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Evolution and dispersal of snakes across the
Cretaceous-Paleogene mass extinction
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Mass extinctions have repeatedly shaped global biodiversity. The Cretaceous-Paleogene (K-Pg)

mass extinction caused the demise of numerous vertebrate groups, and its aftermath saw the

rapid diversification of surviving mammals, birds, frogs, and teleost fishes. However, the effects

of the K-Pg extinction on the evolution of snakes—a major clade of predators comprising over

3,700 living species—remains poorly understood. Here, we combine an extensive molecular

dataset with phylogenetically and stratigraphically constrained fossil calibrations to infer an

evolutionary timescale for Serpentes. We reveal a potential diversification among crown snakes

associated with the K-Pg mass extinction, led by the successful colonisation of Asia by the major

extant clade Afrophidia. Vertebral morphometrics suggest increasing morphological speciali-

sation among marine snakes through the Paleogene. The dispersal patterns of snakes following

the K-Pg underscore the importance of this mass extinction event in shaping Earth’s extant

vertebrate faunas.
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The Cretaceous-Paleogene (K-Pg) transition resulted in the
loss of an estimated 76% of all species1,2. High-resolution
records of fossil pollen and marine microfossils show that

the K-Pg extinction coincided with the Chicxulub bolide impact
in Mexico3,4, which generated shockwaves, tsunamis, and a brief
thermal pulse caused by the re-entry of heated ejecta in its
immediate aftermath4,5. Critically, sulfates, dust, and hydro-
carbon soot ejected into the atmosphere are thought to have
greatly reduced insolation, resulting in global cooling over a
period of years4. This would have caused a global collapse of
photosynthesis4, resulting in high levels of extinction across the
tree of life. Among vertebrates, iconic Mesozoic groups such as
non-avian dinosaurs6, pterosaurs7, and mosasaurs8 disappeared
at the K-Pg boundary. Other clades persisted but suffered severe
reductions in diversity, including birds9, mammals2, and
squamates10. Studies of insect feeding traces also indicate major
losses among herbivorous arthropods11, whereas land plants
suffered species-level extinctions of 80% or more12. Despite the
magnitude of the impact and subsequent extinctions, terrestrial
ecosystems recovered rapidly. In the aftermath, a “fern spike”
followed by pioneer angiosperm communities documents the
recovery of Earth’s flora13,14, while surviving vertebrate groups,
including mammals15,16, birds17–19, frogs20, and teleost
fishes21,22, recovered and rapidly radiated in the early
Cenozoic.

Historically, squamates were believed to have experienced
minimal extinction at the K-Pg boundary23. However, analysis of
the K-Pg transition in western North America found evidence for
high rates of extinction among squamates10, although it remains
unclear whether this pattern holds on a global scale. The evolu-
tionary history of snakes across the K-Pg boundary has been
particularly difficult to assess. The early fossil record of crown
group snakes is fragmentary, often restricted to vertebrae and
afflicted by relatively high rates of homoplasy24. As a result,
phylogenetic analyses largely rely on restricted character sets,
which is frequently misleading for vertebrates25–28, complicating
our understanding of the affinities of many fossil snakes and
possibly obscuring macroevolutionary patterns across the K-Pg
boundary.

Molecular divergence dating efforts across Squamata suggest
post-Cretaceous diversifications of major clades such as
lacertids29 and amphisbaenians30. So far, molecular divergence
time analyses of snakes recover conflicting patterns. Most
studies31–34 suggest that the majority of extant snake clades
diverged in the Cretaceous, although several analyses hint at a
more recent diversification of the major subclade
Alethinophidia30,35,36. Given this uncertainty, we attempted to
improve our understanding of the timescale of crown snake
diversification and the methodological factors that affect these
inferences.

In this study, we investigate the effects of a plurality of mod-
elling approaches—alternative calibration schemes (one devel-
oped here, in addition to that of Head et al.37,38, as well as
variations on both), clock models (uncorrelated vs. auto-
correlated), and associated priors (uniform, skew-T, and skew-
Normal)—upon inferred node ages within crown snakes. Our
results suggest a potential diversification of snakes near the time
of the K-Pg transition. We also explore the effect of the K-Pg
extinction event on vertebral morphological disparity, in order to
directly incorporate an extensive sample of fossil taxa, while also
benefiting from the tendency for morphological disparity indices
to be less sensitive to sampling biases than diversity estimates39.
We find a pattern of increasing vertebral disparity in the after-
math of the extinction, with concurrent increases in average and
maximum body size, and dispersal to previously unoccupied
landmasses.

