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Learning dominant physical processes with
data-driven balance models
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Throughout the history of science, physics-based modeling has relied on judiciously
approximating observed dynamics as a balance between a few dominant processes. How-
ever, this traditional approach is mathematically cumbersome and only applies in asymptotic
regimes where there is a strict separation of scales in the physics. Here, we automate and
generalize this approach to non-asymptotic regimes by introducing the idea of an equation
space, in which different local balances appear as distinct subspace clusters. Unsupervised
learning can then automatically identify regions where groups of terms may be neglected. We
show that our data-driven balance models successfully delineate dominant balance physics in
a much richer class of systems. In particular, this approach uncovers key mechanistic models
in turbulence, combustion, nonlinear optics, geophysical fluids, and neuroscience.

TDepartment of Mechanical Engineering, University of Washington, Seattle, WA, USA. 2 Oden Institute for Computational & Engineering Sciences, University
of Texas, Austin, TX, USA. 3 Department of Biology, University of Washington, Seattle, WA, USA. 4 Department of Applied Mathematics, University of
Washington, Seattle, WA, USA. Memail: jc244@uw.edu

NATURE COMMUNICATIONS | (2021)12:1016 | https://doi.org/10.1038/s41467-021-21331-z | www.nature.com/naturecommunications 1


http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-21331-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-21331-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-21331-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-21331-z&domain=pdf
http://orcid.org/0000-0002-1972-1233
http://orcid.org/0000-0002-1972-1233
http://orcid.org/0000-0002-1972-1233
http://orcid.org/0000-0002-1972-1233
http://orcid.org/0000-0002-1972-1233
http://orcid.org/0000-0002-4831-3466
http://orcid.org/0000-0002-4831-3466
http://orcid.org/0000-0002-4831-3466
http://orcid.org/0000-0002-4831-3466
http://orcid.org/0000-0002-4831-3466
mailto:jc244@uw.edu
www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

t is well known across the engineering and physical sciences

that persistent behaviors in complex systems are often deter-

mined by the balance of just a few dominant physical pro-
cesses. This heuristic, which we refer to as dominant balance, has
played a pivotal role in our study of systems as diverse as tur-
bulence!, geophysical fluid dynamics?, and fiber optics*. It is
also thought to play a role in the emerging fields of pattern for-
mation®~/, wrinkling®, droplet formation®, and biofilm dynam-
ics!0. These balance relations provide reduced-order mechanistic
models to approximate the full complexity of the system with a
tractable subset of the physics.

The success of dominant balance models is particularly evident
in the field of fluid mechanics. The Navier-Stokes equations
describe behavior across a tremendous range of scales, from water
droplets to supersonic aircraft and hurricanes. Thus, much of our
progress has required simplifying the physics with nondimen-
sional parameters that determine which terms are important for a
specific problem. Perhaps the most well-known dimensionless
quantity, the Reynolds number, embodies the balance between
inertial and viscous forces in a fluid. Other nondimensional
numbers capture the relative importance of inertial and Coriolis
forces (Rossby number), inertia and buoyancy (Froude number),
and thermal diffusion and convection (Rayleigh number), among
dozens of other possible effects. In many situations, the magni-
tude of these coefficients determines the important mechanisms
at work in a flow; conversely, they determine which mechanisms
may be safely neglected. In geophysical flows, balance arguments
bypass the incredible complexity of the ocean and atmosphere to
identify driving mechanisms such as geostrophy, the thermal
wind, Ekman layers, and western boundary currents®>. Lighthill,
one of the most influential fluid dynamicists of the 20th century,
often relied on dominant balance arguments as physical moti-
vation for his mathematical analyses®!!. Beyond fluid mechanics,
asymptotic methods have been crucial in characterizing a diverse
range of physical behavior.

