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Synaptic metaplasticity in binarized neural
networks
Axel Laborieux1✉, Maxence Ernoult1,2, Tifenn Hirtzlin1 & Damien Querlioz 1✉

While deep neural networks have surpassed human performance in multiple situations, they

are prone to catastrophic forgetting: upon training a new task, they rapidly forget previously

learned ones. Neuroscience studies, based on idealized tasks, suggest that in the brain,

synapses overcome this issue by adjusting their plasticity depending on their past history.

However, such “metaplastic” behaviors do not transfer directly to mitigate catastrophic

forgetting in deep neural networks. In this work, we interpret the hidden weights used by

binarized neural networks, a low-precision version of deep neural networks, as metaplastic

variables, and modify their training technique to alleviate forgetting. Building on this idea, we

propose and demonstrate experimentally, in situations of multitask and stream learning, a

training technique that reduces catastrophic forgetting without needing previously presented

data, nor formal boundaries between datasets and with performance approaching more

mainstream techniques with task boundaries. We support our approach with a theoretical

analysis on a tractable task. This work bridges computational neuroscience and deep learning,

and presents significant assets for future embedded and neuromorphic systems, especially

when using novel nanodevices featuring physics analogous to metaplasticity.
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In recent years, deep neural networks have experienced
incredible developments, outperforming the state-of-the-art,
and sometimes human performance, for tasks ranging from

image classification to natural language processing1. Nonetheless,
these models suffer from catastrophic forgetting2,3 when learning
new tasks: synaptic weights optimized during former tasks are not
protected against further weight updates and are overwritten,
causing the accuracy of the neural network on these former tasks
to plummet4,5 (see Fig. 1a). Balancing between learning new tasks
and remembering old ones is sometimes thought of as a trade-off
between plasticity and rigidity: synaptic weights need to be
modified in order to learn, but also to remain stable in order to
remember. This issue is particularly critical in embedded envir-
onments, where data are processed in real time without the
possibility of storing past data. Given the rate of synaptic mod-
ifications, most artificial neural networks were found to have
exponentially fast forgetting6. This contrasts strongly with the
capability of the brain, whose forgetting process is typically
described with a power law decay7, and which can naturally
perform continual learning.

The neuroscience literature provides insights about underlying
mechanisms in the brain that enable task retention. In particular,
it was suggested by Fusi et al.6,8 that memory storage requires,
within each synapse, hidden states with multiple degrees of
plasticity. For a given synapse, the higher the value of this hidden
state, the less likely this synapse is to change: it is said to be
consolidated. These hidden variables could account for activity-
dependent mechanisms regulated by intercellular signaling
molecules occurring in real synapses9,10. The plasticity of the
synapse itself being plastic, this behavior is named “metaplasti-
city.” The metaplastic state of a synapse can be viewed as a cri-
terion of importance with respect to the tasks that have been

learned throughout and therefore constitutes one possible
approach to overcome catastrophic forgetting.

Until now, the models of metaplasticity have been used for
idealized situations in neuroscience studies, or for elementary
machine learning tasks such as the Cart-Pole problem11. How-
ever, intriguingly, in the field of deep learning, binarized neural
networks12 (or the closely related XNOR-NETs13) have a remote
connection with the concept of metaplasticity, also reminiscent,
in neuroscience, of the multistate models with binary readout14.
This connection has never been explored to perform continual
learning in multilayer networks. Binarized neural networks are
neural networks whose weights and activations are constrained to
the values +1 and −1. These networks were developed for per-
forming inference with low computational and memory cost15–17,
and surprisingly, can achieve excellent accuracy on multiple
vision13,18 and signal processing19 tasks. The training procedure
of binarized neural networks involves a real value associated to
each synapse, which accumulates the gradients of the loss com-
puted with binary weights. This real value is said to be “hidden,”
as during inference, we only use its sign to get the binary weight.
In this work, we interpret the hidden weight in binarized neural
networks as a metaplastic variable that can be leveraged to
achieve multitask learning. Based on this insight, we develop a
learning strategy using binarized neural networks to alleviate
catastrophic forgetting with strong biological-type constraints:
previously presented data can not be stored, nor generated, and
the loss function is not task-dependent with weight penalties.

An important benefit of our synapse-centric approach is that it
does not require a formal separation between datasets, which also
allows the possibility to learn a single task in a more continuous
fashion. Traditionally, if new data appears, the network needs to
relearn incorporating the new data into the old data: otherwise
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Fig. 1 Problem setting and illustration of our approach. a Problem setting: two training sets (here MNIST and Fashion-MNIST) are presented sequentially
to a fully connected neural network. When learning MNIST (epochs 0–50), the MNIST test accuracy reaches 97%, while the Fashion-MNIST accuracy
stays around 10%. When learning Fashion-MNIST (epochs 50–100), the associated test accuracy reaches 85% while the MNIST test accuracy collapses to
~20% in 25 epochs: this phenomenon is known as “catastrophic forgetting.” b Illustration of our approach: in a binarized neural network, each synapse
incorporates a hidden weight Wh used for learning and a binary weight Wb= sign(Wh) used for inference. Our method, inspired by neuroscience works in
the literature6, amounts to regarding hidden weights as metaplastic states that can encode memory across tasks and thereby alleviate forgetting. With
regards to the conventional training technique of binarized neural network, it consists in modulating some hidden weight updates by a function fmeta(Wh)
whose shape is indicated in c. This modulation is applied to negative updates of positive hidden weights, and to positive updates of negative hidden
weights. fmeta(∣Wh∣) being a decreasing function, this modulation makes the hidden weight signs less likely to switch back when they grow in
absolute value.
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the network will just learn the new data and forget what it had
already learned. Through the example of the progressive learning
of datasets, we show that our metaplastic binarized neural net-
work, by contrast, can continue to learn a task when new data
becomes available, without seeing the previously presented data
of the dataset. This feature makes our approach particularly
attractive for embedded contexts. The spatially and temporally
local nature of the consolidation mechanism makes it also highly
attractive for hardware implementations, in particular using
neuromorphic approaches.

