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Aquila enables reference-assisted diploid personal
genome assembly and comprehensive variant
detection based on linked reads
Xin Zhou 1,4✉, Lu Zhang2,5, Ziming Weng2, David L. Dill1 & Arend Sidow 2,3✉

We introduce Aquila, a new approach to variant discovery in personal genomes, which is

critical for uncovering the genetic contributions to health and disease. Aquila uses a reference

sequence and linked-read data to generate a high quality diploid genome assembly, from

which it then comprehensively detects and phases personal genetic variation. The contigs of

the assemblies from our libraries cover >95% of the human reference genome, with over

98% of that in a diploid state. Thus, the assemblies support detection and accurate geno-

typing of the most prevalent types of human genetic variation, including single nucleotide

polymorphisms (SNPs), small insertions and deletions (small indels), and structural variants

(SVs), in all but the most difficult regions. All heterozygous variants are phased in blocks that

can approach arm-level length. The final output of Aquila is a diploid and phased personal

genome sequence, and a phased Variant Call Format (VCF) file that also contains homo-

zygous and a few unphased heterozygous variants. Aquila represents a cost-effective

approach that can be applied to cohorts for variation discovery or association studies, or to

single individuals with rare phenotypes that could be caused by SVs or compound

heterozygosity.
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Despite recent advances, quantifying the contribution of
genetic variation to specific disease risk is a stubborn
biomedical problem that remains far from solved. In

general, understanding the relationship between genotype and
phenotype requires complete ascertainment of genotype, which
for humans has yet to be achieved in a scalable fashion. At this
stage in technology development, DNA sequencing still faces a
vexing tradeoff between cost and completeness so that discovery
of variation in larger cohorts is limited to SNPs and small indels.
In fact, the relatively low cost of Illumina-based short-fragment
whole genome sequencing and the even lower cost of exomes and
genotyping arrays has caused considerable ascertainment bias
such that the vast majority of genotype–phenotype associations
focus on SNPs with small effect, even though the undetected
larger variation is known to involve roughly as many bases in our
genomes as SNPs and is therefore predicted to have significant
phenotypic impact as well1,2. Also generally missing is the
phasing of genetic variation, which is similarly important for
estimation of phenotypic impact, as the distinction between cis
and trans compound heterozygotes in an essential locus can mean
the difference between health and disease3 and is likely to mod-
ulate risk of multigenic disease as well4.

Single-molecule sequencing approaches, particularly Pacific
Biosciences (PacBio) and Oxford Nanopore Technologies (ONT),
provide potential solutions, as long-range information allows
accurate detection of SVs and phasing5–7. Despite recent
improvements in base calling, the drawback of ONT is that it still
exhibits lower base-pair level accuracy than Illumina. A widely
applied solution has been to supplement long reads with higher
quality short read data, but these ensemble approaches are diffi-
cult to scale to larger cohorts due to the complexity of data
generation, integration, and analysis, and have therefore been
limited to small sample sizes in proof-of-principle studies8,9. A
solution to making long reads more accurate is to sequence the
same single molecule multiple times to reduce error, as imple-
mented in the PacBio circular consensus sequencing approach,
now called HiFi10–12. However, HiFi requires large amounts of
input DNA and several-fold oversampling of the same molecule,
a currently expensive proposition for anything but small
sample sizes.

A relatively recent addition to the DNA-sequencing ecosystem
has been pioneered by 10X Genomics, wherein the original large
molecules of a gentle DNA preparation are partitioned into
microfluidic compartments13,14. Via a series of within-
compartment molecular biology and subsequent standard steps
of library construction and sequencing, barcoded short reads are
produced that retain the long-range information of the long
fragments of the initial DNA extract. Due to the combination of
high base pair-level sequence accuracy and long-range informa-
tion, 10X/Illumina data therefore support excellent SNP and
small indel detection and phasing13, as well as breakpoint
detection of large events in cancer13,15,16. For diploid genome
reconstruction, 10X developed the de novo assembler, Supernova,
which has been shown to produce whole human genome
assemblies from 56-fold coverage 10×/Illumina data17,18.

The application of assembly approaches to human genomes
has been limited even though they allow powerful identification
of SVs8,19,20. Long-read-based assemblies, such as those from
PacBio data performed by FALCON-Unzip21, exhibit respectable
contiguity and variant detection but still suffer from high cost9.
Supernova assemblies based on 10X/Illumina data are less
expensive and allow detection of all types of variation but power
is limited because a substantial fraction of the genome is not
assembled in a diploid state and genotyping error is still high22.
Overall, cost-effective assembly-based approaches still suffer from
incomplete resolution of the diploid genome and limited power of

variant detection in a personal genome. On the other hand,
assembly-based approaches have two advantages: detection of
variants is greatly simplified to pairwise alignments rather than
complicated read-map-based inference, which is particularly
challenging for indels; and the detection of sequences not present
in the reference.

Compared to reference-based approaches23, the competitive
disadvantage of de novo assembly methods is that they disregard
the high information content of the reference. Depending on
genetic background, >99% of anybody’s two haplomes outside of
centromeres and telomeres is identical to the reference, which
therefore constitutes a highly accurate scaffold for personal gen-
omes. It stands to reason that, in principle, an assembly-based
method that incorporates information from the reference
sequence should combine the advantages of both approaches. We
were therefore motivated to develop a new approach to accom-
plish these three goals via a reference-assisted, assembly-based
approach: high-quality diploid personal genome reconstruction;
accurate detection of SNPs, indels, and SVs; phasing of all types of
variants.

Our method, Aquila, makes use of the reference genome by
performing local assembly in small chunks separately for each
haplotype, yielding a diploid whole genome consisting of local,
phased, contigs whose scaffolding is provided by the reference
sequence. It then discovers the most important types of variation
on the basis of pairwise alignment to the reference, and infers
phasing for all types of assembled variants through previous long-
range phasing information. We test its performance with six
libraries of 10× linked-reads data for NA12878 and NA24385
individuals, which we had previously generated for evaluation of
linked-read-based de novo assembly with Supernova18,22. We
show that Aquila offers excellent small indel and SV detection at
virtually no compromise for SNP detection, as well as highly
accurate phasing of the vast majority of heterozygous variants, at
reasonable reagent and computational costs.

Results
Aquila’s motivation, architecture, and workflow. The motiva-
tion of Aquila is to generate sufficiently long contigs from each
parental haplotype such that variation can be discovered on the
basis of pairwise alignment of these contigs to the reference.
Contigs on the order of 100 kb (implying ca. 60,000 contig breaks
in a diploid 3 Gb genome) are in principle sufficient to discover
most variation as long as the vast majority of the genome is
recovered in a diploid state. Hence, the contiguity of the assembly
is less important than the diploid nature of it. Aquila’s use case is
distinct from that of de novo assembly, where the luxuries of a
high-quality reference sequence and extensive variation bench-
marking resources do not exist. Aquila’s motivation is to leverage
these luxuries in the service of comprehensive variation discovery.

