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Early in the COVID-19 pandemic, predictions of international outbreaks were largely based on

imported cases from Wuhan, China, potentially missing imports from other cities. We pro-

vide a method, combining daily COVID-19 prevalence and flight passenger volume, to esti-

mate importations from 18 Chinese cities to 43 international destinations, including 26 in

Africa. Global case importations from China in early January came primarily from Wuhan, but

the inferred source shifted to other cities in mid-February, especially for importations to

African destinations. We estimate that 10.4 (6.2 – 27.1) COVID-19 cases were imported to

these African destinations, which exhibited marked variation in their magnitude and main

sources of importation. We estimate that 90% of imported cases arrived between 17 January

and 7 February, prior to the first case detections. Our results highlight the dynamic role of

source locations, which can help focus surveillance and response efforts.
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In late December 2019, a new severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) was identified, in Wuhan,
Hubei Province, China1. Rigorous measures to curtail the

spread of SARS-CoV-2, the causative virus of the COVID-19
disease, including travel restrictions and school and workplace
closures, have largely controlled the outbreak in mainland
China2–5. However, international exportation of COVID-19 cases
before the outbreak was contained in mainland China ignited
global spread of COVID-196, which has now become a pandemic.
As of 31 August 2020, over 25 million confirmed cases of
COVID-19 have been registered worldwide, with 90,000 detected
in mainland China7.

As the majority of cases in the early phase of the pandemic
were reported in Wuhan, early COVID-19 case definitions and
clinical guidelines required individuals suspected of infection to
have had a recent travel history from Wuhan8. Similarly, models
predicting internationally imported cases from China and local
outbreaks in North America, Europe and Asia have largely relied
on flight passenger numbers from Wuhan6,9. Based on those
models, the risk for outbreaks in several African countries was
estimated to be relatively low9. However, a significant number of
COVID-19 cases were introduced to other travel hubs in China
before travel restrictions were instituted on 23 January 202010,11.
This suggests that there may have been undetected imported
cases globally, and thus, a potentially elevated risk of importation
to African countries.

As of 31 August 2020, >1 million confirmed cases have been
reported in all 54 African locations as defined by the United
Nations7. Coverage of COVID-19 diagnostic and control inter-
ventions in many of those locations is expanding yet still limited,
and many of these nations will continue to struggle to meet
increased demand12–14. Furthermore, in the absence of reliable
estimates of prevalence, it is extremely difficult to assess the
current and future burden of COVID-19 in many of these loca-
tions. In light of these challenges, accurately estimating the timing
and number of initial importations is crucial to inform models of
outbreak dynamics for those locations.

Previous work has combined travel data with incidence esti-
mates to estimate the risk of importation from all Chinese pro-
vinces, excluding Hubei, to all African countries15. That analysis,
however, used historical flight data from January 2019, which is
unlikely to reflect 2020 travel trends, given that the Lunar New
Year occurred comparatively early (in January) in 2020 and
unprecedented travel restrictions were in place starting late Jan-
uary. In addition, the analysis did not take into account the
uncertainty in reporting rates, the delay between infection and
case report, and the time-varying prevalence of infected indivi-
duals in China.

Here, we have developed a modeling framework to synthesize
available travel and COVID-19 prevalence data to explore geo-
graphical and time-varying trends of international case impor-
tation. We first estimated daily flight passenger numbers from 18
major cities in China to 43 international destinations from
December 2019 to February 2020. Importantly, we used current
data on air travel that takes into account increased travel in early
January due to the Lunar New Year holiday and reduced travel in
late January due to travel restrictions. We then estimated daily
COVID-19 prevalence in each Chinese province, taking into
account delays between infection, symptom onset and con-
firmation, and differences in ascertainment rates between Hubei
and other Chinese provinces. Finally, we combined air travel and
prevalence estimates to give the daily number of internationally
imported cases from mainland China to 43 international loca-
tions, including 26 destinations in Africa and globally repre-
sentative locations on every continent. A number of assumptions
are required for our predictions (e.g., relative ascertainment rates

between Hubei and other provinces and the duration that each
infection contributes to prevalence). Therefore, we present results
from a range of scenarios capturing uncertainty in our key
assumptions, with point estimates from our selected best-estimate
scenario. Our findings reveal a shift in the importance of Wuhan
versus other cities as a source for COVID-19 importations from
China over the course of the early period of the pandemic, and a
generally higher importance of non-Wuhan cities for case
importations to African locations. Further, our model estimates
the time window in which early local outbreaks may have been
initiated from China and signals heterogeneities in the extent and
the exact source of introduced cases in the African locations.

Results
Estimating the number of airplane passengers from China to
global destinations. We estimated the daily air-travel volume,
defined as the daily number of passengers on direct and indirect
air-travel routes, from 18 different Chinese cities to 43 interna-
tional destinations. We estimated this volume within our focal
time period, between 1 December 2019, (the approximate date of
initiation of the pandemic in China16), and 29 February 2020, as
the most recent date for which we have flight information
(Supplementary Fig. 1). The 18 Chinese origin cities have been
previously identified as high-risk cities for importation of
COVID-19 from Wuhan11. Our 43 destinations included (1) ten
high-surveillance locations that have high-surveillance capacity
index (discussed previously6) and high air-travel connectivity to
Wuhan, (2) 26 destinations in Africa (African locations) with
high air-travel connectivity to the 18 Chinese origin cities and
finally (3) seven additional locations that together with a subset of
(1) and (2) yield 16 globally representative locations, which
receive worldwide the highest air-travel volume from China and
also represent every inhabited continent. Air-travel volume on
each day of our focal period for each origin-destination pair was
calculated using monthly air-travel volume (number of flight
passengers), which we apportioned into days using daily flight
departures (number of departing flights, see Methods).