Our approach takes a remarkably different direction than the
considerable research in deep learning that is now addressing the
question of catastrophic forgetting. Many proposals consist in
keeping or retrieving information about the data or the model at
previous tasks: using data generation20, the storing of exemplars21,
or in preserving the initial model response in some components of
the network22. These strategies do not seem connected to how the
brain avoids catastrophic forgetting, need a very formal separation
of the tasks, and are not very appropriate for embedded contexts.
A solution to solve the trade-off between plasticity and rigidity
more connected to ours is to protect synaptic weights from further
changes according to their “importance” for the previous task. For
example, elastic weight consolidation3 uses an estimate of the
diagonal elements of the Fisher information matrix of the model
distribution with respect to its parameters to identify synaptic
weights qualifying as important for a given task. Another work23

uses the sensitivity of the network with respect to small changes in
synaptic weights. Finally, in ref. 24, the consolidation strategy
consists in computing an importance factor based on path inte-
gral. This last approach is the closest to the biological models of
metaplasticity, as all computations can be performed at the level of
the synapse, and the importance factor is therefore reminiscent of
a metaplasticity parameter.

However, in all these techniques, the desired memory effect is
enforced by optimizing a loss function with a penalty term,
which depends on the previous optimum, and does not emerge
from the synaptic behavior itself. This aspect requires a very
formal separation of the tasks—the weight values at the end of
task training need to be stored—and makes these models
still largely incompatible with the constraints of biology and
embedded contexts. The highly non-local nature of the con-
solidation mechanism also makes it difficult to implement in
neuromorphic-type hardware.

Specifically, the contributions of the present work are the
following:

● We interpret the hidden real value associated to each weight
(or hidden weight) in binarized neural networks as a
metaplastic variable, we propose a new training algorithm
for these networks adapted to learning different tasks
sequentially (Alg. 1).

● We show that our algorithm allows a binarized neural
network to learn permuted MNIST tasks sequentially with an
accuracy equivalent to elastic weight consolidation, but
without any change to the loss function or the explicit
computation of a task-specific importance factor. More
complex sequences such as MNIST- Fashion-MNIST,
MNIST- USPS, and CIFAR-10/100 features can also be
learned sequentially.

● We show that our algorithm enables to learn the Fashion-
MNIST and the CIFAR-10 datasets by learning sequentially
each subset of these datasets, which we call the stream-type
setting.

● We show that our approach has a mathematical justification
in the case of a tractable quadratic binary task where the
trajectory of hidden weights can be derived explicitly.

● We adapt our approach to a more complex metaplasticity rule
inspired by ref. 8 and show that it can achieve steady-state
continual learning. This allows us to discuss the merits and
drawbacks of complex and simpler approaches to metaplas-
ticity, especially for hardware implementations of deep
learning.

Results
Interpreting the hidden weights of binarized neural networks
as metaplasticity states. Synapses in binarized neural networks
consist of binary switches that can take either +1 or −1 weights.
Learning a task consists in finding a set of binary synaptic values
that optimize an objective function related to the task at hand. All
synapses share the same plasticity rule and are free to switch back
and forth between the two weight values. When learning a second
task after the first task, new synaptic transitions between +1 and
−1 will overwrite the set of transitions found for the first task,
leading to the fast forgetting of previous knowledge (Fig. 1a). This
scenario is reminiscent of the neural networks studied in ref. 25

where all synapses are equally plastic and their probability to
remain unchanged over a given period of time decreases expo-
nentially for increasing time periods, leading to memory lifetimes
scaling logarithmically with the size of the network. Synaptic
metaplasticity models were introduced by Fusi et al.6 to provide
long memory lifetimes, by endowing synapses with the ability to
adjust their plasticity throughout time—making the plasticity
itself plastic. In particular, in this vision, a synapse that is
repeatedly potentiated should not increase its weight but rather
become more resistant to further depression. In the cascade
model6, plasticity levels are discrete and the probability for a
synapse to switch to the opposite strength value decreases
exponentially with the depth of the plasticity level. This expo-
nential scaling is introduced to obtain a large range of transition
rates, ranging from fast synapses at the top of the cascade where
the transition probability is unaffected, to slow synapses that are
less likely to switch. Because the metaplastic state only controls
the transition probability and not the synaptic strength (i.e., the
weight value), it constitutes a “hidden” state as far as synaptic
currents are concerned.

The training process of conventional binarized neural networks
relies on updating hidden real weights associated with each
synapse, using loss gradients computed with binary weights. The
binary weights are the signs of the hidden real weights, and are
used in the equations of both the forward and backward passes.
By contrast, the hidden weights are updated as a result of the
learning rule, which therefore affects the binary weights only
when the hidden weight changes sign—the detailed training
algorithms are presented in Supplementary Algorithms 1 and 2 of
Supplementary Note 1. Once the hidden real weight is positive
(respectively negative), the binary weight (synaptic strength) is set
to +1 (respectively −1), but the synaptic strength will not change
if the hidden weight continues to increase toward greater positive
(respectively negative) values as a result of the training process.
This feature means that hidden weights may be interpreted as
analogs to the metaplastic states of the metaplasticity cascade
model6. However, in conventional binarized neural networks, no
mechanism guarantees that when the hidden weight gets updated
farther away from zero, the transition to the opposite weight
value gets less and less likely. Here, following the insight of ref. 6,
we show that introducing such a mechanism yields memory
effects.