Advanced statistical tools now allow analysis of the increasing
wealth of data from modern experimental and numerical meth-
ods, but to date there is no direct link between these data and the
powerful insights of asymptotic scaling analysis. This presents an
exciting opportunity to leverage data-driven methods, which are
driving changes in a wide range of fields, from control!>!13 to
turbulence modeling!4, forecasting!®, and extreme event predic-
tionl®, Although some studies have addressed the dominant
balance problem by using expert knowledge to design
application-specific clustering algorithms!”7>1 or a post hoc
interpretation of unsupervised clustering in terms of dominant
balance!®, to our knowledge the general challenge of identifying
local dominant balance regimes directly from data remains open.

In this work, we develop a generalized data-driven method to
identify dominant balance regimes in complex physical systems.
Figure 1 demonstrates the method applied to fluid flow over a flat
plate in transition to turbulence. We introduce a geometric per-
spective on dominant balance in which standard machine
learning tools can automatically identify dominant physical
processes. The geometric approach naturally links the analysis to
the underlying equation so that the entire procedure can be easily
interpreted and visualized. This data-driven method is designed
to be applied in tandem with, rather than supplant, classical
asymptotic analysis; the flexibility and generality of this combi-
nation extends balance modeling to a broader range of systems.

Our approach begins with a governing equation, which might
be derived from fundamental physics (e.g., Maxwell’s equations
or the Navier-Stokes equations) but could also result from a
model discovery procedure?0-22. These governing equations are
physical models capable of describing a wide range of phenom-
ena. However, it is well understood that the full complexity of

such models is not always necessary to describe the local behavior
of a system. In many regimes, the dynamics are governed by just a
subset of the terms involved in the global description.

We introduce the idea of an equation space, where each
coordinate is defined by one of the terms in the governing
equation. Each term may be evaluated individually at any point in
space and time, resulting in a vector with each entry corre-
sponding to a term in the governing equation. We define a
dominant balance regime as a region where the evolution equa-
tion is approximately satisfied by a subset of the original terms in
the equation; the remaining terms may be safely neglected. When
a point in the field is approximately in dominant balance, the
equation space representation of the field will have near-zero
entries corresponding to negligible terms. Clearly, the equation
space representation of a field is not unique; a fluid flow might be
represented by velocity, vorticity, or streamfunction, for example.
The interpretation of the dominant physics therefore depends on
the choice of an appropriate governing equation for the
application.

Dominant balance physics thus has a natural geometric
interpretation in equation space, allowing standard machine
learning tools to automatically identify regions where groups of
terms have negligible contributions to the local dynamics. From
this perspective, a dominant balance regime is characterized by a
cluster of points that have significant covariance in directions of
equation space corresponding to active physical processes. The
covariance structure of this cluster is sparse in the sense that there
is weak variation in directions that represent the negligible terms.
This corresponds to the mathematical condition that the gov-
erning equation is approximately satisfied by a subset of its terms
in a local region.

While such dominant balance regimes might be identified by
many possible algorithms, we choose to cluster the data using
Gaussian mixture models (GMMs)2? and then extract a sparse
approximation to the direction of maximum variance for each
cluster using sparse principal components analysis (SPCA)24. We
take the active terms in each cluster to be those that correspond to
nonzero entries in the sparse approximation to the leading
principal component.

In simple cases, this two-step GMM-SPCA procedure may be
equivalent to applying a hard threshold, where a term is con-
sidered active if it exceeds some small value. However, our
approach considers the local, relative importance of terms,
whereas thresholding describes global, absolute importance. This
distinction is important in multiscale systems where the scale of
the dynamics varies significantly throughout the domain.

The data-driven approach to dominant balance analysis gen-
eralizes traditional methods in several critical directions. First, it
does not rely on any explicit assumption of asymptotic scaling.
Second, the clustering method yields pointwise estimates of the
spatiotemporally local dominant balance not afforded by tradi-
tional scaling analysis in complex geometries. Third, while many
dominant balance regimes have been proposed or assumed based
on heuristic or intuitive arguments, this method provides an
objective, reproducible approach to testing these hypotheses.
Finally, the probabilistic Gaussian mixture modeling framework
is fully compatible with the relative nature of dominant balance
analysis, providing natural estimates of uncertainty in the iden-
tified balance (details in Supplementary Information).

