2 spectrum, a synchronous pre-
cursor selection (SPS) MS3 scan was collected on the top five most intense ions in
the MS2 spectrum. SPS-MS3 precursors were fragmented by higher-energy CID at
an NCE of 65% and analyzed using the Orbitrap at a resolution of 60,000.

We used SEQUEST in ProteomeDiscoverer v2.1 (ThermoFisher Scientific) for
protein identification. Raw files from 12 fractions of each sample were combined
together for a single search against GENCODE V28 human proteome database.
Mass tolerance of 10 p.p.m. was used for precursor ion and 0.6 Dalton for fragment
ions. The search included cysteine carbamidomethylation as a fixed modification.
Peptide N-terminal and lysine TMT 11plex modification, protein N-terminal
acetylation, and methionine oxidation were set as variable modifications. Up to two
missed cleavages were allowed for trypsin digestion. The peptide FDR was set as
<1% using Percolator. For protein identification, at least one unique peptide with a
minimum six amino acid length was required. For protein quantitation, only
unique peptides with reporter ion mass tolerance of <10 p.p.m. were used. Peptide
precursor ion isolation purity should be >50%, signal-to-noise (S/N) >15, and the
summed S/N of all channels >200. Peptides passing these criteria were summed,
thereby giving more weight to the most intense peptides. We also pooled together
all the spectra in this study for a single search at protein FDR of 1% as used in prior
mass spectrometry that profiled primary tissue48.

Mass spectrometry data analysis. Protein abundance of each sample was first
rescaled so that the total peptide abundance in each channel was the same as the
total sum abundance of the reference channels in the same run. In each 11plex
sample, if a peptide abundance was missing in a channel, its abundance was set to
the minimum value in that run. We report protein abundance at the gene level and
as the ratio of the sample channel to the reference channel. To weigh ratio toward
peptides with high intensities, which are expected to be more accurate, the unique
peptides assigned to a gene were summed in a sample channel and reference
channel and then the ratio was calculated. In total, we identified protein abun-
dances from 10,408 genes. Overall, 5418 genes were detected in all samples and
used in downstream analysis. Protein abundances were normalized to the reference
channel abundances in each run, making relative abundances comparable across
batches. Relative protein abundances were log2 transformed and then averaged
across technical replicates. There were a total of 65 samples used in differential
analysis (21 Normal thyroids, 22 Tumors, and 22 Mets). Differential analysis
between tissue types was conducted with limma (FDR= 10%)49. This FDR was
appropriate for mass spectrometry measurements as they profile a smaller set of
genes and have a smaller dynamic range compared to next-generation sequencing.

Clustering of multi-omics dataset. We performed analysis to cluster the samples
based on similarity of each omic data. To visualize the similarity, we utilized

t-Distributed Stochastic Neighbor Embedding (t-SNE) using Rtsne(perplexity= 11,
max_iter=10000, pca= TRUE) on each omic data set. We included all genes that
were detected across all the omic platforms (5384 genes) and all samples that were
profiled across all the platforms (54 samples).

Proteomics data visualization. Relative protein abundances (not log2 trans-
formed) across tissue types were plotted as medians on bar graphs in R.

Differential NP activity score. In gene-wise correlation analysis, we develop a
metric to assess the total log fold change for all differential NPs assigned to a gene.
This metric is called the differential NP activity score. The score is a summation of
all the log fold changes of that peak for a specific pairwise comparison. For
example, the differential NP activity score for FN1 gene for the tumor vs normal
comparison would be a summation of all differential NPs’ log fold changes in the
tumor vs normal comparison.

Protein predictive significance test. In the co-correlation analysis, gene-
regulatory element pairs are categorized into four categories: (a) no differential
activity (at both gene expression and regulatory element), (b) differential gene
expression only, (c) differential regulatory element only, and (d) all differential (at
both gene expression and regulatory element). From these categories, the sig-
nificant enrichment of co-correlation was assessed by splitting the samples into two
random sets to control for selection bias. One set was used to assess the fraction of
co-correlated gene-regulatory element pairs. The second set was tested in a linear
model ProteinExpression ~ RNAexpression+ RNAexpression × Accessibility of
element. This results in a F-statistic, and a significance was set at FDR= 0.05,
which was chosen to have an appropriately strong test to mitigate false positives.
We then assigned accessibility features and gene pairs to functionally relevant
categories such as differential gene expression and differential accessibility. The
number of pairs below FDR= 0.05 were compared between categories using
Fisher’s exact test, which was the protein predictive significance p value.

Epigeno-proteomics R package. The analytical framework of the protein pre-
dictive significance test is broadly applicable to matched chromatin accessibility
data, RNA expression, and protein expression. The approach utilized three steps to
identify genes with protein abundance that correlates with RNA abundance and
chromatin accessibility. The first step randomizes the samples to two sets. The
second step is to visualize one set of data based on the paired correlation values
(RNA–protein and RNA–accessibility Spearman correlations) based on categories
of differential features. The third step tests the protein predictive significance,
which is used to determine which categories have the most protein predictive
significance. This package is publicly available on Github at https://github.com/
asanghi7/epigenoproteomics.