Aquila works on the autosomes and the X chromosome. It
consists of four stages (Fig. 1a): Haplotyping and sorting inferred
long fragments and their reads into the two parental bins, locally
partitioning reads of each bin, assembling each local partition
into sequence contigs, and finally variant calling and phasing.

Each stage has been implemented as a specific module (Fig. 1b).
In the Haplotyping module, the original long DNA fragments are
reconstructed based on barcode-aware alignment of the reads to
the reference sequence. In parallel, SNPs are detected based on
these same alignments. Fragments are then clustered into either
parental bin labeled by each pair of heterozygous SNPs, and a
probabilistic model (see the “Methods” section) is applied to
exclude clusters caused by sequencing errors. The clusters are then
merged into fewer but larger ones by a greedy recursive algorithm,
preserving the separation of parental bins. The resulting clusters
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contain all reads from a haplotype block of one parent only and
are therefore free of allelic variation, greatly simplifying the later
assembly steps.

Before assembly is carried out, haplotype blocks whose lengths
exceed a user-defined threshold (default= 200 kb) are partitioned
into smaller chunks (default= 100 kb) by the Contiguity module.
This step is necessary because a considerable fraction of the data
is in large phase blocks (up to the length of an entire chromosome
arm) and handing all these reads to the assembler would partially
defeat Aquila’s motivation to sidestep the extreme complexity of
whole-genome de novo assembly. Thus, the assembly must be
broken down into smaller chunks, preferably in places that are
highly likely to produce locally correct assemblies, so that contigs
from neighboring sub-assemblies can be spliced back together at
the partitioning points with high confidence (see the “Methods”
section; Supplementary Fig. 1). The locations of the partitioning
points are therefore selected such that (1) they are not within
repeats in the reference genome and (2) exhibit the expected read
coverage and perfect mapping uniqueness in the abovementioned
short-read alignments.

The Assembly module (using SPAdes but any appropriate
assembler can be used) produces the complete set of “mini-
contigs” from the partitions, which are then spliced together to
produce final contigs (Supplementary Fig. 1). While the emphasis
in personal genomes is on producing variant calls (see below), we
note that traditional short-read-based methods that go directly
from read alignment to variant call do not produce contigs as
output. The set of final contigs represents a valuable personal
resource in the form of a genome sequence.

The Variation module then aligns the assembled contigs to the
reference. All of the small indels and SVs that Aquila reports are
detected on the basis of these pairwise alignments. SNPs are also
detected but this assembly-based set is merged with the initial set
of SNPs identified on the basis of the barcode-aware read
alignment performed by the Haplotyping module. The last step in
the Variation module is the phasing of all discovered heterozygous
variants. The final output is a variant call format (VCF) with all
phased variation that also includes all detected variants for which
the individual is homozygous compared to the reference sequence,
and the small fraction of heterozygous variants that could not be
phased.

Characteristics of Aquila assemblies of six libraries. To explore
the performance of Aquila we used six libraries of 10X linked-
read sequencing data that were previously generated by us18,22

from gentle DNA preparations of NA12878 and NA24385 cell
lines. The average inferred DNA fragment lengths and their
distributions varied among libraries (Supplementary Table 1). We
numbered them for each individual according to physical cov-
erage, in ascending order. All of the libraries had approximately
100× Illumina sequencing coverage, except L2 which had 192×.
We assembled these libraries with Aquila and compared standard
assembly statistics with Supernova 2 assemblies22 of the same
libraries (Table 1, Supplementary Fig. 2). Down-sampling to
~60× was performed for Supernova2 assemblies since that is the
maximum coverage it is capable of handling18. Contiguity, as
measured by Contig N50, was generally >100 kb; NA50, which is

Fig. 1 Aquila architecture. Lowercase letters in circles denote existing programs we integrated (a= LongRanger Align, b= FreeBayes, c= SPAdes).
a Overall architecture. b Detailed workflow. Green boxes are data, arrows indicate input and output of a pipeline component. Input data are a high-quality
reference genome and 10X-based short reads, each with a barcode (not shown). The Haplotyping module produces phased virtual long fragments (by
alignment of reads to the reference, SNP detection, and haplotyping) that become part of each read’s record. The Contiguity module produces specific
single-base coordinates (‘partitioning points’) in the genome and in the data, where haplotype blocks and reads are cut at a specific single location, and
where subsequently assembled minicontigs are rejoined in the end. The Local Assembly module executes assembly of the reads of a specific region,
separately for each parental copy. The variation module then discovers, integrates, and infers the phase of all variation.
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the N50 of contigs after breaking at potential misassemblies by
comparison to the reference genome, was in most cases <5%
lower, indicating few misassemblies. We note that using the
reference to identify potential misassemblies is a conservative
approach given that it is not the same individual as the sequenced
one. Contiguity generally increased as a function of physical
coverage (CF; L5 producing the best result at CF= 803× and
CR= 0.08), and was greatest with a weighted fragment length of
around 150 kb (Supplementary Fig. 2). k-mer spectrum analysis24

indicates excellent completeness of the diploid nature of the
assemblies as well (e.g., Supplementary Fig. 3).

The fraction of the reference genome covered by the assemblies
ranged around 95%, indicating that the vast majority of the non-
N and not highly repetitive regions of the genome were covered
by all libraries assembled by either Aquila or Supernova2. Aquila
consistently produced 98% of this fraction in a diploid state,
compared to Supernova’s 73–78% (Table 1). This key metric
indicates that Aquila produces assemblies that have the potential
to support diploid variant detection genome-wide.

Aquila also seamlessly supports combining different libraries, if
greater contiguity is desired than is achievable with a single
library (Supplementary Fig. 4). To illustrate this, we computed
the same metrics as for the single libraries for the combination of
L5 and L6 from NA24385. Contig N50 increased by 30–40% to

178 kb, the fraction of reference genome assembled rose to 97%,
and the diploid fraction reached 99% of the assembled genome.
While assembly statistics represent an important facet for
evaluation of Aquila, the ultimate metric for the usefulness of
the approach is how well it detects genetic variation. We therefore
evaluated the assemblies for their ability to support detection of
SNPs, small indels, and larger SVs.

