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Glycoproteomics-based signatures for tumor
subtyping and clinical outcome prediction
of high-grade serous ovarian cancer
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Minghui Ao1, Zhen Zhang1, Daniel Chan1, Jiang Qian2 & Hui Zhang 1✉

Inter-tumor heterogeneity is a result of genomic, transcriptional, translational, and post-

translational molecular features. To investigate the roles of protein glycosylation in the

heterogeneity of high-grade serous ovarian carcinoma (HGSC), we perform mass

spectrometry-based glycoproteomic characterization of 119 TCGA HGSC tissues. Cluster

analysis of intact glycoproteomic profiles delineates 3 major tumor clusters and 5 groups of

intact glycopeptides. It also shows a strong relationship between N-glycan structures and

tumor molecular subtypes, one example of which being the association of fucosylation with

mesenchymal subtype. Further survival analysis reveals that intact glycopeptide signatures of

mesenchymal subtype are associated with a poor clinical outcome of HGSC. In addition, we

study the expression of mRNAs, proteins, glycosites, and intact glycopeptides, as well as the

expression levels of glycosylation enzymes involved in glycoprotein biosynthesis pathways in

each tumor. The results show that glycoprotein levels are mainly controlled by the expression

of their individual proteins, and, furthermore, that the glycoprotein-modifying glycans cor-

respond to the protein levels of glycosylation enzymes. The variation in glycan types further

shows coordination to the tumor heterogeneity. Deeper understanding of the glycosylation

process and glycosylation production in different subtypes of HGSC may provide important

clues for precision medicine and tumor-targeted therapy.
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As the most common and aggressive type of ovarian cancer,
high-grade serous ovarian carcinoma (HGSC) remains
the leading cause of ovarian cancer-related death1,2.

Advanced-stage HGSC is representative of >50% of all ovarian
carcinomas, and patients are shown to have a poor prognosis:
32.1% for 5-year survival and 15% for 10-year survival3. The
complexity of HGSC is enhanced by tumor heterogeneity, which
can be divided into inter-tumor and intra-tumor heterogeneity.
Intra-tumor heterogeneity has a crucial role in metastasis, treat-
ment, recurrence, and therapeutic resistance, while inter-tumor
heterogeneity as well as surgical procedures and genomic
instability could cause variation in survival rates within HGSC4–9.
Several large-scale studies have provided perspectives that inte-
grated the aberrations in HGSC with extensive inter-tumor het-
erogeneity, as well as evidence that HGSCs display disparate
molecular profiles, which involves genomic, transcriptomic,
proteomic and phosphoproteomic features10,11.

Proteoforms from different protein modifications add a tre-
mendous amount of complexity to cellular proteomes12. Glyco-
sylation is one of the most common types of protein
modifications13. Distinct from the regulatory elements of gene
expression and protein sequencing controlled by a DNA-template
and mRNA translation, respectively, protein glycosylation is
controlled by the expression and activity levels of glyco-
transferases and glycosidases that are involved in the glycosyla-
tion biosynthesis process14. The structures of glycoconjugated
glycans reflect tightly regulated enzymatic biosynthetic reactions,
and give rise to a variety of glycan distributions15. Glycoconju-
gates mediate the characteristics of cell surfaces and add a level of
plasticity to the functions of the genetically coded protein gene
products. Recently, glycosylation has been added as a new hall-
mark of cancer16,17. It plays a major role in carcinogenesis,
including cell–matrix interaction, cell signaling and commu-
nication, tumor angiogenesis, immune modulation, and tumor
metastasis18,19. Targeting glycosylation has become a potential
therapeutic approach20. Inhibiting the ER α-glucosidases at a low
level could disrupt the folding of these proteins, and potentially
be of therapeutic use in treating viral infections, without affecting
host-cell viability21. Moreover, glycosylation increases tumor
heterogeneity because aberrant glycan modifications are cell-
specific, protein-specific, and site-specific19.

Although great progress has been made in understanding the
cancer genome, proteome, and phosphoproteome, there is still a
relative lack of understanding when it comes to the larger gly-
coproteome of ovarian cancer. Previous studies have examined
aberrant glycosylation in ovarian tumors or in sera of patients
with ovarian cancer22–24. Further investigation is needed to
address the roles of glycotransferases and glycosidases on glycan
structures, how the degree of glycan structure changes is related
to inter-tumor heterogeneity, and the clinical implications of
these glycosylation features. A systems biology approach that
integrates multi-omics data sets is a useful approach for addres-
sing these questions11,24–27, and has great potential for linking
genomic alterations to glyco-phenotypes.