Results
Divergence time estimation. Our inferred tree topology is largely
congruent with previous analyses32. Using our calibration set, we
consistently recovered a diversification of crown Afrophidia (used
here to refer to all alethinophidians, except Tropidophiidae+
Aniliidae) near the K-Pg transition, and near-contemporaneous
originations of the Amerophidia, Leptotyphlopidae, and Typh-
lopoidea crown groups, irrespective of the statistical framework,
molecular clock model, priors, or phylogeny used (Fig. 1 and
Supplementary Figs. 4–16). Implementing alternative assump-
tions regarding the quality of the fossil record by manipulating
parameterizations of priors on fossil calibrations influenced mean
estimated ages, but confidence intervals for nodes of interest—in
particular for crown Afrophidia—converged near the K-Pg
boundary. Choice of calibration priors influenced our estimated
divergence times, reflecting the differential approaches to
weighting fossil calibration ages inherent in the shapes of their
probability distributions: skew-T yielded the youngest mean age
estimates as it places the bulk of the effective prior distributions
near the age of a fossil calibration, whereas uniform priors
recovered ages averaging ~6.5 Ma older. Repeating divergence
time analyses with different backbone topologies had little effect
on our results (Supplementary Fig. S10, 11). The major differ-
ences between the results presented here and those of previous
studies therefore appear to be a function of alternative calibration
strategies (see Supplementary Information 2 for further discus-
sion of our calibration approach), where the inclusion or exclu-
sion of various Cretaceous fossils as internal calibrations for
crown snakes influenced inferences on the timing of crown snake
diversification with respect to the end-Cretaceous mass extinc-
tion. The conservative calibration approach we propose in Sup-
plementary Information 2.2 excludes all putative records of
Cretaceous crown snakes and we note that inferences on the role
of the K-Pg transition in structuring the diversification of crown
snakes discussed herein are dependent on this calibration scheme
(see Supplementary Figs. 12–21 for exploration of alternative
calibration strategies)—emphasizing the need to closely re-
evaluate the phylogenetic placement of these fossils.

Disparity through time. Our analyses consider overall vertebral
size independently from disparity of form, although we note that
shape variables may scale allometrically. Shape disparity
remained relatively constant throughout the Late Cretaceous,
illustrating substantial morphological diversity early in the evo-
lutionary history of total-clade snakes (Fig. 2 and see Supple-
mentary Figs. 22–24 for additional axes, Supplementary Fig. 25
for labelled taxa). Disparity (sums of ranges and variances)
increased across the K-Pg boundary, from the Maastrichtian to
the Paleocene. Rarefaction analysis suggests that these differences
were significant (the disparity of the smaller, Paleocene sample
lies above the 95% confidence interval of the larger, Maastrichtian
sample) and not a function of sample size differences (Supple-
mentary Fig. 26). Higher Paleocene disparity was partly a func-
tion of a small number of morphologically eccentric taxa, notably
Titanoboa40, an early palaeophiid41, and an indeterminate
scolecophidian42. We note that the latter two records are late
Paleocene to earliest Eocene in age—much of the apparent
increase in vertebral disparity therefore appears to have been
achieved after the first stage of the Paleocene. Sparse fossil sam-
pling in the Danian means that the effects of the immediate
aftermath of the K-Pg event are difficult to determine (although
the very sparseness of the Danian record may point towards a
decline in abundance following the extinction event43) and our
approach, which necessarily involves time averaging and binning,
is such that a short-lived crash in disparity following the K-Pg
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Fig. 1 Time-calibrated phylogeny of crown snakes based on the 42 fossil calibration set developed in this study, under a Bayesian Inference
framework. Green curves represent concatenated posterior age estimates for ingroup nodes using a skew-T and skew-Normal prior. Major clades
discussed in the main text are shown on the right; Scolecoph., Scolecophidia; Am., Amerophidia. The K-Pg boundary is indicated by a red line and the
Oligocene-Miocene boundary by a yellow line.
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would be undetectable even if it were present. Moreover,
empirical44 and simulation studies45 demonstrate that levels of
disparity can be maintained in the face of even severe diversity
loss, provided extinction is not centrifugal (i.e., preferentially
concentrated away from the centre of morphospace).