The resulting trends in daily air-travel volume reflect the
timing of the Lunar New Year holiday in 2020, which occurred
earlier than in recent years, and also the impact of widespread
travel restrictions in late January 2020 (Supplementary Fig. 1).
Air-travel volume increased in January during the Chunyun
period—the 40-day period surrounding Lunar New Year in which
people typically reunite with their families that began on 10
January 2020—relative to the same time period in 2019
(Supplementary Fig. 1). The sharp decline in air-travel volume
after 23 January 2020 is a result of the travel restrictions and flight
cancellations that occurred starting late January (Supplementary
Fig. 1).

Estimating daily prevalence of COVID-19 in 18 Chinese cities.
Next, we estimated a daily prevalence indicator for all Chinese
cities considered in our analysis. We defined this prevalence
indicator as a measure that is linearly proportional to the actual
(unobserved) prevalence of infected cases that are able to travel.
See Methods for a detailed description. In brief, we first estimated
the province-level daily incidence of onsets for detected infections
by shifting confirmed case count curves using the delay between
infection and symptoms (incubation period) and the delay in
reporting (Fig. 1A and Supplementary Fig. 2). We then adjusted
our estimates of incidence in Hubei to account for lower ascer-
tainment of cases in Hubei relative to other provinces in China, in
order to yield a measure of relative incidence in each province.
Next, we converted our estimates of relative incidence to esti-
mates of relative prevalent cases, by assuming that each newly
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infected case contributed to province-level prevalence for a
number of days before they were no longer included in the travel-
relevant pool of infected individuals (e.g., due to isolation upon
symptom onset) (Fig. 1B). The prevalence indicator represents a
relative measure of prevalence as it reflects true prevalent cases
scaled to account for greater under-ascertainment in Hubei
compared to that of other provinces. Finally, we allocated those
province-level prevalence indicators to each city included in our
analysis and standardized by population size to compute the
corresponding city-level prevalence indicators (Supplementary
Fig. 3).

In our best-estimate scenario (Scenario 1), we assumed that (1)
each new infected case may travel for up to 5 days before showing
symptoms (i.e., the median incubation period17), that (2) case
ascertainment is 5.1 times as high outside of Hubei as it is in
Hubei (see Methods), and that (3) per-province prevalence is
allocated to cities proportional to their share of confirmed cases
in the province by the end of the focal period. Under these
assumptions, we found that the prevalence indicator peaked in all
Chinese cities between 19 and 26 January 2020 (Fig. 1C, D and
Supplementary Fig. 3). Other than Wuhan, Chinese cities with
the highest average prevalence indicators were Nanchang, Jiaxing,
and Chongqing, whereas Nanjing, Dongguan, and Tianjin had
the lowest.

To account for the considerable uncertainty in the true time-
varying SARS-CoV-2 infection prevalence in Wuhan and
elsewhere in China during the initial outbreak, we varied each

of the three key assumptions to assess their impact on our
subsequent analyses of case importations, leading to eight
additional scenarios (Supplementary Table 1 and Supplementary
Fig. 3). A key alternative scenario used estimated incidence curves
from a previous analysis that accounted for time-varying
ascertainment rates in China due to changing case definitions
(Scenario 2)18. In contrast to our best-estimate scenario, which
shifts and inflates only observed case counts, this alternative
estimate suggested substantial undocumented incidence through-
out December and early January (Supplementary Fig. 3). Note
that the prevalence indicators from Scenario 2 provide a measure
of absolute rather than relative prevalence, in contrast to all other
scenarios. Under Scenario 2, prevalence indicators peaked on 20
January 2020 in all locations. For a detailed description of the
other model scenarios see Methods section.

Predicting exported case counts to African countries. We
combined our estimates of the daily COVID-19 prevalence
indicator in China with the daily air-travel volume between China
and a given set of destinations to obtain an indicator that is
linearly proportional to the daily flight volume of infected tra-
velers for each origin-destination pair, which we term the “force
of importation”. To translate the force of importation into the
expected actual number of imported cases to a destination, we
extended on the approach outlined by Salazar et al.9 and fit a
Poisson regression model to the cumulative number of imported
and detected cases (with identified source location Wuhan) in our
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China (excluding Wuhan)D

Confirmed cases

Infections
Onsets

7 days
5 days

Prevalence of pre-symptomatic
individuals
Infection incidence

Fig. 1 Number of reported COVID-19 cases and computed prevalence indicators. A Estimation of symptom onsets (blue) and infections (orange) from
observed confirmed case counts (gray bars) using Guangdong province as an example. Horizontal axis shows time given as calendar days. Confirmed
cases were shifted back by 7 days (the mean confirmation delay) to estimate symptom onset incidence, then further by 5 days (the median incubation
period) to estimate infection incidence of those cases. B Conversion of province-level infection incidence to city-level pre-symptomatic prevalence in
Guangzhou (capital city of Guangdong province). Each infected individual (orange) was assumed to contribute towards pre-symptomatic prevalence
(green) for 5 days (the median incubation period). Incidence and prevalence are shown per-capita and before adjusting for within-China differences in
ascertainment rates. C and D Prevalence indicator (green area) for Wuhan and averaged for non-Wuhan cities (note ~300-fold smaller values on the y-axis
in D). For curves of this indicator, only relative comparisons are meaningful, and are thus scaled relative to the maximum value in Wuhan. Vertical dashed
line shows 23 January 2020, the date of lockdown in Wuhan.
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high-surveillance locations from 1 December 2019 to 23 January
2020, when the lockdown was instituted in the city. For this we
adjusted each destination country’s detected case count by an
estimate of underreporting6 and focused only on imported cases
from Wuhan, as we assume that a majority of imported cases
during this period of the pandemic originated from Wuhan. We
use the Poisson model fit for high-surveillance locations to obtain
an estimate of the factor by which our estimated forces of
importation must be scaled to predict the number of imported
cases. Here, uncertainty around the nine scenarios for the pre-
valence indicator described in section “Estimating daily pre-
valence of COVID-19 in 18 Chinese cities” (model uncertainty)
far exceeded uncertainty from fitting the Poisson regression
(statistical uncertainty), so we chose to only present variation in
our results across the nine scenarios. We bound our point esti-
mates (i.e., mean predictions from Scenario 1) with the range of
mean predictions across all nine model scenarios.