Assembly-based detection of SNPs and small indels. We first
evaluated assembly-based SNP and small-indel (<50 bp) detection
by comparing Aquila’s calls against the Genome in a Bottle
(GiaB) benchmark callsets25. The libraries with the best assembly
statistics, L3 (from NA12878) and L5 (from NA24385), achieved
97.4% and 97.8% accuracy (F1 metric) for SNPs (Table 2; Sup-
plementary Table 2) and >93% accuracy for the high-confidence
set of GiaB small indels (Table 3; Supplementary Table 3), which
represents substantial improvement over the indel callset of
FreeBayes and Longranger. Genotyping errors for the calls that
matched GiaB were 0.14–0.16% for SNPs and 1.61–1.90% for
high-confidence small indels. The total numbers of assembly-
based SNP calls (Supplementary Table 4) were 3,971,444 (L3) and
3,882,869 (L5), compared to the total numbers of FreeBayes-
based calls performed on the barcode-aware read alignments of

Table 1 Assembly metrics for the six libraries we built from NA12878 and NA24385 (L1–L6) and a previously published 10X
Genomics library (L7); data was downsampled for Supernova to its acceptable maximum of ca. 60× by its parameter
“--maxreads”.

Raw coverage C (X) CF (X) CR (X) Contig
N50 (bp)

Contig
NA50 (bp)

Diploid
fraction (%)

Genome
fraction (%)

NA12878
L1_Aquila 103 123 0.41 34,759 31,645 98.1 95.45
L1_Supernova 58,408 57,254 73.3 93.69
L2_Aquila 192 334 0.27 94,699 91,662 96.7 94.43
L2_Supernova 144,298 136,253 58.9 94.81
L3_Aquila 106 958 0.07 120,963 116,438 98.7 96.17
L3_Supernova 114,900 111,388 77.2 94.62
L7_Aquila 78 243 0.32 78,309 75,378 97.1 95.32
NA24385
L4_Aquila 100 208 0.25 96,558 93,132 98.2 96.98
L4_Supernova 99,516 96,510 79.2 95.01
L5_Aquila 100 803 0.08 135,115 130,176 98.8 96.77
L5_Supernova 129,195 125,339 78.1 94.86
L6_Aquila 100 1504 0.05 125,064 120,490 98.7 96.62
L6_Supernova 101,236 98,364 73.4 94.69
L5+L6_Aquila 200 2307 0.07 177,974 172,358 99.1 97.06

CF physical (‘fragment’) coverage; CR read coverage; C raw coverage≥ CF × CR. Genome fraction, percentage of reference genome that is covered by the assembly. Diploid fraction, percentage of genome
fraction that is covered by exactly two parental contigs. L5+ L6 describes performance for a simple combination of the data from libraries 5 and 6. The statistics of the female individual, NA12878,
include the X chromosome; those of the male individual, NA23485, include the X chromosome but not the Y chromosome.

Table 2 Accuracy of SNP calling, comparing assembly-based calling with two mapping-based approaches on the same libraries’
linked read data, one each from NA12878 (L3) and NA24385 (L5).

SNPs True positives False negatives False positives Genotype mismatch Precision Recall F1

L3 (NA 12878) Aquila (assembly only) 3,004,501 38,282 124,074 4730 0.960 0.987 0.974
FreeBayes 3,037,504 5279 54,088 3501 0.983 0.998 0.990
Longranger 3,040,701 2082 105,854 1621 0.966 0.999 0.983

L5 (NA 24385) Aquila (assembly only) 2,989,567 39,785 93,195 4157 0.970 0.987 0.978
FreeBayes 3,021,814 7544 48,477 3899 0.984 0.998 0.991
Longranger 3,026,384 2974 104,879 1799 0.967 0.999 0.983

L5+ L6 (NA 24385) Aquila 2,971,237 58,120 81,926 18,856 0.973 0.981 0.977

The benchmark is GiaB v3.3.2. Variant counts and performance scores were generated by RTGtools/hap.py. Longranger calls were executed with “-vcmode= gatk”. For final SNP calling, Aquila combines
mapping-based calls from FreeBayes with its assembly-based calls. L5+ L6 can be achieved by Aquila through a multiple-library assembly mode, which is not applicable for other tools.
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3,949,721 (L3) and 3,961,684 (L5). Numbers of heterozygotes or
homozygotes are also comparable between the two approaches
(Supplementary Table 4). We note that Aquila produces numbers
of assembly-based SNP calls for these two individuals that are
consistent with those previously produced from standard short-
fragment Illumina libraries26–28.

Compared to the GiaB small indel callset, Aquila produces
considerably more calls (e.g., 1,007,313 in L3 vs. GiaB’s 531,382;
Supplementary Table 5). This difference is due to the current
incompleteness of the GiaB callset especially among longer small
indels, as well as a false-positive rate of the Aquila calls that we
cannot rigorously estimate outside of the GiaB regions. The size
distribution of Aquila’s small indels matches the size distribution
of the GiaB calls very closely, exhibiting the same 2 bp periodicity
such that insertions or deletions of an even length are more
common than those that are one base longer or shorter
(Supplementary Fig. 5). At lengths above 30 bp, where GiaB has
very few calls, the Aquila calls continue to exhibit this pattern.
The correlations between the Aquila and GiaB distributions of the
1-49 bp indel calls are R2= 0.997 and 0.998 of the raw counts,
and 0.930 and 0.951 for the natural log of counts, for insertions
and deletions, respectively.

Assembly-based detection of SVs 50 bp and greater. Aquila calls
ca. 17,000 deletions and ca. 6000 insertions 50 bp and greater in
each high quality library (L2, 3, 5, and 6; Supplementary Table 6).
The size distributions follow the expected exponential distribu-
tion with a peak at ca. 330 bp, which is caused by full-length or
nearly full-length Alu elements (Fig. 2a). The number of calls is
comparable but consistently lower than recent estimates from a
comprehensive study that focused exclusively on SVs in a cohort
of long-read sequenced individuals, including two haploid sam-
ples, in which purpose-driven approaches were applied to achieve
high sensitivity of detection of shared SVs29,30. We do not expect
to reach the same level of detection in a single personal genome
without the benefit of leveraging several individuals to inform
discovery, but we are able to apply several metrics to characterize
Aquila’s SV calls (Fig. 2b–g).

We initially used a combination of three strategies to validate
the SV calls in both individuals: First, for both individuals,
PacBio data exist that we applied with svviz231 to test Aquila’s
calls with another data type; second, the two individuals are
expected to share a large fraction of SVs, so we performed
simple comparisons of the call sets; third, we aligned the SVs
and flanking sequence to two high-quality ape genomes (Chimp
and Orang). Given the complexity of SV calling we expect to
have both false negative and false positive calls, which is
underscored by the fact that different libraries from the same
individual produce strongly overlapping but not fully identical
call sets. The calls that are shared between libraries validate

(by at least one of the abovementioned three metrics) at 92% for
NA12878 and 82% for NA24385 (Fig. 2b), whereas calls unique
to each library validate at lower rates (40–52%). This shows that
we do not have perfect sensitivity (because there are many
validated calls unique to a single library) and, conversely, that
the nonvalidated set of calls unique to a library likely contains
false positives. The number of called SVs exhibit the expected
dropoff as a function of derived allele frequency, as estimated in
this sample of five haplomes (two individual plus reference;
Supplementary Fig. 6).