The mechanism that we propose is illustrated in Fig. 1b, where
Wh is the hidden weight and ΔWh is the update provided by the
learning algorithm, and detailed in Algorithm 1. We introduce a
set of functions fmeta, parameterized by a scalar m and depending
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on the hidden weight to modulate the strength of updates in the
inverse direction to the sign of the hidden weights. The specific
choice of this set of functions is motivated by the conceptual
properties that we want our model to share with the cascade
model6. First, the functions fmeta should be chosen so that the
switching strength of the binary weight decreases exponentially
with the amplitude of the hidden weight. On the other hand, the
switching ability should remain unaffected when the hidden
weight is close to zero, making the learning process of such
weights analogous to the training of a conventional binarized
neural network. We therefore choose a set of functions plotted in
Fig. 1c that decrease exponentially to zero as the hidden weight
∣Wh∣ approaches infinity, while being flat and equal to one around
zero values of Wh:

fmetaðm;WhÞ ¼ 1� tanh2ðm �WhÞ: ð1Þ

The parameter m controls the speed at which the decay occurs
and constitutes the only hyper-parameter introduced in our
approach. More details about the choice of the fmeta function, as
well as more implementation details are provided in “Methods.”
All experiments in this work use adaptive moment estimation
(Adam)26. Momentum-based training and root-mean-square
propagation showed equivalent results. However, pure stochastic
gradient descent leads to lower accuracy, as usually observed in
binarized neural networks, where momentum is an important
element to stabilize training12,13,17.

Algorithm 1 Our modification of the BNN training procedure
to implement metaplasticity. Wh is the vector of hidden weights
and Wh denotes one component (the same rule is applied for
other vectors), θBN are batch-normalization parameters, UW and
Uθ are the parameter updates prescribed by the Adam
algorithm26, (x, y) is a batch of labeled training data, m is the
metaplasticity parameter, and η is the learning rate. “⋅” denotes
the element-wise product of two tensors with compatible shapes.
The difference between our implementation and the non-
metaplastic implementation (recovered for m= 0) lies in the
condition lines 6–9. fmeta is applied element-wise with respect to
Wh. “cache” denotes all the intermediate layers computations
needed to be stored for the backward pass. The details of the
Forward and Backward functions are provided in Supplementary
Note 1.

Input: Wh, θBN, UW, Uθ, (x, y), m, η.
Output: Wh, θBN, UW, Uθ.
1: Wb ← Sign(Wh) ⊳Computing binary weights
2: ŷ; cache Forwardðx;Wb; θBNÞ ⊳Perform inference
3: C Costðŷ; yÞ ⊳Compute mean loss over the batch
4: ð∂WC; ∂θCÞ  BackwardðC; ŷ;Wb; θBN; cacheÞ

⊳Cost gradients
5: (UW, Uθ) ←Adam(∂WC, ∂θC, UW, Uθ)
6: for Wh in Wh do
7: if UW ⋅Wb > 0 then ⊳If UW prescribes to decrease∣Wb∣
8: Wh ←Wh− ηUW ⋅ fmeta(m, Wh) ⊳Metaplastic update
9: else
10: Wh ←Wh− ηUW

11: end if
12: end for
13: θBN ← θBN− ηUθ

14: return Wh, θBN, UW, Uθ

Multitask learning with metaplastic binarized neural networks.
We first test the validity of our approach by learning sequentially
multiple versions of the MNIST dataset where the pixels have
been permuted, which constitutes a canonical benchmark for
continual learning2. We train a binarized neural network with
two hidden layers of 4096 units using Algorithm 1 with several

metaplasticity m values and 40 epochs per task (see “Methods”).
Figure 2 shows this process of learning six tasks. The conven-
tional binarized neural network (m= 0.0) is subject to cata-
strophic forgetting: after learning a given task, the test accuracy
quickly drops upon learning a new task. Increasing the parameter
m gradually prevents the test accuracy on previous tasks from
decreasing with eventually the m= 1.35 binarized neural network
(Fig. 2d) managing to learn all six tasks with test accuracies
comparable with the 97.4% test accuracy achieved by the BNN
trained on one task only (see Table 1).

Figure 2g, h shows the distribution of the metaplastic hidden
weights after learning Task 1 and Task 2 in the second layer. The
consolidated weights of the first task correspond to hidden
weights between zero and five in magnitude. We observe in
Fig. 2g that around 107 of binary weights still have hidden weights
near zero after learning one task. These weights correspond to
synapses that repeatedly switched between +1 and −1 binary
weights during the training of the first task, and are thus of little
importance for the first task. These synapses were therefore not
consolidated, and are then available for learning another task.
After learning the second task, we can distinguish between hidden
weights of synapses consolidated for Task 1 and for Task 2.

Table 1 presents a comparison of the results obtained using our
technique with a random consolidation of weights, and with
elastic weight consolidation3, implemented on the same binarized
neural network architecture (see “Methods” for the details of
EWC adaptation to BNNs). We see that the random consolida-
tion approach does not allow multitask learning. On the other
hand, our approach achieves a performance similar to elastic
weight consolidation for learning six permuted MNISTs with the
given architecture, although unlike elastic weight consolidation,
the consolidation does not require changing the loss function and
thus does not require task boundaries.

We also perform a control experiment by decreasing the
learning rate between each task. The initial learning rate is
divided by ten for each new task, as this schedule provided the
best results (see Supplementary Note 7). This technique achieves
some memory effects but is not as effective as other consolidation
methods: uniformly scaling down the learning rate for all
synapses at once does not provide a wide range of synaptic
plasticity where important synapses are consolidated and less
important ones are more plastic.