Results

We apply the dominant balance identification method to a range
of physics with varying complexity, as shown in Fig. 2: fluid flow
in transition to turbulence; optical pulse propagation in super-
continuum generation; geostrophy in the Gulf of Mexico; a
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Fig. 1 Schematic of the dominant balance identification procedure applied to a turbulent boundary layer. High-resolution direct numerical simulation
results (a, visualized with a turbulent kinetic energy isosurface) are averaged to compute the terms in the Reynolds-averaged Navier-Stokes equations (b).
The equation space representation of the field enables clustering and sparse approximation methods to extract the distinct geometrical structures in the
six-dimensional space corresponding to dominant balance physics (¢). Finally, the entire domain can be segmented according to these interpretable

balance models, identifying distinct physical regimes (d). A curve fit to the wall-normal extent of the post-transition region of the identified inertial sublayer
shows an approximate scaling of # -~ x0-81, consistent with the theoretical prediction of x4/° from boundary layer theory. The 99% free-stream velocity (Us,)

contour is also shown for reference.

Hodgkin-Huxley-type model of a biological neuron; and a
combustion analog for a rotating detonation engine (RDE). In
each case, the results are consistent with classical scaling analyses
or known physical behavior. While the results are well-established
in the case of turbulence and geostrophy, we present the first
objective dominant balance analysis of the supercontinuum
generation, neuronal dynamics, and combustion analog systems.
This demonstrates the ability to extract new physical insights and
clarify misconceptions, for example, in the dominant balance that
results in an emergent optical soliton. Detailed descriptions of the
systems, including analytic scaling, are available in Supplemen-
tary Information.

Boundary layer in transition to turbulence. One of the major
breakthroughs in the study of fluid mechanics in the 20th century
was the development of boundary layer theory?>. In many
practical applications, fluids can be treated as inviscid, but close to
solid boundaries strong velocity gradients lead to significant
viscous forces. Prandtl showed in 1904 that careful scaling ana-
lysis applied to the governing Navier-Stokes equations reveals
distinct regimes where the behavior of the fluid is essentially
determined by a small subset of the full equations. In turn, these

balance relations can be used to derive powerful scaling laws such
as the so-called law of the wall.

For an incompressible flow, the state variables are the velocity
vector u= (u, v, w) and pressure p, with the fluid parameterized
by density p and viscosity v. After performing the Reynolds
decomposition of the variables into mean and fluctuating
components, e.g., u(x,t) = u(x)+u'(x,t), the mean flow is
determined by the Reynolds-averaged Navier-Stokes equations.
For the streamwise mean velocity #, the equation is

_ou _odu _ _,0p e 0 —
uaJrv@—p +vVau y

The terms on the left represent mean flow advection, while those
on the right are the pressure gradient, viscosity, wall-normal
Reynolds stress, and streamwise Reynolds stress, respectively.
We investigate the dominant balance physics of a boundary
layer in transition to turbulence using data from a direct
numerical simulation!. Figure 1 shows the equation space
clusters and associated dominant balance models for the mean
fields. Some sets of points have significantly reduced variance in
certain directions of equation space, a strong signature of the
dominant balance phenomenon. The method identifies regions
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Fig. 2 Dominant balance physics identified across a range of systems. For each case, a visualization of the system is shown on the left, followed by 2D

views of the equation space colored by the identified balance relation, a key

describing the active terms in each model, and the original field colored by the

local balance. From top: a boundary layer in transition to turbulence, pulse propagation in an optical fiber, surface currents in the Gulf of Mexico, a

Hodgkin-Huxley model for an intrinsically bursting neuron, and a simplifie

corresponding to the viscous sublayer, inertial sublayer, and
slightly perturbed free stream. It also identifies a region near the
inlet characterized by a lack of Reynolds stresses, suggesting the
mean profile here should be consistent with the laminar solution,
as well as a transitional region between the laminar inflow region
and fully developed turbulence downstream.