In this study, we performed mass spectrometry (MS)-based
glycoproteomics analysis on 119 HGSCs. These HGSC tumor
tissues have been previously characterized at the genomic and
transcriptomic levels, as well as at the proteomic and phospho-
proteomic levels, by The Cancer Genomic Atlas (TCGA) con-
sortia and the Clinical Proteomic Tumor Analysis Consortium
(CPTAC)10,11, respectively. Employing two glycoproteomic stra-
tegies, solid-phase extraction of glycosite-containing peptides
(SPEG) for glycosite analysis28, and intact glycopeptides for
investigation of glycosite-specific glycans (IGPs)29,30, we profile
the N-linked glycoproteome in HGSCs, identifying and quanti-
fying glycosites and their attached glycan structures. Through the

integration of genomics, transcriptomics, proteomics, and gly-
coproteomics, we identify glycosylation changes associated with
distinct HGSC subtypes, and further examine the roles of sub-
strate proteins and glycosylation enzymes in the biosynthesis of
glycoproteins. Moreover, integrating clinical information facil-
itates the identification of glycoproteomics-based signatures
associated with patient survival. Overall, this study reveals the
potential roles of glycosylation in ovarian cancer heterogeneity,
and provides rationale for patient stratification based on glyco-
protein expression patterns.

Results
Identification and quantification of glycopeptides. A total of
169 TCGA ovarian tumors from HGSC were analyzed by JHU
and PNNL11. The JHU team analyzed 119 available ovarian
tumors, which were further analyzed using glycoproteomics in
this study (Supplementary Data 1). Tumor tissues were lysed and
proteins were extracted, which were then followed by proteolytic
digestion and subsequent labeling of peptides with isobaric tags
for relative and absolute quantitation (iTRAQ). Independently, a
quality control (QC) sample was included in the multiple repe-
ated analyses for longitudinal assessment of reproducibility of the
sample processing and data acquisition pipelines. The iTRAQ-
labeled peptides were split into three aliquots for global proteomic
analysis and the parallel enrichments of glycopeptides for
glycosite-containing peptides from SPEGs and intact glycopep-
tides (IGPs)28,30. The enriched glycosite-containing peptides and
IGPs were analyzed by LC–MS/MS and subsequent data analysis
(see “Methods” section, Supplementary Fig. 1). As described in
Supplementary Fig. 1A, the SPEGs and IGPs were enriched from
the same iTRAQ-labeled peptides from CPTAC Global proteomic
analysis11. This allowed direct comparison of SPEG, IGP, and
global proteins (see “Methods” section, Supplementary Fig. 1B).

In total, 5115 N-linked SPEGs and 15,512 N-linked IGPs were
identified in the SPEG and IGP experiments, respectively
(Supplementary Data 2), with 455 SPEGs and 351 IGPs
quantified across all tumor samples. Among those peptides,
4957 (96.9%) of the 5115 SPEG glycopeptides and 14,264 (92.0%)
of the 15,513 intact glycopeptides had the glyco NxS/T motifs.
Prior to subsequent data analysis, SPEG and IGP abundances
were normalized by the median value of global glycoproteins for
each sample. In addition, we utilized our QC channel to assess the
overall data quality and determine the reproducibility of the
glycoproteomic analysis using coefficient of variation (CV) of
individual peptides (Supplementary Fig. 2). The reported median
CVs (inter-quartile ranges) were 7.0% (4.0%) and 14.0% (8.0%)
for SPEGs and IGPs, respectively. Values were found to be much
lower than those in different tumor samples (Supplementary
Fig. 2A and B). Together, these indicate the high degree of
reproducibility of glycopeptide enrichment and subsequent data
acquisition, as well as the high overall quality of our dataset.