Figure 3 shows a more detailed analysis of the performance of
our approach when learning up to ten MNIST permutations, and
for varying sizes of the binarized neural network, highlighting the
connection between network size and its capacity in terms of
number of tasks. We see that in this harder situation, elastic
weight consolidation is more efficient with respect to the network
size, especially for smaller networks. Figure 3c, d shows the
accuracy obtained when all tasks are learned at once, for a non-
metaplastic and metaplastic binarized neural network. This result
quantifies the capacity reduction induced by sequential learning.
We also compare our approach with “synaptic intelligence”
introduced in ref. 24 in Supplementary Fig. 1. This approach
features task boundaries as in the case of elastic weight
consolidation, but can perform most operations locally, bringing
it closer to biology, while retaining near-equivalent accuracy to
elastic weight consolidation24. Contrary to elastic weight
consolidation, synaptic intelligence does not adapt well to a
binarized neural network: the importance factor involving a path
integral cannot be computed in a natural manner using binarized
weights (see Supplementary Note 3), leading to poor performance
(Supplementary Fig. 1b). On the other hand, synaptic intelligence
applied to full precision neural networks requires less synapses
than our binarized approach for equivalent accuracy (Supple-
mentary Fig. 1a), as binarized neural networks always require
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m=0.0

m=0.5

m=1.0

m=1.35

Binarized neural network

Full precision neural network

Task 1

Task 2

Fig. 2 Permuted MNIST learning task. a–d Binarized neural network learning six tasks sequentially for several values of the metaplastic parameter m.
a m= 0 corresponds to a conventional binarized neural network b m= 0.5, c m= 1.0, d m= 1.35. Curves are averaged over five runs and shadows
correspond to one standard deviation. e, f Final test accuracy on each task after the last task has been learned. The dots indicate the mean values over five
runs, and the shaded zone one standard deviation. e Corresponds to a binarized neural network and f corresponds to our method applied to a real valued
weights deep neural network with the same architecture. g, h Hidden weights distribution of a m= 1.35, two hidden layers of 4096 units binarized neural
network after learning for 40 epochs one permuted MNIST (g) and two permuted MNISTs (h).

Table 1 Binarized neural network test accuracies on six permuted MNISTs at the end of training for different settings.

No consolidation (m= 0.0) Random consolidation Learning rate decay Elastic weight
consolidation

Metaplasticity (m= 1.35)

Task 1 9.2 ± 2.2 29.0 ± 2.9 71.1 ± 6.5 96.8 ± 0.7 96.9 ± 0.6
Task 2 7.8 ± 1.3 29.0 ± 4.2 87.2 ± 2.6 97.2 ± 0.2 97.2 ± 0.3
Task 3 9.3 ± 2.0 32.7 ± 4.7 86.1 ± 2.9 96.9 ± 0.2 96.9 ± 0.2
Task 4 9.0 ± 1.7 35.1 ± 4.1 63.7 ± 5.6 96.6 ± 0.2 96.4 ± 0.4
Task 5 13.2 ± 3.7 47.7 ± 8.8 75.1 ± 2.5 96.8 ± 0.3 96.7 ± 0.8
Task 6 97.4 ± 0.2 96.8 ± 0.2 93.9 ± 0.2 96.8 ± 0.3 97.3 ± 0.1

We indicate mean and standard deviation over five trials, for a conventional (non-metaplastic) BNN (m= 0.0), a task-dependent learning rate decay scheduler, consolidation of synapses with random
importance factors, elastic weight consolidation (EWC)3 computed with parameter λEWC= 5 ⋅ 103, and our metaplastic binarized neural network approach with parameter m= 1.35.
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more synapses than full precision ones to reach equivalent
accuracy17,27. Our technique, therefore, approaches but does not
match the accuracy of task-separated approaches. The major
motivation of our approach is the possibilities allowed by the
absence of task boundaries, such as the stream learning situation
investigated in the next section.

Finally, as a control experiment, we also applied Algorithm 1 to
a full precision network, except for the weight binarization step
described in line one. Figure 2e, f shows the final accuracy of each
task at the end of learning for a binarized neural network and a
real valued weights deep neural network respectively, with the
same architecture. The full precision network final test accuracy
of each task for the same range of m values cannot retain more
than three tasks with accuracy above 90%. This result highlights
that our weight consolidation strategy is tied specifically to the
use of hidden weights.

Hidden weights in a binarized neural network and real weights
in a full precision neural network respectively possess fundamen-
tally different meanings. In full precision networks, the inference
is carried out using the real weights, in particular the loss function
is also computed using these weights. Conversely in binarized
neural networks, the inference is done with the binary weights
and the loss function is also evaluated with these binary weights,
which has two major consequences. First, the hidden weights do
not undergo the same updates as the weights of a full precision
network. Second, a change on a synapse whose hidden weight is
positive and which is prescribed a positive update consequently
will not affect the loss, nor its gradient at the next learning
iteration since the loss only takes into account the sign of the
hidden weights. Hidden weights in binarized neural networks
consequently have a natural tendency to spread over time (Fig. 2g,
h), and they are not weights properly speaking. Supplementary
Fig. 3 illustrates this difference visually. In a full precision neural
network, “important” weights for a task converge to an optimum
value minimizing the loss. By contrast, in a binarized neural
network, when a binarized weight has stabilized to its optimum
value, its hidden weight keeps increasing, thereby clearly
indicating that the synapse should be consolidated. At the end

of the paper, we provide a deeper mathematical interpretation of
this intuition.

We also tested the capability of our binarized neural network to
learn sequentially different datasets, in several situations. We first
investigated the sequential training of the MNIST and the
Fashion-MNIST dataset, presenting apparel items28. While a
non-metaplastic network rapidly forgets the first dataset when the
second one is trained (Fig. 4a), an optimized metaplastic network
learns both tasks with accuracies near the ones achieved when the
tasks are learned independently (Fig. 4b). More details and more
results are presented in Supplementary Note 9. Figure 4c presents
the sequential training of two closely related datasets: MNIST,
and of a second handwritten digits dataset (United States Postal
Services). A small amount of data is used in this experiment to
keep the balance between the two datasets (see Supplementary
Note 10). The baselines are non-metaplastic networks obtained
by partitioning the metaplastic network into two equal parts
(each featuring half the number of hidden neurons), and trained
independently on each task. We see that the metaplastic network
learns sequentially both datasets successfully with accuracies
above the baselines, suggesting that for a fixed number of hidden
neurons, metaplasticity can provide an increase in capacity.
Figure 4d presents a variation of this situation with the same
baselines, and where the metaplastic network is this time designed
with a number of parameters doubled with regards to the
baselines (see Supplementary Note 10). In that case, the accuracy
of the sequentially trained metaplastic network still succeeds at
matching, but does not exceed the non-sequentially trained
baselines. Finally, we investigated a situation of class incremental
learning of the CIFAR-10 (Fig. 4e, f) and CIFAR-100 (Fig. 4g, h)
datasets. We use a convolutional neural network with convolu-
tional layers pretrained on ImageNet, and a metaplastic classifier
(see Supplementary Note 11). The classes of these datasets are
divided into two subsets and trained sequentially. While in the
non-metaplastic network (Fig. 4e–g), the first subset of classes is
forgotten rapidly when the second is trained, in the metaplastic
one (Fig. 4f–h), good accuracy is achieved, which remains below
the one obtained with non-sequentially trained classes. Better

a b

c d

Metaplasticity Elastic weight consolidation

Interleaved training without metaplasticity Interleaved training with metaplasticity