Our model estimates in our African destinations a total of 10.4
(6.2–27.1) imported COVID-19 cases, with all imports predicted
on days prior to the first case detections in each location. The
highest numbers of imports are expected for South Africa (3.0;
1.2–5.4) and Algeria (1.4; 0.2–1.7), followed by Kenya (1.2;
0.6–2.4), Zambia (1.1; 0.2–1.7), and Egypt (1.0; 0.6–5.1). Among
the 26 African locations considered, we estimate the lowest
imported case counts in Equatorial Guinea and Mauritania (both
0.02; 0–0.1) (Fig. 2). Figure 3A depicts the weekly predicted
number of imported cases in each of the 26 African countries
over time, highlighting the top five countries for which we predict
the highest force of importation. All countries exhibit similar

trajectories of predicted imported cases over the focal time period,
with the exceptions of Algeria and Zambia, for which our
estimates suggest a slightly delayed initial increase in cases
relative to the other top-ranking locations. 90% of all imported
cases were estimated to be imported between 17 January and 7
February. To contextualize the predicted numbers for African
locations, we compared them to the other global locations
included in our analysis. We find that the African countries with
the highest predictions (South Africa, Algeria, Kenya) are
expected to have importation numbers comparable to our
locations from South America (Brazil, Argentina, Chile). For
detailed predictions for all countries of this analysis see
Supplementary Fig. 4.

Contribution of different locations in China to globally
imported cases. We estimated the relative importance of Wuhan
versus other cities as a source for international case importations
from China and explored how these relative roles changed over
time. To do so, we computed the daily forces of importation (as
described above in section “Predicting exported case counts to
African countries”) to our globally representative locations with
two different sources: (1) Wuhan, and (2) the 17 other Chinese
cities. We found that early on in the pandemic, the majority of
imported cases originated in Wuhan (100%; 70%–100% in the
week of 1 January 2020), but this proportion then changed
rapidly. The outlying lowest estimate of 70% corresponds to
Scenario 2, which predicts substantial prevalence in all provinces
in December and early January and higher prevalence in non-
Wuhan cities relative to Wuhan compared to the other scenarios.
In early January and late February, the proportion of globally
imported cases sourced in Wuhan begins to change non-mono-
tonically, dropping precipitously to 0% in the week of 19 Feb-
ruary (across scenarios, Supplementary Fig. 5). This indicates a
dramatic change in the contribution to imported cases from
Wuhan relative to the rest of China. Note that before the con-
tribution of Wuhan is drastically reduced due to the lockdown,
one can observe a slight increase in the proportion of cases
attributed to Wuhan in late January and early February that can
be explained by the rapidly increasing prevalence during a second
peak of disease activity (Supplementary Fig. 2) during this period.

The contribution of different source populations is expected to
further vary across destinations. For the African destinations in
our analysis, Wuhan contributed a majority of importations early
in the epidemic (100%; 42%–100% in the week of 1 January 2020,
where 42% corresponds to Scenario 2), subsequently declining to
0% (across scenarios) in mid-February (the week of 19 February).
Figure 3C further illustrates the variability in the 18 Chinese
cities’ contribution to predicted imports over the study period
across the 26 African destinations. In addition to Wuhan, Beijing,
Guangzhou, and Shanghai consistently rank among the top cities
in terms of their relative contribution to imported cases to each of
the African countries included in our analysis.

Sensitivity analyses of estimated prevalence indicators. Scenario
2 demonstrates how our estimates change under very different
assumed epidemic dynamics, as it predicts substantial case pre-
valence in all locations as early as December 2019 (Fig. 3B).
Scenario 2 predicts that 6.2 cases were exported to the 26 African
locations during the focal period, which is the lowest of all of the
tested scenarios. Notably, only 2.0 of these were predicted to have
come from Wuhan as a result of higher predicted prevalence in
non-Wuhan cities relative to Wuhan (Supplementary Fig. 3).
Again, all of these importations were predicted to have occurred
prior to the first identification of cases in these countries. The top
five African countries with the most imported cases were South

0.5

2.5

Number of imported cases

Fig. 2 Predicted case importations for African locations. Map of 24
African locations used in the analysis (two locations not shown are the
island nations Seychelles and Mauritius, but see Supplementary Table 2 for
predictions for all locations) with countries shaded by the magnitude of
predicted imported cases from 18 Chinese cities during our focal time
period (1 December 2019 to 29 February 2020) under our best-estimate
scenario (Scenario 1). Light yellow indicates small values, dark blue color
indicates high values. Countries shaded in white are locations for which we
do not have data for prediction.
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Africa (1.2), Egypt (1.2), Morocco (0.6), Kenya (0.6) and Ethiopia
(0.4). The lowest number of imported cases were again predicted
for Equatorial Guinea and Mauritania. Zambia and Algeria, which
were within the top five in Scenario 1, were predicted to have the

7th and 8th highest number of imports (each with 0.2 importa-
tions) according to Scenario 2. These changes in ranking highlight
the importance of taking into account the combined effects of
flight and prevalence trends when assessing importation risk.