Dominant balance analysis is a starting point for many of the
results of boundary layer theory, for instance, in making
experimentally observable predictions for the profiles and scaling
of wall turbulence?%27. Although we hope that data-driven
balance identification will open new avenues of analysis, we can
also use established results to examine the consistency of the
proposed method. For example, the dominant length scale € in
the inertial sublayer is expected to depend on the streamwise
coordinate x via a power law £~ x%525 Tt is not usually obvious
how to extract a specific value of £ for which this scaling can be
checked. However, as a rough proxy, we may consider the wall-
normal coordinate at which the dominant balance changes from
that of the inertial sublayer to the free stream. Figure 1 shows that
the growth of the inertial sublayer thickness according to this
definition closely agrees with the theoretical value.

Nonlinear optical pulse propagation. Another important
example of dominant balance arises in nonlinear optics, where
the interplay of an intensity-dependent index of refraction with
chromatic dispersion can generate localized optical solitons28.
Figure 3 shows an example of a process known as

4

d combustion model for a rotating detonation engine.

supercontinuum generation, in which nonlinear processes act on
a localized pulse of light to broaden the optical spectrum,
stretching an initial 20-30 nm bandwidth to hundreds of nan-
ometers. This is typically accomplished in microstructured optical
fibers2?. The governing equation in this case is derived from
Maxwell’s wave equation in one dimension through the rotating
wave and slowly varying envelope approximations®’. The original
PDE is linear and second order in a vacuum, but in order to
handle complicated polarization responses in fibers the field is
expanded about the frequency of the original pulse*3!. This
center frequency expansion leads to a Taylor series expansion of
the linear polarization response, and the Raman convolution
integral describing a time-delayed nonlinear response. The
resulting PDE, known as a generalized nonlinear Schrédinger
equation (GNLSE), describes the evolution of the slowly varying
complex envelope u(x,t) of the pulse. When nondimensionalized
with soliton scalings®!, the envelope equation is

ou = ofu /. d\ [,
a—;txk <I—E)u/ﬂor(t)|u(t)| dt

P (2a)
r(t) = ad(t) + bexp(ct) sin(dt)O(t).

(2b)

The various constants (a, a, b, ¢, d) describe the polarization
response and are determined empirically.

Although the spectral domain is often of practical interest for
studies of supercontinuum generation, in the time domain the
pulse exhibits soliton behavior, as shown in Fig. 3. To leading
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Fig. 3 Nonlinear optical pulse propagation. The governing equations are derived from Maxwell's equations in 1D with a nonlinear time-delayed
polarization response. Soliton propagation is understood to be maintained primarily by a balance between low-order dispersion and the cubic Kerr
nonlinearity (delta-function component of the right-hand side integral)3'. Although most of the field is identified with various linear dispersion relations, the
strongest soliton is associated with cubic nonlinearity and dispersive terms through fourth order.

order, the soliton propagation is typically understood to be
maintained by a balance between the second-order dispersion and
the instantaneous part of the nonlinear response, or intensity-
dependent index of refraction. That is, evaluating the delta-
function component of the Raman kernel leads to the cubic Kerr
nonlinearity. If only this cubic nonlinearity and second-order
dispersion are retained, the dynamics reduce to the usual
nonlinear Schrédinger equation

o 7
"ox T or

which admits a number of canonical optical soliton solutions
which are commonly observed in many experimental settings?8.
Indeed, they are known to be persistent localized structures that
emerge from initial conditions in optical fibers and/or mode-
locked lasers.

Figure 3 shows the balance models obtained through the
unsupervised balance identification procedure applied to regions
of the field where the intensity is within 40 dB of the peak. Most
of the domain is associated with various linear dispersion
relations, corresponding to different propagation speeds. Only a
narrow region containing the strongest soliton is identified with
the instantaneous nonlinear response, suggesting that a linear
description is sufficient for much of the domain. The standard
nonlinear Schrédinger equation is never identified, although the
soliton balance relation with cubic nonlinearity and fourth-order
dispersion is consistent with standard truncation of the linear
response at third or fourth order?. Interestingly, the full Raman
time-delay response is never selected as an important term,
although this is understood to be a critical mechanism for the
initial scattering. Presumably, the GMM approach is not sensitive
enough to detect this, possibly due to the clearly invalid
underlying assumption of normally distributed data. To date,
the ad hoc analysis of the various emergent structures have only
qualitatively explained the origins of the observed phenomenon