Fig. 3 Influence of the network size on the number of tasks learned. a, b Mean test accuracy over tasks learned so far for up to ten tasks. Each task is a
permuted version of MNIST learned for 40 epochs. The binarized neural network architecture consists of two hidden layers of a variable number of hidden
units ranging from 512 to 4096. a Uses metaplasticity with parameter m= 1.35 and b uses elastic weight consolidation with λEWC= 5000. The decrease in
mean test accuracy comes from the impossibility to learn new tasks because too many weights are consolidated. Results for non-sequential (interleaved)
training for c a non-metaplastic and d a metaplastic binarized neural network. In this situation, each point is an independent training experiment performed
on the corresponding number of tasks. All curves are averaged over five runs and shadow areas denote one standard deviation.
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a b

c d

e f

g h

MNIST - FMNIST MNIST - FMNIST

m=0.0
m=1.5

MNIST - USPS MNIST - USPS

m=1.2 m=1.2

CIFAR-10 features CIFAR-10 features

m=0.0 m=1.8

CIFAR-100 features CIFAR-100 features

m=0.0

m=1.3

Fig. 4 Sequential learning on various datasets. Binarized neural network learning MNIST and Fashion-MNIST sequentially a without metaplasticity and
b with metaplasticity. c Sequential training of the MNIST and USPS datasets of handwritten digits. The baselines correspond to the accuracy reached by
non-metaplastic networks with half the number of neurons trained independently on each task. d Presents the same experiment as c, with a metasplastic
network featuring a doubled number of parameters with regards to the baselines. e, f Test accuracy when learning sequentially two subsets of CIFAR-10
classes from features extracted by a pretrained ResNet on ImageNet (see Supplementary Note 11). g, h Same experiment with CIFAR-100 features. All
curves except c and d are averaged over five runs. c and d are averaged over fifty runs due to the small amount of data (see Supplementary Note 10).
Shadows correspond to one standard deviation.
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performance can be achieved if we allow the neurons to have
independent thresholds for the two subsets (see Supplementary
Note 11).

Stream learning: learning one task from subsets of data. We
have shown that the hidden weights of binarized neural networks
can be used as importance factors for synaptic consolidation.
Therefore, in our approach, it is not required to compute an
explicit importance factor for each synaptic weight: our con-
solidation strategy is carried out simultaneously with the weight
update as consolidation only involves the hidden weights. The
absence of formal dataset boundaries in our approach is impor-
tant to tackle another aspect of catastrophic forgetting where all
the training data of a given task is not available at the same time.
In this section, we use our method to address this situation, which
we call “stream learning”: the network learns one task but can
only access one subset of the full dataset at a given time. Subsets
of the full dataset are learned sequentially and the data of pre-
vious subsets cannot be accessed in the future.

We first consider the Fashion-MNIST dataset, split into
60 subsets presented sequentially during training (see “Meth-
ods”). The learning curves for regular and metaplastic binarized
neural networks are shown in Fig. 5a, the dashed lines
corresponding to the accuracy reached by the same architecture
trained on the full dataset after full convergence. We observe that
the metaplastic binarized neural network trained sequentially on
subsets of data performs as well as the non-metaplastic binarized
neural network trained on the full dataset. The difference in
accuracy between the baselines can be explained by our
consolidation strategy gradually reducing the number of weights
able to switch, therefore acting as a learning rate decay (the mean
accuracy achieved by a binarized neural network with m= 0
trained with a learning rate decay on all the data is 88.8%,
equivalent to the metaplastic baseline in Fig. 5a).

In order to see if the advantage provided by metaplastic
synapses holds for convolutional networks and harder tasks, we
then consider the CIFAR-10 dataset, with a binarized version of a
Visual Geometry Group (VGG) convolutional neural network
(see “Methods”). CIFAR-10 is split into 20 sub datasets of 2500
examples. The test accuracy curve of the metaplastic binarized
neural network exhibits a gap with baseline accuracies smaller
than the non-metaplastic one. Our metaplastic binarized neural
network can thus gain new knowledge from new data without

forgetting previously learned unavailable data. Because our
consolidation strategy does not involve changing the loss function
and the batch-normalization settings are common across all
subsets of data, the metaplastic binarized neural network gains
new knowledge with each subset of data without any information
about subsets boundaries. This feature is especially useful for
embedded applications, and is not currently possible in
alternative approaches of the literature to address catastrophic
forgetting.