Fig. 3 Predicted COVID-19 importations to African locations over time and by source city. A Daily prevalence indicator (dotted line) summed across all
18 origin Chinese cities (including Wuhan), from our best-estimate scenario, and weekly flight volume from those cities to African destination countries
(dashed line) over time. Prevalence peaks on 19 January 2020, while total flight volume peaks on 29 January 2020. B Colored and gray curves show weekly
predicted number of cases for different destinations in Africa under Scenario 1. The first case on the African continent was reported in Egypt, on 15
February 20207. Our nine model scenarios predict very consistent time windows in which 90% of imported cases are predicted to have arrived, barring
Scenario 2 (shown as solid horizontal bars; bottom panel). C Rank of 18 Chinese cities by fraction of all predicted imported COVID-19 cases in each of the
26 countries in Africa included in our analysis, under Scenario 1. Countries are ranked from left to right by the total number of imported cases from 1
December 2019 to 29 February 2020. Origin cities are ranked from the bottom to top of each column by maximum estimated prevalence.
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Together wih Scenario 2, our eight prevalence scenarios tested
the robustness of our estimates to uncertainty in three key
parameters: (1) ascertainment rates in Hubei relative to non-
Hubei provinces; (2) the time that an individual contributed
towards the prevalence indicator post-infection; (3) the allocation
of province-level case reports to the cities considered here. For the
best-estimate scenario (Scenario 1), we assumed that case under-
ascertainment was five times as high in Hubei than outside of
Hubei. Varying the ascertainment rate ratio for Hubei to non-
Hubei by one order of magnitude in either direction (0.5:1 and
50:1) in Scenarios 6 and 7 changed our estimates for the absolute
number of imported cases but did not change our inferred
temporal patterns (Supplementary Table 1). When we assumed
that under-ascertainment was 50 times greater in Hubei than
outside of Hubei (lower proportion of true cases ascertained in
Hubei), the absolute number of predicted importations from
cities outside of Hubei dropped to 0.2 cases. Conversely, when
assuming that under-ascertainment was twice as high outside of
Hubei relative to Hubei, the absolute number of predicted
imports from cities outside of Hubei increased substantially to
18.6 cases. These changes are tied to our calibration of the force of
importation: if true prevalence were higher in Hubei but the
observed number of imports in high-surveillance locations is
unchanged, then the relatively lower prevalence in non-Hubei
locations results in fewer exported cases.

In contrast, varying our assumption for the duration that an
infected individual remained infected and eligible for interna-
tional travel from 5 days to 2 and 7 days (Scenarios 3 and 4) did
not meaningfully change our results (Supplementary Table 2).
Although a shorter prevalence duration decreases the magnitude
of the prevalence indicator, it has the same impact across Wuhan
and non-Wuhan cities and is compensated by the calibration
procedure described in section “Predicting exported case counts
to African countries”, so has negligible impact on the results. We
also accounted for the observation that a substantial fraction of
cases reported outside of Wuhan originated from Hubei and were
thus only eligible to travel from a non-Wuhan city for the latter
stage of their infection, again noting minimal impact on our
results (Scenario 5). Next, rather than assuming that only cases
reported in a city were able to travel internationally from that
city’s airport, we instead either apportioned all reported cases in a
province to each city, or to cities equal to their fractional share of
that province’s population (Scenario 8 and 9, see Methods). These
scenarios did change the relative contribution of different Chinese
cities to total imports due to changes in per-capita prevalence,
though the top contributing cities remained largely unchanged:
Under Scenario 1, the top five contributing cities to importations
in Africa were Wuhan, Guangzhou, Beijing, Shanghai and Jiaxing
respectively. Under Scenario 8, these were Wuhan, Jiaxing,
Guangzhou, Beijing and Chengdu, and under Scenario 9 these
were Wuhan, Beijing, Guangzhou, Shanghai and Chengdu.
However, overall trends in the number of imported cases over
time in the African destination countries remained relatively
unchanged for Scenarios 8 and 9, as did the total number of
imports (11.7 and 12.5, respectively).

Discussion
In this study we aimed to make predictions about internationally
imported COVID-19 cases from all of China. Our analysis differs
from that of previous studies in three fundamental ways: (1)
instead of estimating risk of importation15, our model predicted
actual number of imported cases, and importantly did so for
countries on the African continent; (2) instead of accounting only
for travelers from Wuhan9, we accounted for travelers from all
major Chinese airports as a potential source population; and (3)

we incorporated current air-travel data from December 2019 to
February 2020 and back-calculated prevalence from reported
COVID-19 cases in China.

These methods in combination enabled us to predict daily
time-varying case importations over the first three months of the
pandemic. Our model predicted that until 29 February 2020 10.4
(range: 6.2–27.1) COVID-19 cases from all of China could have
been imported to the 26 African destinations included here.
Importantly, our model provided a relatively precise time frame
for those importations. It predicted that the majority (90%) of
case importations in these locations occurred between 17 January
and 7 February. All predicted cases would have been undetected:
the first African country to confirm a COVID-19 case was Egypt,
which confirmed its first case 14 February 202019, followed by
Algeria and Nigeria, with their first confirmed cases on 25 Feb-
ruary and 28 February 2020, respectively20. If our predictions are
accurate, then undetected imported cases could have already
occurred a month before the first COVID-19 cases were con-
firmed, updating our understanding of the possible timing of
when local transmission may have started in those locations. In
the absence of strong surveillance systems, estimates of the cur-
rent and future prevalence rely on dynamic transmission models,
with a key unknown being the seeding time of the outbreak21,22.
Our results provide such estimates of when index cases may have
arrived in different African countries.

We further observed pronounced differences in the number of
expected cases imported to the different African destinations. The
highest numbers are expected for South Africa, Algeria, Kenya,
Zambia, and Egypt, the lowest numbers for Mauritania and
Equatorial Guinea. These heterogeneities in predicted imports
and the relatively early lockdown of borders in several African
countries may at least in part explain early differences in the scale
of outbreaks in these countries, with some experiencing outbreaks
of considerable magnitude and others seemingly spared. More-
over, variation across African countries in the timing of the peaks
of predicted importations (Fig. 3B) may be due to differences in
the dynamics of air-travel volume, or due to differences in the
proportion of passengers flying from certain Chinese cities.