+ [uffu =0, (3)

as the detailed numerical simulations do not disambiguate the
contributions from the various terms of the high-fidelity model.
The dominant balance identification allows for a quantitative
assessment of the emergent physics, even when solitonic
structures are embedded in a sea of dispersive linear radiation.
Moreover, for the first time, the analysis suggests that the
emergent solitons have a significant impact from fourth-order
dispersion, as only recently discovered in pure-quartic soliton
lasers32.

Geostrophic balance in the Gulf of Mexico. One of the best
examples of a field where balance modeling has been central to
our understanding is geophysical fluid dynamics; a full descrip-
tion of ocean circulation requires not only the Navier-Stokes
equations on a rotating Earth with complicated bathymetry but
must also account for the effects of varying salinity, temperature,
and pressure via a nonlinear equation of state. The ocean
dynamics also couple to the atmosphere, geological processes, and
solar forcing?. To a first approximation, surface currents can be
modeled with the 2D incompressible Navier-Stokes equations on
a rotating sphere

ou . 1
§+(u~V)u—kau=—EVp (4)
where p is the density (in general a function of temperature,
pressure, and salinity), and x and y are defined in the zonal and
meridional directions, respectively. The Coriolis parameter f is
given in terms of the Earth’s angular velocity Q and the latitude ¢
by f = Qsin¢. Note that this equation already includes some
approximations. Compressibility, vertical motions, and both
molecular and turbulent viscosities are all ignored in this model.
Nevertheless, these equations are a standard starting point for
many analyses of large-scale ocean dynamics.

However, scaling analysis suggests that in many cases, further
simplified versions of the governing equations are sufficient to
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Fig. 4 Circulation in the Gulf of Mexico. The flow is visualized with surface vorticity in units of s= (a) and identified balance models are shown for zonal
(b) and meridional () dynamics. Orange regions are identified with the geostrophic balance, while the blue regions are time-varying in response to the
pressure gradient and regions in white are associated with the linearized rotating Navier-Stokes equations.

describe the large-scale motions. Perhaps the most important
model of this type is geostrophic balance, where the dominant
balance is between the Coriolis forces and pressure gradient
forces. Geostrophy is thought to describe most approximately
steady large-scale currents2.

We study the dominant balance of surface currents in the Gulf
of Mexico using high-resolution HYCOM data. Our method
identifies three regimes: geostrophic balance, a balance between
acceleration and pressure gradients, and the linearized rotating
Navier—Stokes equations (Fig. 4). The nonlinear advective term is
not included in any of the models in this case, consistent with the
common use of linearized equations to study wavelike motions.
Geostrophic balance is primarily identified in regions correspond-
ing to slowly varying, large-scale motions: the southern end of the
Gulf Stream and the relatively stable current between Cuba and
the Yucatan Peninsula.

Generalized Hodgkin-Huxley model. The dominant balance
identification method can also be applied to systems that are not
amenable to classic scaling analysis. For example, networks of
biological neurons in an animal’s nervous systems communicate
with each other through the propagation of electrical potentials.
These all-or-nothing events, known as action potentials or spikes,
are large deviations from the membrane electrical potential at
rest. Spikes can travel without significant degradation down the
length of a neuron’s axon, which may be meters long.

The celebrated Hodgkin-Huxley model for spiking neurons
reproduces an action potential through a balance of currents from
multiple ions, each of which moves through the cell’s membrane
across specialized channels and pores at different phases of a
spike33. These nonlinear differential equations were the first
detailed biophysical model to quantitatively describe the dynamic
activity of neurons, and they underpin decades of ongoing
attempts to understand more complex properties of neuronal
electrical excitability. Hodgkin and Huxley originally modeled
three ionic currents: sodium, potassium, and a leak. The voltage
dynamics of a single action potential can then be expressed as a
system of four ordinary differential equations; the balance of
currents in these equations reflects the biophysical mechanisms.
Adding more ionic currents and modeling the interactive balance
of their dynamics produces more complex spiking behavior.