Mathematical interpretation. We now provide a mathematical
interpretation for the hidden weights of binarized neural net-
works, also illustrated graphically in Supplementary Note 6. We
show in archetypal situations that the larger a hidden weight gets
while learning a given task, the bigger the loss increase upon
flipping the sign of the associated binary weight, and conse-
quently the more important they are with respect to this task. For
this purpose, we define a quadratic binary task, an analytically
tractable and convex counterpart of a binarized neural network
optimization task. This task, defined formally in Supplementary
Note 5, consists in finding the global optimum on a landscape
featuring a uniform (Hessian) curvature. The gradient used for
the optimization is evaluated using only the signs of the para-
meters Wh (Fig. 6a), in the same way that binarized neural net-
works employ only the sign of hidden weights for computing
gradients during training. In Supplementary Note 5, we demon-
strate theoretically that throughout optimization on the quadratic
binary task, if the uniform norm of the weight optimum vector is
greater than one, the hidden weights vector diverges. Figure 6a
shows an example in two dimensions where such a divergence is
seen. This situation is reminiscent of the training of binarized
neural networks on practical tasks, where the divergence of some
hidden weights is observed. In the particular case of a diagonal
Hessian curvature, a correspondence exists between diverging
hidden weights and components of the weight optimum greater
than one in absolute value. We can derive an explicit form for the
asymptotic evolution of the diverging hidden weights while

optimizing: the hidden weights diverge linearly: Wh
i;t � eW

h
i t with

a speed proportional to the curvature and the absolute magnitude
of the global optimum (see Supplementary Note 5). Given this
result, we can prove the following theorem (see Supplementary
Note 5):

a bFashion-MNIST CIFAR-10

Fig. 5 Stream learning experiments. a Progressive learning of the Fashion-MNIST dataset. The dataset is split into 60 parts consisting of only 1000
examples, and containing all ten classes. Each sub dataset is learned for 20 epochs. The dashed lines represent the accuracies reached when the training is
done on the full dataset for 20 epochs so that all curves are obtained with the same number of optimization steps. b Progressive learning of the CIFAR-10
dataset. The dataset is split into 20 parts, consisting of only 2500 examples. Each sub dataset is learned for 200 epochs. The dashed lines represent the
accuracies reached when the training is done on the full dataset for 200 epochs. Shadows correspond to one standard deviation around the mean over
five runs.
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Theorem 1 Let W optimize the quadratic binary task with
optimum weight W* and curvature matrix H, using the
optimization scheme: Wh

tþ1 ¼Wh
t � ηH � ð sign ðWh

t Þ �W�Þ. We
assume H equal to diag(λ1,…λd) with λi > 0, ∀i∈〚1, d 〛. Then,
if jW�i j> 1, the variation of loss resulting from flipping the sign of
Wb

i;t is:

ΔiLðWtÞ � 2λi þ 2
j eWh

i j
η

as t!þ1: ð2Þ

This theorem states that the increase in the loss induced by
flipping the sign of a diverging hidden weight is asymptotically
proportional to the sum of the curvature and a term proportional
to the hidden weight. Hence the correlation between high valued
hidden weights and important binary weights.

Interestingly, this interpretation, established rigorously in the
case of a diagonal Hessian curvature, may generalize to non-
diagonal Hessian cases. Figure 6, for example, illustrates the
correspondence between hidden weights and high impact on the
loss by sign change on a quadratic binary task (Fig. 6b) with a
500-dimensional non-diagonal Hessian matrix (see “Methods”
for the generation procedure). Figure 6c–e finally shows that this
correspondence extends to a practical binarized neural network
situation, trained on MNIST. In this case, the cost variation
EdataðΔLÞ upon switching binary weights signs increases mono-
tonically with the magnitudes of the hidden weights (see
“Methods” for implementation details). These results provide
an interpretation as to why hidden weights can be thought of as
local importance factors useful for continual learning
applications.

Discussion
Addressing catastrophic forgetting with ideas from both neu-
roscience and machine learning has led us to find an artificial
neural network with richer synapses behaviors that can perform
continual learning without requiring an overhead computation of
task-related importance factors. The continual learning capability

of metaplastic binarized neural networks emerges from its
intrinsic design, which is in stark contrast with other consolida-
tion strategies3,23,24. The resulting model is more autonomous
because the optimized loss function is the same across all tasks.
Metaplastic synapses enable binarized neural networks to learn
several tasks sequentially similarly to related works, but more
importantly, our approach takes the first steps beyond a more
fundamental limitation of deep learning, namely the need for a
full dataset to learn a given task. A single autonomous model able
to learn a task from small amounts of data while still gaining
knowledge, approaching to some extent the way the brain
acquires new information, paves the way for widespread use of
embedded hardware for which it is impossible to store large
datasets. Other methods have been introduced to train binarized
neural networks such as refs. 29 or30 and provide valuable insights
to understand the specificity of binarized networks with respect to
continual learning. Helwegen et al.29 interpret the hidden weight
as inertia, which is coherent with the fact that high inertia might
correspond to important weights, while Meng et al.30 link the
hidden weight to the natural parameter of a probability dis-
tribution over binarized weights, which can be used as a relevant
prior to perform continual learning.

A distinctive aspect of continual learning approaches is their
behavior when the neural network reaches its capacity in terms of
number of tasks. The behavior in the case of our approach can be
anticipated from the mathematical interpretation in the previous
section: when all hidden weights have started to diverge, i.e., are
consolidated for a given task, no weights should be able to learn
new tasks. The consequence of this situation is well seen in
Supplementary Fig. 4b: when learning ten permuted MNIST
tasks, the last task has reduced accuracy, while the first trained
tasks retain their original accuracy. This behavior fits well with a
large section of the literature on continual learning, multitask
learning, where the goal is to learn a given number of tasks31.
Supplementary Fig. 2 also highlights the relative definitive nature
of synaptic consolidation in our approach. We implemented a
variation, where the metaplasticity function reaches a hard zero

b

c

d

e

Quadratic Binary Task

Metaplastic BNN Layer 1

Metaplastic BNN Layer 2

Metaplastic BNN Layer 3

a

Binarized weights

Hidden weights
Loss gradient
Loss global minimum

Unit ball for
infinite norm

Loss level

Fig. 6 Interpretation of the meaning of hidden weights. a Example of hidden weights trajectory in a two-dimensional quadratic binary task. One hidden
weight Wh

x diverges because the optimal hidden weight vector W* has uniform norm greater than one (Lemma 2 of Supplementary Note 5). b Mean
increase in the loss occurred by switching the sign of a hidden weight as a function of the normalized value of the hidden weight, for a 500-dimensional
quadratic binary task. The mean is taken by assigning hidden weights to bins of increasing absolute value and the error bars denote one standard deviation
around the mean. The leftmost point corresponds to hidden weights staying bounded. c–e Increase in the loss occurred by switching the sign of hidden
weights as a function of the normalized absolute value of the hidden weight in a binarized neural network trained on MNIST. Each dot is the mean increase
over 100 realizations of weights to be switched and the error bars denote one standard deviation. The scales differ because the layers have different
numbers of weights and thus different relative importance. See “Methods” for implementation details.
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after a given threshold. We see that the performance on the ten
permuted MNIST tasks is only modestly reduced by this change.