On 31 March 2020, a month after the end of our prediction
period, South Africa (1326 cases), Egypt (609 cases), and Algeria
(584 cases) were the countries in Africa with the most reported
cumulative cases and likely location transmission23, while Equa-
torial Guinea (14 cases) and Mauritania (5 cases) reported rela-
tively few cases24, with unlikely local transmission23. Thus, our
predictions of the top five locations with the most expected
importations generally align with the observed case counts
one month later. Notably, however, two of the top five locations—
Kenya and Zambia—had relatively low case counts on 31 March
202023. We expect that for different locations and as time passes,
our predictions may diverge due to a number of factors beyond
importations from China that likely had a significant influence on
the observed epidemics in those locations, including sourcing
from newly emerging epicenters at the time (for example Europe),
differences in response measures, reporting and testing capacity
across countries, as well as travel between African countries.

A strength of our method framework is that it rests on a
relatively small number of assumptions. For example, it does not
rely on estimates of actual case prevalence in China; instead, case
counts in high-surveillance locations are used to relate relative
force of importation to absolute numbers of cases. It does,
however, necessitate assumptions about relative ascertainment
rates in Hubei compared to other provinces. The calculation for
our main scenario assumes similar death ascertainment rates,
infection fatality rates and proportions of asymptomatics between
Hubei and outside Hubei. Various factors are likely to violate
these assumptions, including differential strain on health care and

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-20219-8

6 NATURE COMMUNICATIONS |          (2021) 12:311 | https://doi.org/10.1038/s41467-020-20219-8 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


surveillance systems and different subpopulations being affected
by disease spread (for example, local spread versus importation
by travelers). Thus, to reflect the uncertainty in estimates of this
ratio, our analysis included additional scenarios that assumed a
time-varying ratio, as well as a tenfold lower or tenfold higher
ratio (Scenario 2, 6, and 7 respectively, see Supplementary
Table 1). Similarly, we included scenarios to express uncertainty
in how many days infected cases may travel and are detectable
(Scenario 3 and 4, Supplementary Table 1), and in how detected
cases affect prevalence at airport hubs (Scenario 8 and 9, Sup-
plementary Table 1).

Additionally, our method assumed a fixed value of reporting
delays over time, although delays were in fact estimated to
decrease from late January onwards5. If reporting delays indeed
declined over time, such that cases reported from late January5

onwards actually became incident cases at a later date than that
which we inferred, then this could influence the tail end of the
trajectory of predicted imported cases. However, this is unlikely
to influence the initial trends in predicted imported cases, the
timing of the first introduced cases, and the overall magnitude of
imported cases. Finally, our estimates using daily flight departure
data may only approximately reflect the number of passengers
flying each day, as more departing flights might not directly
correspond to increased flight passenger numbers and vice versa.
This approximation will be increasingly violated in times when
demand–and thus airplane capacity–drastically changes, as was
probably the case in early 2020. Second, sparsity of recorded flight
departures required us to smooth over particularly sparse time
periods. However, we expect that these assumptions will have a
relatively muted impact on the timing of predicted importations.

It is important to note that the magnitude of total predicted
imports to the African locations under our best-guess scenario
was relatively modest, suggesting limited importations from
China, which is a direct consequence of the scale of the case data
on which we train our model. Specifically, due to low reported
case counts in some of our included validation countries, our
estimated forces of importation from Wuhan align well with
imported cases in these locations, and thus do not require a
substantial adjustment. As such, our estimates of the forces of
importation for all other cities to our African locations must only
be marginally inflated to predict imported case counts in these
destinations. Furthermore, while we expect the presence of
asymptomatics among airline passengers to result in increased
predicted imports, by amplifying our estimated forces of impor-
tation to these locations by an additional factor, we do not expect
this to influence the observed shape in the imported case curves
over time, if the proportion of asymptomatics among cases is
constant over time. Finally, our scenarios capture different epi-
demic trajectories, in terms of the initial emergence and rate of
increase in prevalence, and thus reflect a wide range of possible
dynamics of imported cases in the African destination countries.
These scenarios all indicate an early timing of initial imported
cases, where the scenario assuming a more measured and early
increase in prevalence (Scenario 2) places the introduction of the
earliest case far before the remaining scenarios.

Recent work has estimated that, globally, 2.8 cases imported
from Wuhan may have remained undetected for every 1 detected
case due to limited surveillance capacity6. Our predictions also
highlight potential underestimation; when considering all of
China as a source of importation–and assuming equivalent sen-
sitivity for detecting cases from Wuhan and other Chinese cities
—67% (65%–82%) of all cases imported globally may have been
undetected (see Methods). Wuhan was identified early as the
major source population based on its high COVID-19 prevalence.
Here, we show the importance of spill-over to locations in the rest

of mainland China, and that possible source populations strongly
depend on actual travel volume. Some locations may have rela-
tively low SARS-CoV-2 prevalence, but greater connectivity to a
given destination country would still result in a high overall
number of imported infections. Our model predicts for the early
pandemic that between 70%-100% of globally imported cases
came from Wuhan in the week of 1 January 2020, with the rest
originating from other Chinese cities. We find this proportion
dropped to 0% in the week of 19 February. This sheds light on
how profoundly source populations can change over time under
the effect of lockdowns as well as a rapidly spreading virus. In
addition, the relative importance of a source population also
depends on the destination of imported cases. We found that for
the African locations the share of cases exported from Wuhan in
the week of 1 January 2020 was slightly lower than that of all
destinations, ranging from 42%–100% in the week of 1 January
2020, but similarly declining to 0% in mid-February.