The number of SVs validated by svviz2/PacBio is higher than
those validated by the other two approaches (Fig. 2c), since the
PacBio data is from the same individual as the respective
assembly. However, there are many SVs that are not validated by
PacBio but that are also called in the other individual or are
validated by comparison to ape sequences. This effect is greater
for deletion calls than for insertion calls (Fig. 2c), which suggests
that insertions may be called at higher specificity and lower
sensitivity than deletions. This interpretation is consistent with a
predicted shortcoming of the current implementation of Aquila,
which because of its reliance on the reference sequence to identify
reads for assembly has decreasing power to assemble insertions as
their size increases.

We also assessed the consistency of the breakpoints of the calls
that are shared between the two individuals (Fig. 2d, e). We
binned the SVs based on the size differences between the calls in
NA12878 and NA24385, as a function of validation by the other
two approaches (Fig. 2d) or as a function of sequence type
(Fig. 2e). Overall, the vast majority of calls have precisely the
same breakpoints in both individuals. Deletions or validated calls
have better precision than insertions or nonvalidated calls, and
SVs in repeats have worse precision than nonrepetitive sequences.

Genome in a bottle benchmark comparison. During the course
of this work, the first GiaB SV benchmark, v0.6, was released. It is
based on the HG19 reference sequence and is specific to
NA24385, with 9397 SVs >50 bp in the call set. Accuracy (F1
metric) of Aquila calls, assuming all GiaB calls are correct, ranges
from 52% to as high as 87% depending on the type of variant and
the location in which it occurs (Table 4). This compares favorably
with results obtained from Supernova assemblies of the same
libraries, and the callset from Longranger: Aquila’s recall is 80%,
compared to Longranger’s (40%) and Supernova’s (24–53%)12,22.
In general, Aquila’s recall performance is better than precision,
which is likely due to a combination of a rate of actual false
positives called by Aquila and an unknown number of false
negatives in the GiaB callset.

Inference of derived alleles. SV calls are labeled with respect to
the reference sequence as ‘insertion’ or ‘deletion’, but the

Table 3 Accuracy of small indel calling, comparing assembly-based calling with two mapping-based approaches on the same
libraries’ linked read data, one each from NA12878 (L3) and NA24385 (L5).

Small indels True positives False negatives False positives Genotype Mismatch Precision Recall F1

L3 (NA 12878) Aquila 499,301 32,081 40,292 9493 0.925 0.940 0.932
FreeBayes 419,344 80,354 45,977 39,636 0.903 0.839 0.870
Longranger 463,732 35,966 88,431 22,513 0.843 0.928 0.883

L5 (NA 24385) Aquila 476,139 26,914 35,315 7986 0.931 0.946 0.939
FreeBayes 400,440 75,170 41,475 36,293 0.908 0.842 0.874
Longranger 443,107 32,504 81,044 19,720 0.848 0.932 0.888

L5+L6 (NA 24385) Aquila 473,895 29,158 15,724 5335 0.968 0.942 0.955

The benchmark is GiaB v3.3.2 within the high-confidence regions. L5+ L6 can be achieved by Aquila through a multiple-library assembly mode, which is not applicable for other tools.
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Fig. 2 Characteristics and validation statistics of SV calls by Aquila. a Size frequency distributions of insertion calls and deletion calls in both individuals
(L3 for NA12878 and L5 for NA24385). Black areas represent indels of which at least 80% are a close match to Alu-element consensus sequences. b Call
validation rates by three validation strategies of two libraries (L2 and L3; L5 and L6) per individual; SVs called in both libraries are in the overlap, flanked by
SVs unique to each library. c Overlap analysis and comparison of three validation strategies, by call and individual; numbers inside the Venn diagrams are
counts of SVs. SVs are validated by: PacBio data from the same individual, (PacBio); the other individual (Both Individuals); in the chimp or orang genome
(Apes). Overlaps represent two or more of these criteria fulfilled. d, e Comparative precision of SVs present in both individuals, as a function of validation
by three validation strategies (d) or sequence class (e). Bar graphs depict counts of SVs that have precisely the same breakpoint coordinates in both
individuals (0 bp), that differ by <10 (1–9 bp), or that differ by 10 or more (≥0 bp). “Repeats” class includes simple sequence and tandem repeats but not
mobile elements; “Other” class includes all SVs that do not overlap more than 80% with Alus and are not part of the Repeats class. f Inference of actual
molecular mechanism that produced the SV by expanding the alignment between the reference sequence (Ref) and the alternate allele call from the
Individual (Ind) to include chimp or orang sequences; the sequence (reference or alternate) that matches the ape is the ancestral allele. “Actual insertion”
and “Actual deletion” refer to the molecular mechanism that produced the derived allele. Approximately 45% of deletion and 24% of insertion calls are
thus ‘inverted’ (blue arrows). g Size frequency distributions of actual insertions and actual deletions in both individuals. Black areas represent indels of
which at least 80% are a close match to the Alu-element consensus sequence. The peak at around 330 base pairs captures nearly all Alu SVs.
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molecular mechanism that generated the SV may be the opposite
of the call because the reference sequence is a random sample of
ancestral and derived alleles from the population. Where the
reference carries a derived allele, the actual molecular mechanism
that generated the SV is the opposite of the call because the
assembly carries the ancestral allele. For those SVs with align-
ments to ape genomes, the SV allele matching the ape sequence is
highly likely to represent the ancestral state: when the ape
sequence matches the reference, the alternate allele (which was
the ‘SV call’ in the individual) is derived; when the ape sequence
matches the alternate allele, the reference allele is derived and the
alternate allele call from the individual is ancestral (Fig. 2).
Classifying the SVs accordingly (“actual” insertion or deletion)
causes a striking shift in the size distributions of insertions and
deletions in both individuals (Fig. 2a, g), in which the vast
majority of SVs that overlap Alu repeat sequences are now
revealed to be actual insertions (Fig. 2g). This provides empirical
evidence that the classification into ancestral and derived alleles is
largely correct, as Alus are known to insert as full length
sequences, whereas partial Alus are degenerate copies that arise
later in evolution from deletions whose breakpoints can be any-
where in the element.

Genome-wide distribution and phasing of all variation. To
interrelate the different types of variation detected by Aquila and
to ask whether there were any obvious biases we divided the
genome into bins of 250 kb and quantified contig density and
variation content by genotype from the assembly of L3. Contig
density, which over the vast majority of the genome is exactly 2
because of the diploid nature of the assemblies (Fig. 3a), does not
correlate with any variation and only weakly with repeat content.
Repeat content correlates weakly with the number of SVs. As
expected, numbers of SNPs and very small indels correlate
strongly when the genotype is the same (heterozygous or
homozygous), and weakly with larger small indels, which in turn
correlate weakly with SVs (Fig. 3b). Overall, the correlation pat-
terns do not reveal any large-scale biases in variation discovery.
We also note that the fraction of variants that are heterozygous
varies over a narrow range across all types and sizes of detected
variation (Supplementary Fig. 7), again revealing no obvious
biases. Phase blocks are very long (Fig. 3a) and allow phasing of
coding variants within genes (e.g., Fig. 3c).