In particular, here we consider a generalized Hodgkin-Huxley
model with ten currents that simulates the intrinsically bursting
pattern of spikes observed in the R15 neuron of the sea slug
Aplysia®*. The R15 neuron has been used to study the
mechanisms underlying intrinsic bursting, where several action
potentials are generated in rapid succession interspersed with
relative quiet with constant inputs. Under space-clamp conditions
where an entire axon cable is considered to be spatially uniform,

the equation describing the time-evolution of membrane voltage
V under applied external input Iy, is

CMV: _le+lstim7 (5)
j

where Cy; is the membrane capacitance and I; are each of the
ionic currents in current per unit area due to the flow of ions into
and out of the cell.

Our dominant balance approach identifies several interpretable
regimes of physics in the generalized Hodgkin-Huxley model that
are largely consistent with known biophysics (Fig. 5). The
addition of a set of calcium-dependent currents underly the
slower oscillations between quiescence and excitable bursting, as
evident in the slower limit cycle. In these clusters, the identified
balance of ions is dominated by terms with strong calcium
dependence (Ic,p, Isy, and Inaca)- In contrast, the voltage during
fast spikes is dominated by voltage-gated ionic currents. The
rising part of each spike is mediated by activation of sodium
channels, and the inward Ig; and Iy, increase voltage. The voltage
peaks as the sodium channels deactivate and delayed rectifier
potassium channels Ix activate. The exit of potassium from the
cell decreases the voltage back toward the resting potential.

RDE analog. Combustion systems are characterized by complex
shifting balances between processes related to gas dynamics and
chemical reactions, which typically unfold on dramatically dif-
ferent time scales. This suggests that the instantaneous local
dynamics may be determined by a small subset of the relevant
physics. For example, the RDE is a novel rocket engine combustor
configuration that exploits the self-steepening properties of
reactive compressible flows in confined, periodic geometries (such
as an annular chamber, as depicted in Fig. 6) to form traveling
detonation waves that persist in time. Globally, the stability of the
traveling wave must therefore be maintained by a careful balance
of energy input (combustion) and output (exhaust); locally, the
balance is time and spatially varying in accordance with the
nonlinear dynamics of the compressible gas.

The nonlinear dynamics of the annular RDE can be
approximated with a surrogate Burgers-Majda model3>3¢. This
detonation analog models the evolution of a quantity u(x, f)
which is understood to be an abstract representation of an
intensive property of the medium such as specific internal energy.
These dynamics are supplemented with an evolution equation for
a combustion progress variable, A(x, t), which describes the
balance of gain depletion and gain recovery

u, + uu, = q(1 — N w(u) + e&(u) (6a)

A= (1= Nao(u) — B(u, u,, s)A. (6b)
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Fig. 5 Model for an intrinsically bursting R15 Aplysia neuron. Dynamics in quiescent periods are characterized by currents related to calcium
concentration (pink and gray), while the spiking dynamics are dominated by the classic sodium-potassium cycle.

Here, g is the energy release associated with the reactive mixture,
w(u) is the submodel for kinetics, & is the submodel for exhaust
(with a loss coefficient €), and B(u, up, s) is the injection and
mixing submodel with parameters for an injection sensitivity
cutoff u, and overall timescale s. Details and further discussion
are given in Supplementary Information. This model has been
shown to qualitatively reproduce the nonlinear dynamics of the
collection of detonation waves present in an RDE, including wave
nucleation, destruction, modulation, and mode-locking.