Our findings highlight the importance of a more nuanced
understanding of likely sources of case importation for predictive
modeling. In sum, this framework allows for routinely quantify-
ing recently imported, and potentially overlooked cases and
assessing the principal sources of importation to prioritize in
surveillance efforts among travelers, particularly during the later
stages of this pandemic when travel restrictions are eased. Going
forward, countries wishing to identify likely sources of case
importations may benefit from combining ongoing travel volume
and prevalence data as we have done here, allowing for more
nuanced policy decisions than those based on global trends. Our
approach further elucidates the potential time window for the
first imported cases, which may or may not have been successful
in seeding local transmission. This approach may help to initialize
models aimed at anticipating future trends in COVID-19 trans-
mission in diverse locations. Importantly, these methods can be
adjusted to incorporate prevalence estimates and flight data from
any number of origin and destination locations with minimal
data requirements: reported case data in the source and calibra-
tion locations, daily flight departure data and monthly flight
passenger totals. The tools we propose here are particularly useful
for locations facing significant surveillance constraints and
potential resource limitations in managing ongoing response
efforts, and thereby work to address enduring gaps in infectious
disease monitoring and preparedness.

Methods
Estimating number of airplane passengers from 18 Chinese cities to inter-
national destinations. We used data on the number of passengers and flight
departures from 1 December 2019 to 29 February 2020 from 18 Chinese origin
cities to 43 international destinations, as described below. Historical air-travel
volume data are likely not representative of the pandemic time period for two
reasons: (1) Lunar New Year was earlier than in preceding years (25 January 2020),
and (2) large-scale travel bans and flight cancellations took place in late
January 2020.

We defined three main categories of locations as international destinations in
our analyses (1) ten international locations with high-surveillance capacity and
high air-travel connectivity to Wuhan used for model calibration; (2) 26 African
countries as destinations used for model prediction; and (3) 16 locations that
represent the top three destinations (two for Oceania and North America) from
each inhabited continent (Oceania, Europe, Asia, Africa, North America, South
America) in terms of travel volume from China during our focal time period.
Those 16 locations include locations from (1) and (2) and an additional seven
locations. We used these locations to estimate the ratio of cases imported
internationally from other Chinese origin cities compared to cases imported
internationally from Wuhan. For all flight data, in addition to Wuhan, we included
as origin locations (N0= 17) the 17 Chinese cities that were previously identified by
Lai et al.11 as high-risk cities for importation of COVID-19 from Wuhan and,
therefore, likely sources of imported cases internationally: Beijing, Shanghai,
Guangzhou, Zhengzhou, Tianjin, Hangzhou, Jiaxing, Changsha, Nanjing,
Nanchang, Shenzhen, Chongqing, Chengdu, Hefei, Fuzhou, Xi’an, and
Donngguan.
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For destinations outside of China, we considered a selection of locations with
both high air-travel connectivity to Wuhan and high-surveillance capacity
(henceforth called high-surveillance locations) for model validation. We assessed
surveillance capacity using the Global Health Security (GHS) Index, in particular
its components assessing early detection and reporting epidemics of potential
international concern, published in 20196. We thus selected locations with the
highest connectivity to Wuhan as estimated by Lai et al.11, and within the top 5%
percentile of the GHS index rank. We additionally included Singapore as it has
demonstrated a strong capacity to identify, trace and document COVID-19
cases9,25, despite having a relatively low GHS index.

In total, we used ND= 43 total destination locations: (1) the ten high-
surveillance locations of Singapore, US, Australia, Canada, South Korea, UK,
Netherlands, Sweden, Germany, and Spain for model validation; (2) 26 African
countries for prediction, representing the 26 top destination cities in Africa in
terms of air-travel volume from 18 high-risk cities in mainland China (Nigeria,
Ghana, Algeria, Côte D’Ivoire, Ethiopia, Egypt, Guinea, Morocco, Tanzania,
Senegal, South Africa, Uganda, DRC, Zimbabwe, Sudan, Angola, Gabon, Zambia,
Mozambique, Mauritania, Mauritius, Kenya, Seychelles, Madagascar, Tunisia,
Equatorial Guinea); and (3) 16 global main destinations from China (New Zealand,
Australia, United Kingdom, Germany, Russia, Japan, Thailand, South Korea,
United States, Canada, Brazil, Argentina, Chile, Egypt, Ethiopia, South Africa).

We used data from the International Air Transport Association (IATA)26 on
the monthly number of confirmed passengers on flights (direct and indirect) for
each of the N origin-destination pairs, henceforth referred to as air-travel volume,
from December 2019 to February 2020. In addition to air-travel volume, we used
data from Cirium27 on the number of daily departed (and landed) direct passenger
flights for each of the N origin-destination pairs, henceforth referred to as “flight
departures”, for the period December 2019 to February 2020.

We combined the Cirium data on daily flight departures with the IATA
monthly air-travel volume data to estimate daily air-travel volume out of cities in
China to our destinations of interest from 1 December 2019 to 29 February 2020.
For all origins except for Wuhan, we distributed the monthly air-travel volume in
month m, Vi, j, m, into daily air-travel volume for each day d, using the proportion
of daily flight departures out of the total number of daily flights in the
corresponding month.

v0d; i; j ¼ Vi; j;m

PND
j¼1 fd; i; j;mPND

j¼1

Pdmax
d fd; i; j;m

where v′d,i,j is the imputed air-travel volume from origin i to destination j on day d,
fd,i,j,m is the number of landed flight departures on day d from origin i to
destination j in month m, ND is the number of destination locations. When
distributing the monthly air-travel volume, we used the proportion of daily flight
departures for each origin i summed over all destinations j instead of calculating
this for each origin-destination connection due to sparse data limitations.

The same approach could not be applied for Wuhan due to sparsity in the
number of direct landed flight departures from Wuhan in the Cirium data after 23
January 2020. For Wuhan, to distribute monthly air-travel volume, Vi,j,m, into daily
air-travel volume for each day, we instead fit a smoothing spline to the daily
number of landed flight departures and used its predictions as inputs in the above
equation. We used the forward-chaining time-series cross-validation procedure,
applying an accumulative rolling training window of 7 days, in order to estimate
the smoothing parameter for the spline28,29.