The last step in Aquila’s pipeline is a final integrative phasing
of all of the discovered heterozygous variation on the basis of the
phase blocks obtained with heterozygous SNPs in the Haplotyp-
ing module (Table 5). Depending on the library, between ca 1.7
and 2 million SNPs were initially phased (Supplementary Table 7).
Because the parental genotypes are known for the two individuals
we could quantify the phasing error, which is dominated by
switch errors that involve a single, presumably incorrectly
genotyped, SNP (Table 5). Long switch errors are quite rare,
comparing favorably with previous work using 10X data and a
variety of phasing algorithms32,33. Because SNPs are the densest
type of polymorphism in human genomes, phasing other variants
on the basis of these is feasible. Instead of probabilistic
imputation, however, Aquila performs straightforward inference
by matching the assembly-based SNP calls with those of the
Haplotyping module and then simply inferring the correct phase
(Supplementary Fig. 8). In total, Aquila added ca. 1 million
heterozygous variants, including 0.5–0.8 million previously
unphased SNPs, ca. 0.5 million small indels, and ca. 10,000
heterozygous SVs in the best four libraries (Supplementary
Table 7). Finally, major histocompatibility complex (MHC)
genotypes as assessed against the NA12878 benchmark are highly
accurate (Supplementary Tables 8 and 9).T
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Discussion
We introduce a new method, Aquila, which uses a high-quality
reference sequence to perform assembly in small chunks for both
haplotypes, producing a diploid personal genome sequence from
a single data type, Illumina/10X linked reads. We test Aquila’s
performance on several libraries from two standard individuals
and show that it produces high-quality diploid assemblies. The
assemblies enable comprehensive discovery of SNPs, small indels,
and SVs, on the basis of pairwise alignments to the reference
genome. We show that Aquila produces overall better results than
de-novo assembly from Supernova22, for all types of variants.
Accuracy of variant discovery, as evaluated against GiaB bench-
mark sets, retains some characteristics of standard Illumina short-
fragment sequencing, with higher accuracy for smaller variants

than for longer ones. Long-range phasing is highly accurate with
low switching error.

Aquila effectively leverages the strengths of 10X/Illumina
sequencing to enable comprehensive variation discovery and
phasing in personal genomes. Compared to standard Illumina
sequencing, the increased cost of the 10X sample prep and the
generation of deeper sequence data is justified by (1) the much
greater power to detect insertions and deletions, and (2) the
genome-wide phasing of all heterozygous variants (Fig. 3c).
Compared to ONT and standard PacBio, the superior base-pair
level accuracy of Illumina sequencing ensures more accurate SNP
and small indel detection as well as SV breakpoint determination;
and while PacBio HiFi enables highly accurate genome sequen-
cing12, it remains to be seen whether it performs substantially

Fig. 3 Local distribution of all types of variation detected, aggregated across 250 kb intervals. a Top, ideogram of Chromosome 1 showing metaphase
banding pattern. Tracks below are assembly and variation features where white represents no data. Contigs, average contig coverage. SNPs, Z-score of SNP
number. Small indels, Z-score of the number of indels 1–50 bp. SVs, number of SVs≥ 50 bp in each 250 kb bin. Phase blocks, each phase block is a gray
rectangle, with alternating light and dark indicating neighboring phase blocks. b Genome-wide correlation (R2) among all pairs of variation types by
genotype, contig density, and repeat density. c Example of phased exonic variants in cis within the KLHDC7B gene, where Haplotype 1 carries the alternate
alleles and Haplotype 2 carries the reference alleles.
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better than 10X/Illumina/Aquila to justify the additional cost,
particularly for cohort studies. Compared to ensemble approaches
that computationally integrate multiple data types with com-
plementary strengths (for example, combining Illumina, long-
read, and BioNano data), 10X/Illumina/Aquila is far less complex
to manage in the laboratory and offers a simpler computational
approach.

In the ecosystem of solutions for human whole genome
sequencing, 10X/Illumina/Aquila therefore fills what we believe is
the most important niche: a diploid and phased personal genome
for accurate and comprehensive discovery of SNPs, small indels,
and SVs in all but the most complicated regions of the human
genome. It represents the first generation of approaches that drive
toward laboratory and computational efficiency and simplicity by
using a single data type and leveraging the considerable amount
of information present in the human reference sequence. Until de
novo assembly on the basis of highly accurate very-long-read data
is shown to be cost-effective, reference-assisted approaches that
partition the genome into smaller assembly problems are likely to
prevail.

Further improvements of the approach we take here fall into
two categories: those for which the nature of current linked
reads data is inherently limited and will require technological
advances and those in which future implementations of Aquila
will produce better results. For example, it is unlikely that
linked reads data will support assembly and resolution of recent
segmental duplications or long repetitive sequences. However,
the current dropoff in sensitivity to detect insertions beyond
500 bases will be addressed by improving the inclusion of
ambiguously mapping reads into the assembly process. Simi-
larly, improvements to assembly contiguity will increase accu-
racy of variants in repetitive sequences, which are currently
enriched in assembly breaks. Future improvements will also
center on better detection of long insertions and contig
breakpoint assembly. Although developed for 10X/Illumina
data, Aquila’s architecture may be used in the future for com-
putational approaches that use data from other sources. In its
current form, it is already applicable to any study that requires
better indel detection than what is achievable with standard
Illumina sequencing.

Methods
Aquila is organized in four conceptual modules that correspond to the following
python steps (Fig. 1): Aquila_step1.py: Haplotyping module+ contiguity module
(first part: partitioning). Aquila_step2.py: Local assembly module+ contiguity
module (second part: concatenation). Variation Module: Aquila_assem-
bly_based_variants_call.py and Aquila_phasing_all_variants.py.

Pruning unreliable variants (haplotyping module). Accurate haplotyping
requires filtering out incorrectly genotyped variants and false positives due to
sequencing error. We performed an empirical analysis for 10X data to investigate
the alternate allele frequency (Ralt/ref) and coverage per variant (dvar) that could be
used as metrics to find erroneous calls. Allele frequency (Ralt/ref ≥ 0.25) was used for
a cutoff, and a 2-tailed percentile cutoff was used for coverage per variant (10%
*avg_cov ≤ dvar ≤ 90%*avg_cov, avg_cov: average read coverage per variant). The
haplotyping algorithm was further improved by sacrificing a small amount of low-
confidence heterozygous variants. SNP quality (13 by default) is the final free
parameter used to prune variants.