This behavior also differentiates our approach from the brain,
where a more natural behavior for most networks would be to
forget the earliest trained tasks, and replace them with the newly
trained ones. In recent years, the literature about metaplasticity
has aimed at reproducing this behavior, i.e., a type of “steady-
state” continual learning8,11. This recent literature can therefore
provide leads to implement such behavior in our network. In
particular, Benna et al. proposed a metaplasticity model where
synapses feature a network of different elements, which all evolve
at different time scales8. This model can feature a sophisticated
memory effect, and one work successfully used this type of
synapses in the context of an elementary continual reinforcement
learning task related to the Cart-Pole problem11.

We found that directly applying the metaplasticity rule of ref. 8

in our context does not yield proper memory effects. The
explanation stems from the specificity of deep networks: in ref. 8,
synaptic updates occur following randomly presented patterns, in
an independent and identically distributed fashion. In our con-
tinual learning situation, sequential synaptic updates are highly
correlated. However, the rule of ref. 8 can still be used as an
inspiration to allow steady-state continual learning in our
approach. In Supplementary Note 8 and the associated Supple-
mentary Figs. 4 and 5, we provide a learning rule where synapses
also feature a network of elements evolving at different time scale
adapted for the training of binarized neural networks, leading to a
natural forgetting of tasks trained a long time ago when new tasks
are trained. Our adaptation consists in modulating the flow
between hidden variables, an idea suggested as a perspective in
ref. 11 as a way to bridge the gap between conventional continual
learning methods and neuroscience-based approaches. We can
see in Supplementary Fig. 4c that in this case, when training ten
permuted MNIST tasks, the last trained task features the highest
accuracy, while the accuracy of the first trained tasks starts to
decrease.

This discussion highlights an interplay between the level of
continual learning feature and of synaptic complexity. Highly
complicated synapses, featuring many equations and hyperpara-
meters, as the ones of refs. 8,11 or the one that we just introduced,
can achieve advanced continual learning behaviors. For an arti-
ficial system, the richness of highly complex synapses needs to be
counterbalanced with their implementation cost. Biology might
have experienced a similar dilemma. Evolution seems to have
favored synapses exhibiting highly complex metaplastic
behaviors10, although simpler synapses might have been more
efficient to implement, suggesting the high computational benefits
of complex synapses.

This discussion is natural for software implementations of
metaplasticity, and also exists for hardware. In particular, the fact
that metaplastic approaches build on synapses with rich behavior
resonates with the progress of nanotechnologies, which can
provide compact and energy-efficient electronic devices able to
mimic neuroscience-inspired models, employing “memristive”
technologies32–35. Many works in nanotechnologies have shown
that a single nanometer-scale device can provide metaplastic
behavior36–40. The metaplasticity features of these nanodevices
vary greatly depending on their underlying physics and tech-
nology, but their complexity is analogous to our proposal here.
Typically, metaplasticity occurs by transforming the shape of a
conductive filament in a continuous fashion. These changes make
the device harder to program, and therefore provide a feature that
can be analogous to our continuous metaplasticity function fmeta.
On the other hand, the complicated version of Supplementary
Note 8 would be highly challenging to implement with a single
nanodevice, based on the current state of nanotechnologies, as

these metaplasticity models require many different states with
different time dynamics. Our proposal, as other proposals of
complex synapses with multiple variables41 or stochastic
behaviors42, could therefore be an outstanding candidate for
nanotechnological implementations, as it provides rich features at
the network level, while remaining compatible with the con-
straints of technology.

In addition, taking inspiration from the metaplastic behavior of
actual synapses of the brain resulted in a strategy where the
consolidation is local in space and time. This makes this approach
particularly suited for artificial intelligence-dedicated hardware
and neuromorphic computing approaches, which can save con-
siderable energy by employing circuit architectures optimized for
the topology of neural network models, and therefore limiting
data movements43. The fact that our metaplasticity approach is
entirely local should be put into perspective into the non-local
aspects of the overall learning algorithms. First, all our simula-
tions use batch normalization, as it is known to efficiently sta-
bilize the training of binarized neural networks12,13. Batch
normalization is not, however, a fundamental element of the
scheme. Normalization technique that do not involve batches,
such as instance normalization44, layer normalization45, or online
normalization46 provide more hardware-friendly alternatives.
More profoundly, error backpropagation itself is of course non-
local. Currently, multiple efforts aim at developing more local
alternatives to backpropagation47–49, or at relying on directly
bioinspired learning rules50,51. We have seen that alternative
approaches of the literature to overcome catastrophic forgetting
typically rely on the use of additional terms in the loss, are
therefore strongly tied to the use of error backpropagation. On
the other hand, as our metaplasticity approach is entirely
synaptic-centric, it is largely agnostic to the learning rule, and
should be adaptable to all these emerging learning approaches.
This discussion also evidences the benefit of taking inspiration
from biology with regards to purely mathematically motivated
approaches: they tend to be naturally compatible with the con-
straints of hardware developments and can be amenable for the
development of energy-efficient artificial intelligence.

In conclusion, we have shown that the hidden weights involved
in the training of binarized neural networks are excellent candi-
dates as metaplastic variables that can be efficiently leveraged for
continual learning. We have implemented long-term memory
into binarized neural networks by modifying the hidden weight
update of synapses. Our work highlights that binarized neural
networks can be more than a low-precision version of deep neural
networks, as well as the potential benefits of the synergy between
neurosciences and machine learning research, which for instance
aims to convey long-term memory to artificial neural networks.
We have also mathematically justified our technique in a tractable
quadratic binary problem. Our method allows for online synaptic
consolidation directly from model behavior, which is important
for neuromorphic dedicated hardware, and is also useful for a
variety of settings subject to catastrophic forgetting.