Since residents of the cities Shenzhen and Dongguan share Shenzhen Bao’an
International Airport as the closest international airport, we divided the air-travel
volume equally between these two cities. Similarly, the air-travel volume for
Hangzhou Xiaoshan International Airport airport is divided equally for the cities
Jiaxing and Hangzhou. Importantly, Cirium data only documents the daily number
of direct flights, but we use this data source to distribute a total 3-month volume
into daily volume. We therefore make the assumption that the variation over time
in the number of direct flights reflects the variation in the number of direct and
indirect flights.

Estimating daily prevalence of COVID-19 in 18 Chinese cities. We used data on
the number of confirmed COVID-19 cases reported by China CDC per day by
province31,32. To estimate daily incidence, we backwards shifted the time-series of
confirmed cases by a mean reporting delay of 7 days5 to yield the total number of
symptom onsets per day. We shifted this onset incidence curve backwards again by
the median incubation period of 5 days17 to yield the total number of infection
onsets who had not yet developed symptoms. The mean reporting delay is esti-
mated using line list data summarized in Zhang et al.5, which provides information
on the number of days between which an individual develops symptoms and is
reported as a case.

We then scaled infection onset curves by province by our computed
ascertainment rate ratio (ARR) as of 29 February 2020, to generate estimates of
relative incidence in each province. The ARR represents the ascertainment rate of
symptomatic cases in all other provinces relative to that of Hubei (e.g., an ARR of
5:1 implies that the probability a true (symptomatic) case was reported was five
times as high in non-Hubei provinces relative to Hubei). We define the

ascertainment rate among cases, rather than total infections, as we calibrate our
forces of importation on reported cases. We derived this ascertainment rate ratio
using data on confirmed cases, confirmed deaths, an estimate of the infection
fatality ratio (IFR), and an estimate of the proportion of asymptomatic infections.
In particular, we use cumulative confirmed deaths by Chinese province 13 days
following 29 February (13 March), which captures the expected delay between case
confirmation and confirmation of death30. The quotient of the cumulative deaths
and the infection fatality ratio (IFR) yield total infections (total infections=
cumulative deaths/IFR). We use an IFR of 0.66% following Verity et al.31, but note
that the IFR cancels out so that other values for the IFR (see for example Emery
et al.32 or Mizomoto et al.33) would not change our resulting ARR. The
ascertainment rate ratio (ARR) is then defined as follows:

ARR ¼ cumulative confirmed casesðNHÞ
total infectionsðNHÞ*propsymptomatic

=
cumulative confirmed casesðHÞ
total infectionsðHÞ*propsymptomatic

¼ ARðNHÞ=ARðHÞ;

ð1Þ
where propsymptomatic denotes the proportion of infections that becomes
symptomatic. Both for non-Hubei (here denoted with NH) and for Hubei (H), we
divide the cumulative daily reported counts of cases by an estimate of how many
cases could have been detected—given as the total infections times the proportion
of symptomatic infections. This provides an estimate for both the non-Hubei and
Hubei ascertainment rate. Taking the ratio of the two rates yields the relative
ascertainment rate of non-Hubei provinces relative to Hubei. For the proportion of
infections that are symptomatic we use 26%32, but any other value for this
proportion (see for example Van Vinh Chau et al.34 or Ward et al.35) would
generate the same ARR.

As an alternative to our back-shifted incidence curves, we also used estimated
onset incidence curves from a previous Bayesian analysis of SARS-CoV-2 onset
incidence in China18 (Scenario 2). Tsang et al.18 make the crucial point that case
ascertainment driven by changes in case definition over time would have a
significant impact on the inferred dynamics of the epidemic. The authors used a
Bayesian analysis assuming exponential growth (with a different rate before and
after 23 January 2020) to infer the number of case onsets that would have been
observed had a later, broader COVID-19 case definition been used throughout the
outbreak. For Wuhan, we used the posterior mean estimated onset incidence curve
(Fig. 3 of Tsang et al.18), which estimates onset incidence in Wuhan if the COVID-
19 case definition as of 4 February 2020 had been applied throughout. For non-
Wuhan cities, we took the posterior mean estimated onset incidence curve for
China excluding Wuhan divided among each Chinese province proportional to the
number of confirmed cases in the province from China CDC data36,37. Finally, we
back-shifted these onset curves by the median incubation period as above.

For all scenarios, we estimated the travel-related prevalence indicator
(corresponding to absolute prevalence in the case of Scenario 2) each day by
summing over individuals who were infected on a given day and individuals who
were infected in previous days and have not yet developed symptoms
(Supplementary Table 1). To convert our estimates of the province-level prevalence
indicator to per-capita prevalence in each Chinese city, we attributed prevalent
infections in each province (absolute numbers) to each city proportional to their
share of province-wide confirmed cases as of 13 March (same date as used for the
death counts above). This attribution assumes that case ascertainment rates are
comparable between our city hubs and other parts of the provinces, and also that
infected cases are as likely to travel as the general population. The true distribution
of cases at the city-level likely deviates from both of these assumptions, which may
shift true case attribution in either direction. Thus, as a sensitivity analysis,
Scenario 8 assumes that province-level prevalence is allocated entirely to the cities
considered in our analysis, or divided equally across our cities when they share a
province. In so doing, we assume that individuals in a province are equally likely to
go to the specific airports in our analysis. For example, we assumed that 100% of
cases in Jiangxi province were in Nanchang with a population of around 2.4
million, whereas we assumed that one third of cases in Guangdong were in
Guangzhou, Dongguan and Shenzhen respectively. As a further sensitivity analysis,
Scenario 9 instead assumed that prevalent cases were attributed to cities
proportional to the city’s share of its province’s population. For example, the city of
Hefei accounts for 5.23% of the population of Anhui and was, therefore, assumed
to account for 5.23% of all infections in Anhui. Scenario 8 and 9 encompass the two
extremes of how reported cases affect the traveling populations in airport hubs and
are likely to bracket the true scenario. As a final step, we divided the total number
of cases by the population size of that city to generate per-capita prevalence
estimates.