Inference and phasing of original long-fragments (haplotyping module). All
DNA fragments are first reconstructed by aligning short reads to the human
genome reference (Hg38) by a barcode-aware alignment strategy (Longranger
align, https://support.10xgenomics.com/genome-exome/software/pipelines/latest/
installation). Aquila then sorts all reads by barcodes and positions, and collects the
reads with the same barcode to reconstruct each fragment. There is a threshold to
differentiate two molecules with the same barcode when the distance between two
successive reads with the same barcode is larger than 50 kb (50 kb by default, free
parameter). After reconstructing all fragments, Aquila assigns the alleles of het-
erozygous SNPs to each fragment by scanning the reads belonging to each frag-
ment and comparing to a VCF file generated by FreeBayes. At a heterozygous locus
“0” is the reference allele and “1” is the alternate allele.

For each pair of heterozygous variants, if the even parity was correct where one
haplotype supported “00”, and the other haplotype supported “11”, the odd parity
must then have been caused by a sequence error with some fragments supporting
“01”, and other fragments supporting “10”, and vice versa. In rare scenarios, the
fragment could have two sequencing errors when the even/odd parity was correct,
but the fragment supported the complementary haplotype (e.g., the haplotype is
“00”, and the fragment supports “11”). For each fragment with at least two
heterozygous SNPs, Aquila records all neighboring pairs of heterozygous variants.
It then applies a Bayesian model (see below) to evaluate if even or odd parity is
correct, and the clusters with the parity caused by sequencing error are excluded
from further steps. Importantly, the excluded clusters are due to the variants caused
by sequencing errors, not the molecules themselves, which means if these
molecules still contain other pairs of heterozygous variants with consistent
haplotype with the correct parity, they are still used for haplotyping.

Aquila then performs a recursive clustering algorithm in two haplotypes to
aggregate bigger clusters/phase blocks. Two clusters are merged if the number of
molecules in both of them supporting the same haplotype exceeds a threshold. This
threshold is set to 3 by default, which corresponds to a merging error

Table 5 Phasing information and accuracy for each library from Aquila versus Longranger.

Method WμFL (kb) PB
N50 (Mb)

Max.
PB (Mb)

Long errors Mismatch errors Phased
in GiaB

Long
error (%)

Mismatch
error (%)

L1 Aquila 304.3 25.1 104.5 453 1492 1,613,542 0.02 0.16
Longranger 12.7 49.3 1092 2860 1,862,855 0.04 0.19
HapCUT2 58.1 131.6 565 2336 1,748,918 0.02 0.19

L2 Aquila 41.1 0.6 4.9 486 1532 1,697,703 0.02 0.15
Longranger N/A N/A N/A N/A N/A N/A N/A
HapCUT2 N/A N/A N/A N/A N/A N/A N/A

L3 Aquila 214.5 12.7 57.5 499 1481 1,323,959 0.03 0.18
Longranger 12.5 57.7 1124 2679 1,868,719 0.04 0.20
HapCUT2 55.4 121.5 451 2216 1,763,129 0.02 0.18

L4 Aquila 267.4 22.1 104.5 608 2182 1,313,659 0.03 0.23
Longranger 17.2 61.3 1638 5345 1,583,816 0.06 0.37
HapCUT2 N/A N/A N/A N/A N/A N/A N/A

L5 Aquila 151.7 15.8 62.4 719 2388 1,342,247 0.04 0.24
Longranger 13.4 46.8 1682 5171 1,586,187 0.06 0.37
HapCUT2 N/A N/A N/A N/A N/A N/A N/A

L6 Aquila 216.9 10.6 63.6 641 2218 1,147,993 0.04 0.26
Longranger N/A N/A N/A N/A N/A N/A N/A
HapCUT2 N/A N/A N/A N/A N/A N/A N/A

W weighted fragment length of the library, PB N50 phase blocks length N50, Max. PB maximum phase block length, Phased in GiaB number of phased SNPs overlapping with callset v3.3.2, N/A not
applicable because Longranger could not complete runs in wgs mode.
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percentage ≤ ((1−p1)(1−p2))3, for each pair of variants, if each variant matched the
true variant with probability p1 and p2, respectively. Aquila sorts all pairs of clusters
by the positions of reads of all molecules in each cluster. When two locally
successive clusters are merged into one single cluster, the corresponding clusters of
the other haplotype are merged too. The resulting pairs of clusters are sorted again
for the next iteration. The sorting algorithm complexity is ~O(Nvar logNvar), where
Nvar is the total number of heterozygous variants. Aquila performs clustering
recursively until no more clusters can be merged based on the supporting
threshold.

The result of this step are pairs of clusters where each pair corresponds to one
diploid phase block. For each phase block, Aquila then performs haplotype
construction and extension when each heterozygous variant is supported by all the
molecules that cover it. When there are multiple molecules supporting inconsistent
genotypes for a variant, that variant is excluded from further steps. To further
extend the phase blocks, Aquila similarly performs recursive clustering when two
phase blocks have a number of overlapping variants greater than a certain
threshold. The threshold is set to 5 by default so that the merging error due to
sequencing error p is ≤p5. When no more phase blocks can be merged the process
has converged.

In the final step, all the molecules/fragments with at least two heterozygous
variants are assigned to a phase block based on the variants in the final phase block,
and a maximum-likelihood estimation is applied. Given a haplotype H and a
molecule M, we apply the theta function θðHi;MiÞ ¼ 1 if Hi=Mi and 0 otherwise.
Given pi, the probability the allele call at variant i in molecule M is correct, the
likelihood of observing molecule M is

pðMjp;HÞ ¼ ΠθðHi;MiÞpi þ ð1� θðHi;MiÞÞð1� piÞ ð1Þ

Similarly, given the complementary haplotype Hc and molecule M, a theta function
gets the value θðHci;MiÞ ¼ 1 if Hci=Mi and 0 otherwise. The likelihood of
observing molecule M is: pðMjp;HcÞ ¼ ΠθðHci;MiÞð1� piÞ þ ð1� θðHci;MiÞÞpi.
To assign the final phase block to each molecule M, Aquila needs to find the
haplotype j in the final phase blocks that meets

argmaxj p Mjp;Hjð Þ � p Mjp;Hj
c

� �� �
.

Probability model to determine correct joint key (haplotyping module). At
each position, the genome has two complementary keys matching the true two
haplotypes: 00, 11 (even parity) or 01, 10 (odd parity). Each variant matches the
true variant with probability p1 and p2, respectively. The probability that a sequence
key will have the correct parity is pc= p1p2+(1−p1)(1−p2), since both variants
could match the true variants or both variants are called wrong. Let N be the
number of sequences observed that have both variants, and k be number of
sequences with key of even parity, and (N−k) be the number of sequences with key
of odd parity. Using Bayes’ theorem to test P(B|A):

Where A: k out of N molecules have keys with even parity, B: true key is even
parity.