Vertebral morphological innovations in the Paleogene were
driven by adaptation to marine life by palaeophiids, including
extreme dorsoventral vertebral elongation. By the late Eocene,
palaeophiids form a cluster distinct from all other snakes (Fig. 2).
Rarefaction analyses controlling for sample size differences reveal
that the Oligocene fauna was significantly less disparate than that
of the late Eocene using sum of range and sum of variance
(intrinsically less susceptible to sample size differences) disparity
indices (Supplementary Fig. 26).

Postzygapophyseal width has been used to estimate body
length of Titanoboa based on regression from a sample of boine
snakes40. Using prezygapophyseal width as a proxy for body size
(similar to postzygapophyseal width but allowing for a greater
sample size and also strongly correlated with the mean of all
measurements, as seen in Supplementary Fig. 29), we document a

significant overall decrease in size from the mid-Cretaceous to the
Campanian (Supplementary Fig. 28 and Supplementary Table 4).
There was no significant change over the K-Pg boundary,
although the Paleocene contains some particularly large taxa
such as Titanoboa40 and Gigantophis46. In the late Eocene, the
increasing dorsoventral vertebral elongation and overall size
increase among Palaeophiidae results in a significant difference in
size between larger aquatic taxa and smaller terrestrial taxa (see
Supplementary Fig. 28 and Supplementary Table 4).

Biogeographical reconstruction. Of six biogeographic models
tested in BioGeoBEARS47, +J models (allowing founder events)
consistently outperformed their simpler counterparts, with
DIVALIKE+ J exhibiting the best fit to our data (Supplementary
Information 4.3 and Supplementary Table 6). This result suggests
that crown snake biogeographic history has largely been driven by
dispersal, extinction, vicariance, and especially founder events,
rather than widespread or subset sympatry (DEC and BAYAR-
EAlike models)48. We recovered a strong signal for an Asian
origin of the major clade Afrophidia (Fig. 3); our preferred model
also recovered a South American origin for Amerophidia and
suggested African or North American origins for Leptotyphlo-
pidae and Indian origins for Typhlopoidea.

Discussion
Early snake evolution. Cretaceous snake fossils are pre-
dominantly, but not exclusively, found in Gondwanan deposits,
in line with previous analyses, which suggest a Gondwanan origin
for crown snakes34. Diverse assemblages have been noted from as
early as the Cenomanian, such as the Moroccan Kem Kem beds,
which include both aquatic and terrestrial taxa49–51. This is also
reflected in morphological disparity, with early Late Cretaceous
disparity rivalling that achieved later in the Cretaceous (Fig. 2).

Our molecular clock inferences suggest that as few as six extant
lineages crossed the K-Pg boundary (Fig. 1 and Supplementary
Fig. 4). However, deviations from our preferred calibration
scheme find different results (see Supplementary Information 2)
and the fossil record documents additional extinct clades
(Nigerophiidae52, Madtsoiidae53, and Coniophiidae54), which
also passed through the end-Cretaceous extinction event. The
effects of the K-Pg mass extinction on snake disparity are unclear,
largely because our data do not permit fine temporal resolution.
We recover higher disparity estimates in the Paleocene than in
the latest Cretaceous, although several scenarios could explain
this pattern. First, it is consistent with the persistence of a wide
range of morphologies (and presumably ecological niches) across
the boundary, indicating that, overall, the disparity of snake
vertebral morphology may not have been dramatically affected by
the end-Cretaceous mass extinction. Fossorial adaptations of
‘Scolecophidia’ and early branching alethinophidians may have
been key to their survival, as burrowing would have provided
protection against many environmental disturbances caused by
the asteroid impact, including significant and global shifts in
temperature5. Similarly, freshwater ecosystems may have been
buffered against extinction through the high thermal inertia of
water during an initial thermal pulse4,5,55 and subsequent cooling,
along with food chains based more on detritus and less on
photosynthesis56,57, and may have provided a refugium for
surviving aquatic nigerophiids. Surviving alethinophidians,
madtsoiids, and coniophiids were probably macropredators34,
but snake specializations for infrequent feeding58,59 may have
facilitated their survival despite the limited availability of large
prey in the aftermath of the asteroid impact60. The ability of
many snakes to hunt in darkness may also have aided their search
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Fig. 2 Principal component analysis of vertebral shape across different
time bins, based on nine measurements, corrected for size. The K-Pg
boundary is indicated by a red line.
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Fig. 3 Reconstructed historical biogeography of crown snakes, applying the DIVAlike+ Jmodel from BioGeoBEARS. Pies represent the likelihood of the
presence in each geographic area for each node; squares indicate present-day geographic distributions of extant taxa. The K-Pg boundary is indicated by a
red line and the Oligocene-Miocene boundary by a yellow line.
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for food in the low light conditions that prevailed following the
impact4. The eventual recovery of global forests could have
provided new opportunities for snakes, as it did for birds61 and
possibly frogs20, with the earliest known putatively arboreal
snake, Corallus priscus, appearing in the Early Eocene62.