Figure 6 shows a simulation of the system in the wave-
attached reference frame with two traveling waves. Application
of our dominant balance method identifies four distinct regions
of physics. At the front of each wave is a thin region shaded in
green. This region corresponds to the shock physics of the
classic Burgers’ equation. For this region, w(u) is approxi-
mately negligible, as the kinetics—an exponential function of
u—are slow until u# can activate w(u). Eventually, an
accumulation of u inside the domain is required before the
nonlinear dissipation submodel—a quadratic function of u—
becomes significant. This occurs in the purple shaded region,
where the rate of energy input to the system (which is now
slowed because of the (1 — 1) multiplier with 1 >1>>0) is of
the same order as the dissipation term. Once A=1,
energy input becomes negligible, though dissipation is still
significant; this region is shaded in orange. This region
constitutes the refractory period behind the detonation wave
where u and A approach rest values. The remainder of
the domain, shown in blue, is characterized by the balance of
the nonlinear Burgers dynamics and autocatalytic background
energy input.

Discussion

In one guise or another, dominant balance analysis has played a
major role in the development of our understanding of many
complex systems. In this paper, we have proposed a method of
identifying dominant balance regimes in an unsupervised manner
directly from data. This approach leverages our understanding of
the full physical complexity in the form of governing equations,
but by using simple clustering and sparse approximation meth-
ods, we avoid any a priori assumptions about balance relations.
Nevertheless, the method identifies dominant balance relation-
ships that either recover classical scaling analysis (in the case of
the boundary layer and Gulf of Mexico) or confirm arguments
based on physical intuition (in the case of nonlinear optics, the
Hodgkin-Huxley model, and the combustion analog).

The critical step in this process is the equation space per-
spective. By considering each term in the governing equation to
describe a direction in this space, the dominant balance relations
naturally manifest via restriction to subspaces, dramatically
reducing variance in directions corresponding to negligible terms.
This observation enables the GMM to identify clusters with
variance in different directions, and the SPCA to extract sparse
subspaces by finding directions with significantly nonzero var-
iance. These machine learning tools are applied in a targeted and
clearly motivated context, and the equation space perspective
necessarily ties the output to underlying physics.

This data-driven approach has the same goal as traditional
methods such as scaling analysis, but introduces several new
features. It is a principled, objective approach that does not
require the assumption of asymptotic parameter regimes, while
providing an estimate of the locally active physical processes
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Fig. 6 Model of combustion dynamics in a rotating detonation engine. The dynamics on the thin shock front are determined by the canonical Burgers
balance (green), followed by activation of the gain and loss terms (purple). Following the combustion front, the balance transitions to the refractory
exhaust-dominated period (orange). The rest of the domain is characterized by a combination of the Burgers dynamics with background energy input. All

plots are visualized with the scalar state variable u(xt).

throughout domains with arbitrarily complex geometries. The
proposed method retains the advantages of the classic approach,
but generalizes to a range of disciplines to which traditional
analysis cannot readily be applied.

Dominant balance analysis has historically been a critical tool
for understanding local physical behavior in complex systems.
Nonasymptotic data-driven methods could be used to better
understand the behavior of more exotic dynamics such as non-
Newtonian turbulence3” or to study important transitional
behavior in cases where the asymptotics are already well
known38-40, In the latter case, a clear understanding of the active
mechanisms has proven crucial to successful control
strategies!42,

The existence of dominant balance limiting regimes even in
complex nonlinear spatiotemporal systems is consistent with the
observation that these systems can often be described with sparse
representations in function space?!22, Building on this insight, we
may even be able to identify local dominant balance behavior in
spatiotemporal systems without clear governing equations, such
as neuroscience, epidemiology, ecology, active fluids, and
schooling. For example, the inclusion of spurious terms in the
governing equation can be readily detected in the equation space
representation (see Supplementary Information); in future work,
this feature might be leveraged to identify local balance relations
in the absence of global conservation equations. This approach
thus stands to shed light on more exotic physical processes that
have remained elusive to traditional analysis.

However, as with all applications of machine learning and data
science methods to physical systems, a critical step in application
to any system will be careful validation that the balance identi-
fication procedure reproduces the expected results. The dominant
balance modeling approach described here is designed to build

on, rather than circumvent, physical expertise. The study of
dominant balance regimes has been foundational to our under-
standing of many complex systems; we hope that data-driven
methods can integrate with this legacy to enable even wider
applicability.