P BjAð Þ ¼ P AjBð ÞPðBÞ
PðAÞ ð2Þ

Aquila will accept even parity is correct if P(B|A) exceeds a significance level (e.g.
>0.99), where:

P(B|A) is the probability of the true key being even parity given k out of N
molecules have keys with even parity.

P(A|B) is the probability of k out of N molecules having keys with even parity

given the true key is even parity, which is P AjBð Þ ¼ N
k

� �
� pkcð1� pcÞN�k .

P(A) is the probability of k out of N molecules have keys with even parity,
which is

P Að Þ ¼ N
k

� �
=

N
1

� �
þ N

2

� �
þ ¼ þ N

k

� �
þ ¼ þ N

N

� �� �
¼ N

k

� �
=2N .

P(B) is the probability of even parity being correct, P(B)= 1.

High-confidence partitioning point profile generation (assembly module).
Large phase blocks (free parameter:-- block_threshold= 200 kb by default) are cut
into multiple small chunks of a specific length (free parameter:
--block_len_use= 100 kb by default) based on a high-confidence partitioning point
profile. This is done to make assembly faster and more tractable, by avoiding too
many reads being given to the assembler. This profile is generated based on three
criteria: 1. Expected reads coverage (C), 2. Expected physical coverage (CF), 3. 100-
mer uniqueness. Read depth and fragment/physical coverage for each position is
calculated after reconstructing all the fragments. The 100-mer uniqueness file34 for
hg38 processed and included in Aquila, was downloaded from http://hgdownload.
soe.ucsc.edu/gbdb/hg38/hoffmanMappability/k100.Unique.Mappability.bb

Each locus/position is defined to be a high-confidence partitioning point if
C(partitioning point) > C(average)*0.8, CF(partitioning point) > CF (average)*0.8, and locus ϵ
100-mer uniqueness. Aquila uses these high-confidence partitioning points in the
profile as reference points to partition reads before assembly (see next section) and
later to reconnect the resulting mini-contigs into contigs (Supplementary Fig. 1).

Local assembly within small diploid chunks and stitching contigs (assembly
and contiguity modules). For each phase block (Supplementary Fig. 1), Aquila
records its original long molecules and their corresponding short reads. Large
phase blocks are cut into small chunks (see previous step) to perform local
assembly with SPAdes35 within each phase block for both haplotypes separately.
(SPAdes is included in the Aquila package.) Those resulting minicontigs from
neighboring small chunks that are bounded by the same partitioning point are
concatenated. 99% of partitioning points met this criterion. For each concatenating
iteration, the previous concatenated contig is used for the next iteration of con-
catenation. At the end of this step, Aquila has generated contigs for both haplo-
types in each original phase block. The algorithm complexity is ~NchunksO
(Tonechunk), where Nchunks is the number of small chunks and Tonechunk is the time
for finishing assembly of one small chunk.

Variation detection for assembled contigs (variation module). To generate
SNPs, small Indel, and SV calls from the de novo assemblies, Aquila uses the contig
file of the haplotype 1 and haplotype 2 of each phase block. Minimap236 and
paftools (https://github.com/lh3/minimap2/tree/master/misc) are integrated and
applied to call variants from each (haploid) contig (“-cx asm5 –cs” is applied for
minimap2, and “-l 1 -L 1 -q 20” is applied to paftools). For contig alignments and
variant discovery, contigs ≤ 1 kb are filtered out and mapping quality ≥ 20 is chosen
to produce variant candidates. Finally, to generate SNPs, if both haplotypes cover
the alternate allele, it is defined as homozygous; if one haplotype covers the
reference allele and the other haplotype covers the alternate allele, it is defined as
heterozygous.

To generate small Indels and SVs, variant candidates from each haplotype are
compared against each other to infer zygosity. To achieve that, heterozygous
variants are defined if one haploid assembly contains alternate allele(s) and the
other haploid assembly contains reference allele(s). Homozygous variants are
defined if both haploid assemblies contain alternate allele(s). For compound indel/
SV, we split them into two heterozygous variants. Check

“--all_regions_flag= 1” for “Aquila_assembly_based_variants_call.py” in
GitHub to perform these analyses.

Phasing inference (variation module). The initial phased SNPs from the Hap-
lotyping module provide the scaffold on which all other heterozygous variants that
are discovered by the Variation module are phased (Supplementary Fig. 6). For
example, consider the case of one assembled SNP in a phase block, “G|A” or “1|0”
(where “A” is the reference allele, and “G” is the alternate allele), and the other
neighboring assembled SNP in the same phase block, “C|T” or “0|1” (where “C” is
the reference allele, and “T” is the alternate allele): these two phased SNPs have the
same genotype and phase in a phase block from the haplotyping module. There-
fore, Aquila places the SV into the haplotype that is in the same phase. This is done
for all heterozygous variants discovered by the Variation module.

Contig quality assessment. We used QUAST37 to generate various assembly
metrics such as N50 and NA50. --extensive-mis-size 1000 was applied as the lower
threshold of the relocation size.

Aquila computation cost. Aquila’s four modules vary in their memory require-
ments and are flexible with respect to computing architecture, allowing jobs to be
run in parallel on a cluster or serially in a large-memory machine. Generally the
run time is considerably longer on the large memory machine. On a cluster, jobs
are parallelized by chromosome or a combination of chromosomes that minimizes
the number of nodes required. Modules 1–3 use 23, and module 4 uses 10 h of
wall clock time, respectively, on a current-generation standard compute cluster
(23 nodes with 128 Gb RAM each, 2 CPUs each, 10-cores per CPU, i.e. 240 cores).
Check tables of computation cost in GitHub for more details.

Aquila output. Aquila outputs an overall contig file “Aquila_contig.fasta”, and
separately for each chromosome “Aquila_Contig_chr*.fasta”. After performing
assembly-based variant calling in the Variation Module, one contig file for each
haplotype is generated: “Aquila_Contig_chr*_hp1.fasta” and “Aquila_-
Contig_chr*_hp2.fasta”. For each contig, the header (for example
“>36_PS39049620:39149620_hp1”) follows the format contig number (“36”), phase
block start coordinate (“PS39049620”), phase block end coordinate (“:39149620”),
and haplotype number (“hp1”). Within the same phase block, the haplotype
number “hp1” and “hp2” are arbitrary for maternal and paternal haplotypes. For
some contigs from large phase blocks, the headers are much longer and complex,
for an instance, “>56432_PS176969599:181582362_hp1_ mer-
ge177969599:178064599_hp1-177869599:177969599_hp1”. “56” denotes contig
number, “176969599” denotes the start coordinate of the final big phase block,
“181582362” denotes the end coordinate of the final big phase block, and “hp1”
denotes the haplotype “1”. “177969599:178064599_hp1” and
“177869599:177969599_hp1” mean that this contig is concatenated from mini-
contigs in small chunk (start coordinate: 177969599, end coordinate: 178064599,
and haplotype: “1”) and small chunk (start coordinate: 177869599, end coordinate:
177969599, and haplotype: “1”).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21395-x

10 NATURE COMMUNICATIONS |         (2021) 12:1077 | https://doi.org/10.1038/s41467-021-21395-x | www.nature.com/naturecommunications

http://hgdownload.soe.ucsc.edu/gbdb/hg38/hoffmanMappability/k100.Unique.Mappability.bb
http://hgdownload.soe.ucsc.edu/gbdb/hg38/hoffmanMappability/k100.Unique.Mappability.bb
https://github.com/lh3/minimap2/tree/master/misc
www.nature.com/naturecommunications


Aquila outputs all raw contigs, even those <1 kb. For downstream analyses
(e.g. to apply Merqury24 or to discover variants), it is necessary to filter out small
contigs.