Alternatively, snakes could have experienced a more severe but
short-lived reduction in disparity across the K-Pg boundary, with
regions of morphospace temporarily vacated and subsequently re-
occupied by the end of the Danian. Unfortunately, the rarity of
early Paleocene snakes makes it impossible to test this hypothesis
at present. Additional fossils from this key interval will be needed
to better understand patterns of morphospace change immedi-
ately above and below the K-Pg boundary.

Post-extinction diversification. Fossil calibrations and their
treatment have frequently been shown to have a profound effect
on divergence time estimation63,64 and have therefore been a
focus for improving molecular clock analyses65. Problematically,
the snake fossil record is beset by a number of issues that com-
plicate the development of unambiguous calibration schemes,
relating primarily to the patchy and fragmentary nature of the
snake fossil record. This has led to a number of disagreements
regarding, e.g., the phylogenetic placement of fossils across the
snake tree of life33,34,37,38; the rarity of distinctive, unambiguous
synapomorphies in vertebral specimens49; and the absence of a
comprehensive morphological phylogenetic framework with
which to evaluate the affinities of problematic fossils66,67. These
effects underlie differences in calibration choices between the
scheme developed in this study and previously published cali-
bration schemes37,38, such as the decision to remove Simolio-
phiidae and Australophis as calibrations due to their controversial
phylogenetic placement (see Supplementary Information 2.1 for
full discussion and Supplementary Figs. 4–21 to see exploration of
different calibration approaches).

Alternative treatment of statistical probability distributions on
fossil calibrations and chosen relaxed clock models similarly
affect recovered divergence time estimates. We concatenated
timetree results from two analyses applying different interpreta-
tions of the quality of the snake fossil record—using skew-T and
skew-Normal priors on the fossil calibrations (see Fig. 1 and
Supplementary Figs. 4 and 5). Autocorrelated clock models, in
which related species are assumed to evolve at similar rates,
recover younger estimated divergence times than uncorrelated
clock models, where related lineages are not assumed to have
similar rates of evolution. We favour the use of autocorrelated
clock models on the basis that evidence for rate correlation can be
detected in empirical datasets68 (see Supplementary Informa-
tion 2.4 for full discussion).

Our inferred timescale for the evolution of crown Serpentes
(following our conservative calibration scheme; see Supplemen-
tary Information 2.2) suggests a diversification of snakes
spanning the K-Pg mass extinction. However, discerning the
precise timing of divergence events near geologically instanta-
neous events such as the Chicxulub asteroid impact is
challenging16,19. On both logical and theoretical grounds69, we
consider it more likely for a diversification event to have occurred
post-extinction, as this scenario does not imply the survival of
numerous recently evolved and closely related taxa across one of
the most severe mass extinction events in Earth’s history.
Moreover, post-extinction fragmentation of populations and
reduction in competition for resources could all facilitate a rapid
diversification, as has been posited for numerous diverse
vertebrate clades, such as placental mammals15,16, neoavian
birds18, and acanthomorph fishes21,22. We therefore interpret our

results regarding the timing of divergence events in Afrophidia to
be consistent with a post-extinction burst in diversification.

The aftermath of the extinction event may have provided an
ecological release for snakes. Following an extinction, survivors
can either reoccupy vacated niche space or expand into hitherto
unoccupied regions of ecospace and morphospace (to the extent
that the two are correlated44,70) made available by the extinction
of competitors and predators. A pattern of post-K-Pg morpho-
space expansion is supported by our disparity analysis, in which
snakes realize several new and disparate vertebral morphologies
in the Paleogene (Fig. 2). Our analyses also highlight the
increasing specialization of marine palaeophiids, which ultimately
become morphologically distinct from all contemporaneous
snakes by the late Eocene. In snakes, vertebral morphology can
be indicative of ecological niche and overall body size40,71. The
extinction of non-avian dinosaurs6 and other terrestrial predators
may have enabled snakes to exploit relatively abundant small
vertebrate prey in the early Cenozoic. Similarly, the K-Pg-
associated extinction of marine reptiles and large teleosts may
have facilitated the exploitation of marine ecosystems by large
Paleocene marine snakes (Supplementary Fig. 28).