Methods
Metaplasticity-inspired training of binarized neural networks. The binarized
neural networks studied in this work are designed and trained following the
principles introduced in ref. 12—specific implementation details are provided in
Supplementary Note 2. These networks consist of binarized layers where both
weight values and neuron activations assume binary values meaning {+1, −1}.
Binarized neural networks can achieve high accuracy on vision tasks13,18, provided
that the number of neurons is increased with regards to real neural networks.
Binarized neural networks are especially promising for AI hardware because unlike
conventional deep networks, which rely on costly matrix-vector multiplications,
these operations for binarized neural networks can be done in hardware with
XNOR logic gates and pop-count operations, reducing the power consumption by
several orders of magnitude17.
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In this work, we propose an adaptation of the conventional binarized neural
network training technique to provide binarized neural networks with metaplastic
synapses. We introduce the function fmeta: R

þ ´R! R to provide an
asymmetry, at equivalent gradient value and for a given weight, between updates
toward zero hidden value and away from zero. Algorithm 1 describes our
optimization update rule and the unmodified version of the update rule is
recovered when m= 0.0 due to condition (3) satisfied by fmeta. fmeta is defined such
that:

8x 2 R; fmetað0; xÞ ¼ 1; ð3Þ

8m 2 Rþ; fmetaðm; 0Þ ¼ 1; ð4Þ

8m 2 Rþ; ∂xfmetaðm; 0Þ ¼ 0; ð5Þ

8m 2 Rþ; lim
jxj!þ1

fmetaðm; xÞ ¼ 0: ð6Þ

Conditions (4) and (5) ensure that near-zero real values, the weights are free to
switch in order to learn. Condition (6) ensures that the farther from zero a real
value is, the more difficult it is to make the corresponding weight switch back. In all
the experiments of this paper, we use:

fmetaðm; xÞ ¼ 1� tanh2ðm � xÞ: ð7Þ
The parameter m controls how fast binary weights are consolidated (Fig. 1c). The
specific choice of fmeta is made to have a variety of plasticity over large ranges of
time steps (iteration steps) with an exponential dependence as in ref. 6. Specific
values of the hyperparameters can be found in Supplementary Note 2.

Multitask training experiments. A permuted version of the MNIST dataset
consists of a fixed spatial permutation of pixels applied to each example of the
dataset. We also train a full precision (32-bits floating point) version of our net-
work with the same architecture for comparison, but with tanh activation function
instead of sign. The learned parameters in batch normalization are not binary and
therefore cannot be consolidated by our metaplastic strategy. Therefore, in our
experiments, the binarized and full precision neural networks have task-specific
batch-normalization parameters in order to isolate the effect of weight con-
solidation on previous tasks test accuracies.

For the control, elastic weight consolidation is applied to binarized neural
networks by consolidating the binary weights (and not the hidden weights as the
response of the network is determined by the binary weights): both the surrogate
loss term, and the Fisher information estimates are computed using the binary
weight values. The EWC regularization strength parameter is λEWC= 5 ⋅ 103. The
random consolidation presented in Table 1 consists in computing the same
importance factors as elastic weight consolidation but then randomly shuffling the
importance factors of the synapses.

Stream learning experiments. For Fashion-MNIST experiments, we use a
metaplastic binarized neural network of two 1024 units hidden layers. The dataset
is split into 60 subsets of 1000 examples each, and each subset is learned for 20
epochs. (All classes are represented in each subset.)

For CIFAR-10 experiments, we use a binary version of VGG-7 similarly to
ref. 12, with six convolution layers of 128-128-256-256-512-512 filters and kernel
sizes of 3. Dropout with probability 0.5 is used in the last two fully connected layers
of 2048 units. Data augmentation is used within each subset with random crop and
random rotation.

Sign switch in a binarized neural network. Two major differences between the
quadratic binary task and the binarized neural network are the dependence on
the training data and the relative contribution of each parameter, which is lower in
the case of the BNN than in the quadratic binary task. The procedure for gen-
erating Fig. 6c–e has to be adapted accordingly. Bins of increasing normalised
hidden weights are created, but instead of computing the cost variation for a single
sign switch, a fixed amount of weights are switched within each bin so as to
increase the contribution of the sign switch on the cost variation. The resulting cost
variation is then normalised with respect to the number of switched weights. An
average is done over several realizations of the hidden weights to be switched.
Given the different sizes of the three layers, the amounts of switched weights per
bins for each layer are respectively 1000, 2000, and 100.

Positive symmetric definite matrix generation. To generate random positive
symmetric definite matrices, we first generate the diagonal matrix of eigen values
D= diag(λ1,...,λd) with a uniform or normal distribution of mean μ and variance σ
and ensure that all eigen values are positive. We then use the subgroup algorithm
described in ref. 52 to generate a random rotation R in dimension d. This is done by
first generating a random rotation R2 in 2D and iteratively increasing the
dimension by sampling a random unitary vector v, then computing x= (e1− v)/
∥e1− v∥ with e1= (1, 0,...,0)T, and finally computing Rnþ1 ¼ ðI� 2xTxÞ � R̂n ,

where R̂n is a n+ 1 × n+ 1 matrix where R̂n;0;0 ¼ 1, R̂n;1:;1: ¼ Rn , and

R̂n;0;j ¼ R̂n;i;0 ¼ 0. We then compute H= RT ⋅D ⋅ R.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All used datasets (MNIST53, USPS54, Fashion-MNIST28, CIFAR-10 and CIFAR-10055)
are available in the public domain and were obtained from https://pytorch.org/vision/
stable/datasets.html for this work.

Code availability
Throughout this work, all simulations and data analysis are performed using Pytorch
1.1.0. The source codes used in this work are freely available online in the Github
repository56: https://github.com/Laborieux-Axel/SynapticMetaplasticityBNN.
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