Combining multiple libraries of linked-reads into a single assembly. Each
library of 10X linked-read sequencing data uses the same set of barcodes, which
makes the combination of multiple libraries at the stage of raw fastq reads difficult.
To combine multiple libraries, Aquila reconstructs the original fragments with their
corresponding reads of each library separately, after which barcodes are not
required any more. All the DNA fragments from multiple libraries, and their
corresponding reads, are then combined to perform haplotyping and all subsequent
steps. The molecule haplotyping algorithm is efficient and makes haplotyping
fragments for multiple libraries fast. The algorithm complexity is linear with the
number of libraries, ~NlibsO(Tonelib), where Nlibs= number of libraries and Tonelib
= time for finishing assembly of one library.

Validation and evaluation methods for variations. To validate the SNP calls
from the assembled contigs, we used the GiaB benchmark call sets for both
NA12878 and NA24385. They included 3,084,732 SNPs (10,210,585 homozygous
and 1,874,147 heterozygous) for NA12878, and 3,076,552 SNPs (1,180,678
homozygous and 1,895,874 heterozygous) for NA24385. The benchmark allowed
us to calculate both the sensitivity and the genotype accuracy of each SNP called
from assemblies. We performed the same analysis on the small indel calls with the
small indel callset 0.6 from GiaB (NA12878 ftp://ftp-trace.ncbi.nlm.nih.gov/giab/
ftp/release/NA12878_HG001/latest/GRCh38/, NA24385 ftp://ftp trace.ncbi.nlm.
nih.gov/giab/ftp/release/AshkenazimTrio/HG002_NA24385_son/latest/ GRCh38/).
For SV validation we applied svviz2 (https://github.com/nspies/svviz2) with PacBio
reads (NA12878: ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/NA12878/
NA12878_PacBio_MtSinai/ and NA24385: ftp://ftp-trace.ncbi.nlm.nih.gov/giab/
ftp/data/AshkenazimTrio/HG002_NA24385_son/PacBio_MtSinai_NIST/).

We classified SVs into three categories: Alu, Tandem Repeats, and Other. We
selected SVs from 250 to 350 bp for classification as Alu elements by alignment to
the AluY consensus sequence, and only SVs that matched at 80% or more were
labeled as Alus. We used tandem repeats finder (trf38) to label repeats/non-repeats
for all non-Alu-SVs, and the repeat percentage was calculated. Sequences that did
not meet the Alu alignment criterion and did not contain a tandem repeat were
labeled “Other”.

For assemblies of different libraries, the different assemblies could identify
different SV candidates. To analyze the overlapping and unique SV calls of three
libraries of the same individual, we also merged each SV from different libraries.
We applied the same merging criteria when we called homozygous/heterozygous
SV from two haplotypes. If the coordinates of two deletions overlapped we defined
them to be the same deletion, and if the breakpoints of two insertions were within
20 bp, we defined them to be same insertion.

Ancestral analysis. For each called SV, we extracted the left and right flanking
500 bp, and aligned them to the Orangutan and Chimpanzee references. For
deletion calls, if the end coordinate of the left flanking sequence was within 2 bp of
the start coordinate of the right flanking sequence, this SV was defined as “Ins_Ref”
(insertion on reference—an actual insertion). If the distance between the end
coordinate of the left flanking sequence and the start coordinate of the right
flanking sequence was the approximate length of the called deletion (0.9*SV_size
−1.1* SV_size), this SV was defined as “Del_Tar” (deletion on target—an actual
deletion). For insertion calls, if the end coordinate of the left flanking sequence was
within 2 bp of the start coordinate of the right flanking sequence, this SV was
defined as “Ins_Tar” (insertion on target—an actual insertion). If the distance
between the end coordinate of the left flanking sequence and the start coordinate of
the right flanking sequence was the approximate length of the called deletion
(0.9*SV_size−1.1* SV_size), this SV was defined as “Del_Ref” (deletion on
reference—an actual deletion).

We performed multiple sequence alignments (for each SV and its
aforementioned flanking regions annotated as “Ins_Ref”, “Del_Tar”, “Ins_Tar” and
“Del_Ref”) with Muscle39.

Comparison of genotype frequencies. We asked whether segregation of the SV
alleles behaves as expected. For each locus, we have two chromosomes each from
the sequenced individuals and one from the reference genome, for a total of 5, and
therefore 18 possible combinations of ancestral and derived alleles among them
(Supplementary Fig. S7a). We cannot observe loci in which all chromosomes are
identical, leaving 16 patterns that contain one to four derived alleles. Population
genetic principles state that derived alleles have systematically lower allele fre-
quencies than ancestral ones. Indeed, for both insertions and deletions, the SV loci
that have one derived allele (and four ancestral ones) are much more common than
those that have two or more (Supplementary Fig. S7b). In 12 of the segregation
patterns, genotypes of NA12878 and NA24385 differ. These can be arranged in six
pairs where the individuals’ genotypes are equivalent, for example, one hetero-
zygote and one ancestral homozygote, with the reference carrying a derived allele
(rightmost green box in Supplementary Fig. S7a). Distinguishing insertions and
deletions, this gives 12 classes (bottom of Fig. 3a), each of which has two SV counts

that should be very similar to each other assuming that the two individuals do not
come from very different populations. Indeed, the correlation between these
equivalence classes is very high (R2= 0.92, Supplementary Fig. S7c, d).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Source data are provided with this paper. The raw sequencing data can be downloaded
from the Sequence Read Archive https://www.ncbi.nlm.nih.gov/bioproject/
PRJNA527321/ and its BioProject accession number is PRJNA52732118. Assemblies and
VCFs can be found at http://mendel.stanford.edu/supplementarydata/zhou_aquila_2021/
. Source Data and Python scripts for Figs. 2 and 3 and Supplementary Fig. 6 are provided
at the same link.

Code availability
Aquila can be found at https://github.com/maiziex/Aquila 40 and https://doi.org/10.5281/
zenodo.4312158. For easy installation, install through Bioconda by “conda install aquila”.
Version 1.0.0 was used to generate the results in this paper.
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