Our results suggest that the K-Pg mass extinction also
influenced biogeographic patterns among snakes. We infer an
initial dispersal by snakes into Asia near the K-Pg boundary (a
landmass that they had apparently not previously occupied, see
Supplementary Information 4.1), coinciding with the diversifica-
tion of crown Afrophidia (Fig. 3). These patterns are consistent
with the hypothesis that extinction events may help drive
biogeographic patterns30. Although the probability of interconti-
nental dispersal should be unaffected by a mass extinction event,
the extinction of potential competitors and predators may
increase the likelihood that dispersed lineages ultimately become
established on a newly colonized landmass.

Oligocene extinction and recovery. Significantly, our results
indicate a second major snake extinction and recovery event in
the Oligocene. We infer multiple dispersal and diversification
events within caenophidian snakes beginning near the Oligocene-
Miocene boundary and extending into the early Miocene (Figs. 1
and 3). We also infer a significant drop in morphospace occu-
pation from the late Eocene to the Oligocene, supported further
by the disappearance of early Cenozoic marine snakes such as
Palaeophiidae and Gigantophis from the fossil record72 (Fig. 2).
The Eocene-Oligocene event was associated with severe global
cooling73 and may therefore have particularly affected poiki-
lothermic taxa such as snakes. We hypothesize that caenophi-
dians may have acquired their predominantly diurnal habits
during this cooler interval as a result of being driven towards
elevated daytime activity levels to take advantage of warmer
daytime temperatures. Niche differentiation from their nocturnal
antecedents may therefore have played a primary role under-
pinning caenophidian radiation and post-dispersal colonization
during this interval34,74. Warming in the late Oligocene would
have permitted the occupation of higher latitudes by poiki-
lothermic snakes, facilitating their dispersal to the Americas via
Beringia, as has been posited for birds75 (Fig. 3). Concurrent
fragmentation of forests and the spread of newly appearing
grasslands76 may also have provided opportunities for speciation
and adaptation to changing environments (Fig. 1).

It is clear that integrating molecular sequence data and the
fossil record can elucidate the influence of major events in Earth’s
history on the evolutionary history of extant clades19. Our
analyses suggest that the K-Pg mass extinction influenced the
evolutionary history of snakes, potentially facilitating the
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diversification of Afrophidia and the origination of several other
snake subclades in the extinction’s aftermath. This appears to
have enabled the successful establishment of snakes in Asia and
provided the opportunity for Palaeophiidae to specialize as
marine predators in the Eocene. Along with the contempora-
neous diversification and disparification of numerous other
vertebrate clades16–22, our results help corroborate the funda-
mental role of the K-Pg mass extinction in shaping the vertebrate
biodiversity occupying our planet today.

Methods
Phylogenetic analyses. Analyses included 115 extant snake taxa. Forty-four non-
snake squamates across all major squamate clades were sampled as outgroups and
to provide additional calibration points. Ten non-squamate amniote outgroups
were included to calibrate deeper nodes (see Supplementary Fig. 3). Taxa were
sampled from the Zheng and Wiens32,77 supermatrix. Criteria for inclusion were
maximizing representation of extant families, minimizing missing data within the
phylogenetic data matrix, and prioritizing slower evolving taxa. All extant snake
families, except Anomochilidae and Xenophidiidae, were included, as their sparse
gene sampling reduced resolution.

We extracted molecular sequence alignments for our chosen taxa from the
Zheng and Wiens32 supermatrix, which includes 40 nuclear and 12 mitochondrial
loci. Overall matrix completeness was 49.7%. We ran phylogenetic analyses in
PhyloBayes v.4.1c78 for ~30,000 generations, under the CAT+GTR+G
parameters and with a birth–death prior, as PhyloBayes does not co-estimate tree
topology and divergence time, and is MPI (Message Passing Interface) enabled79.
We built a consensus tree, with a burn-in of 7500 generations and retaining every
tenth tree. For analyses where different tree topologies were enforced, we used
Mesquite v. 3.1080 to manipulate relationships in the consensus tree, to set
‘Scolecophidia’ as monophyletic, and to change immediate outgroup to be Iguania
+Anguimorpha, as in Reeder et al.81.