BRCA cohort analysis. We downloaded data from 22 samples of BRCA data
(TCGA and CPTAC)13,50. From TCGA annotations, we categorized the 22 samples
according to their PAM50 molecular subtype (11 luminal B, 4 luminal A, and 4
basal-like, 2 HER2, and 3 unknown). ATAC and RNA were downloaded using
TCGA’s SGDC Data Transfer Tool v1.6.0. Raw ATAC-seq data was downloaded
with dbGaP approval. ATAC-seq data was reformatted into fastq files with bed-
tools and then reanalyzed with the ENCODE pipeline for ATAC-seq v1.5.0 (as
described above). From these bam files, TF footprinting was conducted using 300
million reads per group (as described above). Gene accessibility quantification was
conducted for each sample as described above. Ht-seq-counts RNA counts were
downloaded using TCGA’s SGDC Data Transfer Tool. In addition, predicted
ATAC-RNA peak-gene links were downloaded from the GDC portal. We down-
loaded the patient-matched normalized protein abundances from the CPTAC
portal, which used iTRAQ-4 labeling proteomics. The differential analyses between
the three most abundant subtypes (luminal B, luminal A, and basal) was
completed.

RNA-seq differential analysis. Gene counts downloaded from TCGA were input
into DESeq2, which conducted differential analysis at FDR= 0.1 with BH
correction42. There were a total of 71 samples used in differential analysis (20 basal
tumors, 23 luminal A tumors, and 28 luminal B tumors).

Protein differential analysis. Normalized and transformed data downloaded from
CPTAC were input into limma, which conducted differential analysis at FDR= 0.1.
There were a total of 62 samples used in differential analysis (18 basal tumors, 21
luminal A tumors, and 23 luminal B tumors).

Modified protein predictive significance test. For the BRCA data, there were
only 22 samples that had matched accessibility, RNA, and protein data. Thus, our
statistical test for co-correlation was modified such that we did not split the
samples into two datasets as done in the significance test of thyroid cancer data. We
categorized the total proteome into two classes: not differentially active and dif-
ferentially active. Differentially active genes were genes that had differential
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expression between subtypes in both measures of expression (protein and RNA). In
addition, these differentially expressed genes were linked to differential footprints
contained within their gene body. For each category, we calculated F-statistic
p value for each gene using the linear model protein ~ RNA+ RNA ×Accessibility
of element. The modified protein predictive significance was calculated by Fisher’s
exact test for the number of pairs below FDR= 0.05 in differentially active genes
compared to not differentially active set.

Pathway enrichment. We investigated gene-set enrichments using MSigDB,
including their entire collection of gene sets. We uploaded gene sets to the MSigDB
website and identified gene sets (FDR= 0.05).

Protein–protein interaction networks. We used BioGRID 3.5.187 to identify
predicted protein–protein interactions. We compared our gene lists with BioGRID
data, which identified protein interactions a priori. The networks were loaded in an
igraph network on R, and igraph allowed nodes and edges to be trimmed according to
their features. The final networks were plotted using ggnetwork in R.

Permuted p value for regulon protein–protein interaction networks. To assess
the significance of regulon protein–protein interaction networks (see below), we
permuted the BioGRID database that overlapped with the proteome of the specific
sample set being used (thyroid or breast). We permuted the 1000 times to generate a
null distribution of protein–protein edges and then generated a permuted Gaussian
distribution as the null. The p value is based on the z-score of the observed number of
protein–protein links in the experimental protein–protein network.

Contact domain analysis. Contact domains were based on ENCODE’s ChIA-PET
data from 24 cell lines.3 They identified 56,893 contact domains that were invariable
across the cell lines. Utilizing these conserved domains, we identified regulatory
regions that were contained within these contact domains using bedtools intersect.

Long noncoding RNA analysis. A list of long noncoding RNAs was taken from
the hg38 Gencode version 38 release. Using the overlap with all detected genes in
our RNA-seq data, we measured the sample-wise correlation of NP accessibility
and RNA abundance in peak-gene links. In addition, we assessed the distance of
NP peaks to the gene body of their targets.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data that support this study are available from the corresponding author upon
reasonable request. The RNA-seq and ATAC-seq data generated in this study have been
deposited in the GEO database under accession code GSE162515. The mass spectrometry
proteomics data generated in this study has been deposited in the PRIDE database under
accession code PXD023078. The raw breast cancer ATAC-seq and RNA-seq data are
protected and are not available due to data privacy laws. Access to raw sequencing data
from NIH’s dbGaP would require a data transfer agreement. The processed ATAC-seq
data are available at the GDC portal (https://gdc.cancer.gov/about-data/publications/
ATACseq-AWG). The processed RNA-seq data from matched patients’ samples with
ATAC-seq are available in the GDC portal (https://portal.gdc.cancer.gov/projects/
TCGA-BRCA). The raw breast cancer proteomics data are available at the CPTAC portal
(https://cptac-data-portal.georgetown.edu/study-summary/S029). The processed mass
spectrometry data are available in the publication. The predicted protein–protein
interactions used in this study are available in the BioGRID database (https://
downloads.thebiogrid.org/BioGRID/Release-Archive/BIOGRID-3.5.187). The gene set
enrichments used in this study are available in the MSigDB database (https://www.gsea-
msigdb.org/gsea/msigdb/). Source data are provided with this paper.

Code availability
Integrative analysis code and scripts will be made available upon request. We additionally
have created a R package epigeno-proteomics, which uses processed ATAC, RNA, and
proteomics data to test protein predictive significance; the package includes sample data
from this study. This package is publicly available on Github at https://github.com/
asanghi7/epigenoproteomics.
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