Estimating number of imported cases to international destinations
Model training: associating flight volume of infected passengers from Wuhan with
observed number of Wuhan-origin cases in validation set locations. We first fit a
model to the number of imported COVID-19 cases from Wuhan observed in the
high-surveillance locations to determine the relationship between pre-
valence indicator, air-travel volume and imported case counts. We used this model
fit to make predictions using data from Wuhan and the remaining cities in China.
The number of observed cumulative cases imported from Wuhan to destination j
prior to the 23 January is denoted as yj. Further, y*j = 2.5yj denotes the number of
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cases that each destination location j, excluding Singapore, could have detected
with a surveillance capacity of Singapore6 (for Singapore y*j¼Singapore = yj= Singapore).
Following the analysis by Niehus et al.6, 2.5 represents the ratio of Singapore’s
capacity to identify imported cases to that of other high-surveillance countries. We
assumed that across the high-surveillance locations (U.S., Australia, Canada, South
Korea, UK, Netherlands, Sweden, Germany, Spain, and Singapore), this number
follows a Poisson distribution, as follows:

yj � Poisson
αCw;j

2:5

� �

Cw; j ¼
X
t

prevw; d � vd;w; j; ð2Þ

where Cw, j represents the force of importation from Wuhan to each destination j,
which is calculated as the product of the COVID-19 prevalence indicator in Wuhan
(prevw,d) and volume of passengers from Wuhan to destination j (vd,w,j) on day d,
summed over all days in the pre-lockdown pandemic period, and α represents the
scaling factor relating the force of importation to scaled reported cases in the high-
surveillance locations, y*j . We fit this model using the glm function in R (version
3.6.1)38.

Model application: predicting imported case counts to subset of African destinations.
We defined the pre-lockdown pandemic period (referring to the lockdown of
Wuhan) and our focal pandemic period, which we considered to be from 1
December 2019 (approximate date of seeding in Wuhan15) to 23 January 2020 and
from 1 December 2019 to 29 February 2020, respectively.

The force of importation of COVID-19 from all selected cities in China to
destination j in Africa was computed as:

Cj ¼ α
XN0þ1

i

X
t

previ;d � vd;i;j; ð3Þ

where previ,d is the prevalence indicator of COVID-19 in Chinese city i at time d,
and vd,i,j is the total volume of passengers across flights from each origin city i to
each destination j on day d. The product of daily passenger volume (vd,i,j) and the
COVID-19 prevalence indicator in city i (previ,d) was summed over all days of the
focal pandemic time period, and over all N0 Chinese cities and Wuhan. We used
this force of importation to make predictions for all 26 African locations under
each of the nine scenarios for the N0 Chinese cities.

Proportion of all imported cases from Wuhan and from other cities in China. To
estimate the proportion of all expected cases imported from Wuhan and from
other Chinese cities, we computed the force of importation from Wuhan (Cw,j, as
defined above), the force of importation from all 18 origin cities (Cj, as defined
above, where j now represents all destination locations), and the force of impor-
tation from the 17 Chinese cities, excluding Wuhan, as follows:

Cw;j ¼
XN0

i

X
t

previ;t � vt;i;j; ð4Þ

where the product of daily passenger volume (vt,i,j) and the COVID-19 prevalence
indicator in city i (previ,t) under Scenario 1 is summed over all days of the focal
pandemic period, and over the 17 Chinese cities (excluding Wuhan). The quotient
of Cw,j and Cj gives the proportion of all imported cases to all destinations j from
Wuhan and the quotient of Cw;j and Cj gives the proportion of all imported cases to
all destinations j from all 17 other origin cities (here, denoted as NW), under each
scenario, according to:

PropðWÞ ¼ Cw;j

Cj
and PropðNWÞ ¼ Cw;j

Cj
¼ 1� PropðWÞ: ð5Þ

We computed this proportion for two different sets of locations (j∈{African
locations} and j∈{all locations}), for all scenarios. In order to estimate the
proportion of all cases imported globally that may have been undetected, we
assumed based on recent work that 2.8 cases imported from Wuhan may have been
undetected for every one detected case due to limited surveillance capacity6. We
then scale our estimated proportion of imported cases that originated from Wuhan
by this factor (i.e., 2:8

PropðWÞ) to estimate the total number of possible importations

from all the origin cities in China. Finally, the proportion of global importations
that may have been undetected was calculated as 1� 1

2:8
propðWÞ

.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
International Air Transport Association (IATA) data was provided by BlueDot, Toronto,
Canada (https://bluedot.global). Data on departed flights was provided by Cirium
(https://www.cirium.com). This data is not publicly available as raw data. Transformed
flight data used for this work is freely available online (Menkir et al.39). COVID-19 case

counts are from publicly available datasets: WHO reports (https://apps.who.int/iris/
bitstream/handle/10665/331425/SITREP_COVID-19_WHOAFRO_20200311-eng.pdf)
and European CDC (https://opendata.ecdc.europa.eu/covid19/casedistribution/csv), and
MIDAS reports (https://midasnetwork.us/covid-19/). The derived COVID-19 prevalence
data and importation risk generated in the analysis is available online (Menkir et al.39).

Code availability
No data collection was needed. We used readily available data on COVID-19
epidemiology, and we were provided data on air-travel (see Data section). Analysis and
visualization was performed using R (version 4.0.1) and Rstudio (1.3.959). All code and
data are available online (Menkir et al.39).
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