Calibrations. We compiled a set of 42 calibrations, comprising previously pub-
lished and novel calibrations (see Supplementary Information 2.2). Multiple var-
iations of this calibration set were also tested, including the addition of
Simoliophiidae as a minimum calibration for Alethinophidia32–34,38, as well as
testing parviraptorids as a calibration for total-group snakes (see Supplementary
Table 3 for summary). In addition, the calibration schemes proposed by Head38

and Head et al.37 were also tested, as well as a revision of this set with two
amendments: the removal of Simoliophiidae to assess the effect of assigning them
to crown Alethinophidia and the removal of Australophis (see Supplementary
Information 2.5).

Estimating divergence times. To investigate the effects of different probabilistic
methods, different relaxed clock models and different prior distributions of our
fossil calibrations on divergence time estimates, we performed analyses in the
PAML package MCMCTree82. For these analyses, data were partitioned by
gene83,84. Prior distribution shapes and scales for calibrations were calculated using
the MCMCTreeR package85. We used soft maximum bounds, with a tail of 0.05,
and a root prior for Amniota of 318–332.9 Ma86. Divergence time estimates were
calculated under Skew-T, Skew-Normal, and Uniform distributions, to simulate
progressively more liberal interpretations of the fossil record83. Further analyses
were run using the uniform and/or skew-T prior distribution with both indepen-
dent rates and correlated rates, alternative topologies, and with alternative cali-
bration schemes (see Supplementary Figs. 4–21). Analyses performed under an
agnostic distribution (the uniform prior) are important. These make the fewest
assumptions regarding the quality of the fossil record and are modelled with a hard
minimum age. If our preferred set of assumptions were to be found invalid, uni-
form priors help to circumscribe the range of inferences that might reasonably be
made from our data. However, given the fossil record of snakes significantly
improved in the Cenozoic, where most of our calibrations are found, there is no
reason to prefer an agnostic distribution over other priors; for Fig. 1, results from
skew-T and skew-Normal priors were concatenated. Divergence time analyses were
run for 100,000 generations, with a burn-in of 25,000 and sampling every 25th
remaining tree.

Biogeographical reconstruction. Historical biogeography was reconstructed using
BioGeoBEARS47. Geographical data were collected for ingroup taxa from the
Reptile Database87. Full methods can be found in Supplementary Information 1
and input files in Supplementary Information 4.1-3. We assessed model fit using
log likelihood, AIC (Akaike Information Criterion), and AICc (AIC with correction
for small data samples) values.

Disparity analyses. Nine linear measurements were taken between geometrically
homologous landmarks on fossil snake vertebrae using the software ImageJ88. As some
vertebrae were incomplete, missing values were inferred using multiple imputation. For

this we used the missRanger89 package in R, which implements theMissForest chaining
random forests algorithm of Stekhoven and Bühlmann90 with predictive mean
matching and a maximum of 50 chaining iterations. To control for differences in
specimen size, all measurements were scaled to the mean of all measurements for said
specimen. The data were then subjected to R-mode principal component analyses using
a correlation matrix. All resultant PC axes were used to calculate sums of ranges and
sums of variances as indices of disparity. In order to account for the effects of sample
size variation, we jackknifed both indices of disparity at all possible sample sizes using
Rare91 to n= 9 (smallest time bin). Rarefied indices of disparity were then plotted
against logged sample size. Changes in size through time were independently assessed in
R92, based on the raw prezygapophyseal width data. Kruskal–Wallis tests were used to
test for significant changes in size between time bins and between inferred ecologies in
the same time bin. For specimens with age uncertainty, entries were duplicated so as to
be present in both relevant time bins. Overall, resultant sample sizes were n= 14 for the
early Late Cretaceous, n= 15 for the Campanian, n= 19 for the Maastrichtian, n= 9
for the Paleocene, n= 48 for the Early Eocene, n= 33 for the late Eocene, and n= 30
for the Oligocene.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Input and output files for molecular clock and disparity analyses are deposited at https://
doi.org/10.5061/dryad.tv055. Information on extant taxon ranges was gathered from the
Reptile Database https://reptile-database.reptarium.cz/. Gene sequences from Zheng and
Wiens32,77 can be found at https://doi.org/10.5061/dryad.tv055. All other data can be
found in the Supplementary Information. Different formats can be requested from
corresponding authors.
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