Methods

The data-driven approach to dominant balance analysis is founded on the geo-
metric perspective of equation space. This enables simple, widely available machine
learning tools to identify spatiotemporal regions with different active physics.
Details of the methods are given below.

Equation space. A general evolution equation for the field u(x,t) on the domain
(x,t) € D can be written as

K

N(u) = Zfi(u’ux’uxxv s Upy e

i=1

)=0. 7)

We represent the equation in implicit form both because it is the most general form
and because it highlights the fundamental balance of the equation. At each point in
(x, t) in space and time, each of the terms in the governing Eq. (7) may be evaluated
at u(x, t), resulting in a K-dimensional vector f in equation space

£, 1) = [F, (), o) - Fluat), )] ®)
Simulated or measured field data are typically discretized, so the domain is
approximated by N spacetime points: D &~ {(x,t/|j = 1,2, ... ,N}. The field at
each of these points corresponds to a point in equation space.

In many regimes, the dynamics are governed by just a subset of the terms
involved in the global description. We define a dominant balance regime as a
region R C D where the evolution equation is approximately satisfied by a subset
of p <K of the original terms in the equation, the remaining terms may be
neglected. In this case, f(x, t) will have near-zero entries corresponding to negligible
terms when (x,t) € R. Geometrically, the field is approximately restricted to p of
the original K dimensions of the equation space, resulting in a subspace that is
aligned with the active p terms.
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Gaussian mixture models. This geometric perspective on dominant balance
physics leads naturally to segmentation via unsupervised clustering. For example,
the GMM framework learns a probabilistic model by assuming the data are gen-
erated from a mixture of Gaussian distributions with different means and covar-
iances?3. The learned covariances for each cluster can then be interpreted in terms
of active and inactive terms in the evolution equation. The N spacetime points in D
are used to train a mixture model; the algorithm treats points from a dominant
balance regime as if they were generated from a distribution with near-zero var-
iance in the directions corresponding to negligible terms. Data beyond the original
inputs can efficiently be assigned to a balance model using the trained GMM.

Sparse principal components analysis. In practice, there is no reason to expect
the points will even approximate a mixture of Gaussian distributions. We therefore
expect that the number of clusters required to capture all of the relevant physics
will exceed the number of distinct balance regimes, resulting in redundant clusters.
Furthermore, there is some ambiguity in the interpretation of near-zero variance.
We address both of these issues using SPCA24, which uses ¢, regularization to
extract a sparse approximation to the leading principal component. If a cluster
describes a dominant balance regime, it should be well-described by its direction of
maximum variance. Moreover, this leading principal component should have many
near-zero entries. We apply SPCA to the set of points in each GMM cluster and
take the active terms in the cluster to be those which correspond to nonzero entries
in the sparse approximation to the leading principal component.

Dominant balance models. Each GMM cluster now has a sparse approximation to
its leading principal component. Since the axes in equation space correspond
directly to physical processes via the terms in the governing equation, we may
interpret nonzero entries in the SPCA vector as active terms in the corresponding
cluster. Different GMM clusters may have the same sparsity pattern, these are
considered to be part of the same dominant balance regime. Points from all clusters
with the same SPCA sparsity pattern are therefore combined into a single balance
model (Fig. 1c and second column in Fig. 2). Once the equation space repre-
sentation of the spatiotemporal data is fully grouped into balance models, the
original domain can be segmented according to the dominant physical processes in
each local region (Fig. 1d and last column in Fig. 2).

Data availability

The turbulent boundary layer data are openly available from the Johns Hopkins
Turbulence Database®3. Source code for simulating the GNLSE is available at http://www.
scgbook.info. Surface current estimates in the Gulf of Mexico are from the HYCOM +
NCODA global 1/25° reanalysis (Expt. 50.1) available at https://hycom.org. The
detonation analog model was simulated with Clawpack#4. Further information about the
data sets and simulations are included in Supplementary Information.

Code availability
All codes used to perform the analyses are available from the repository http://www.
github.com/dynamicslab/dominant-balance?’.
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