Glycoproteomics-based clustering of HGSC. To investigate
tumor heterogeneity, we leveraged the expression data of SPEGs
and IGPs to cluster the 119 HGSC samples. The consensus
clustering results illustrated that three tumor clusters and five
glycopeptide groups could be identified based on glycoproteomics
data from IGPs (Fig. 1, Supplementary Data 3). In addition, we
observed a high degree of concordance when utilizing the
expression patterns of SPEGs for clustering analysis. We then
integrated the previously annotated transcriptomic-based and
proteomic-based subtypes of HGSC previously described by
TCGA and CPTAC, respectively (Fig. 1). Next, we evaluated the
enrichment scores between the different omics data types to
delineate the relationship between protein-based and glyco-based
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subtypes of HGSC, selecting a hypergeometric test p value of 0.01
as a threshold for overlap between different omics subtypes. As
shown in Fig. 2a, the IGP 1 cluster overlapped predominately
with the “Stroma” protein subtype (enrichment score= 2.94),
followed by the “Differentiated” protein subtype (enrichment
score= 2.03), while IGP 2 cluster overlapped with the “Immu-
noreactive” (enrichment score= 2.05) and “Proliferative”
(enrichment score= 1.75) protein subtypes. Unique to IGP 3 was
the high degree of overlap with the “Mesenchymal” protein
subtype (enrichment score= 2.77) (Figs. 1 and 2a). Among the
119 HGSCs, 67 homologous recombination deficiency (HRD)
samples were identified, which are annotated in Fig. 1a. Inter-
estingly, we found there was a higher frequency of HRD samples
in IGP 1 (67%), but lower frequencies in IGP 2 and 3 (~53%)
(t test, p= 0.07).

Next, to identify the defining IGP signatures for each tumor
IGP cluster, we averaged the Z-score values of individual IGPs
from each of the five IGP groups (Fig. 2b). IGPs in groups 3, 4,
and 1 were highly expressed in tumor clusters 1, 2, and 3,
respectively (Fig. 2b). To further investigate the glycan composi-
tions of these three IGP clusters, the percentage of three glycan
types (i.e. high mannose, fucose, and sialic acid) carried by IGPs
were calculated for each group (Fig. 2c). IGPs in group 1 were
primarily composed of glycans containing a fucose, while IGPs in

group 3 had glycans that included both fucose and sialic acid
residues. IGPs in group 4 were distinct from those in groups 1
and 3, and were comprised primarily of high mannose glycans. In
the downstream analysis, we focused on these three intact
glycopeptide groups, i.e. groups 1, 3, and 4, with the highest
expressions in corresponding clusters and clear glycan patterns
(Fig. 2b and c). Specific intact glycopeptides for each IGP were
provided as examples in Fig. 2d. EVNDTLLVNELK-carrying
fucose from the POSTN protein, YLGNATAIFFLPDEGK-
carrying fucose and sialic acid from the SERPINA1 protein, and
NATLAEQAK-carrying high mannose from the HYOU1 protein
were upregulated in intact subtypes 3, 1, and 2, respectively. To
gain insight into the functional relevance of these intact
glycopeptide profiles, we performed a STRING protein–protein
interaction network analysis (Supplementary Fig. 3)31. We found
that the IGPs in groups 1, 3, and 4 were mapped to proteins
associated with the extracellular matrix, complement and
coagulation cascades, and the lysosome, respectively (adjusted
p < 0.05).

Survival analysis of intact glycopeptide signatures. To investi-
gate whether the glycoproteomic clusters were related to clinical
outcomes, we first performed survival analysis for the three
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Fig. 1 Clustering analysis of high-grade serous ovarian carcinoma based on glycoproteomics data. Bi-clustering of intact glycopeptide expression in 119
tumor tissues. Tumors are displayed as columns, grouped by intact glycopeptide clusters as indicated by different colors. Intact glycopeptides used for the
tumor classification are displayed as rows with glycans shown in the right heatmap. Color of each cell indicates Z score (log2 of relative abundance scaled
by intact glycopeptide standard deviations) of the intact glycopeptide in that sample. Transcriptome, proteomic-based subtypes, HRD annotations and the
proposed SPEG, IGP clusters are indicated in color above the heatmap.
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clusters defined by the differential expression of IGPs (Fig. 3a). A
Kaplan–Meier plot showed that cluster 3 had the worst 5-year
survival prognosis, while cluster 2 had the best one. To further
investigate whether the intact glycopeptides-based signatures
could help with survival prediction, we calculated the values of
each sample based on averaged Z-scores of three intact glyco-
peptide groups (groups 1, 3, and 4). We then selected 50 higher
score samples and 50 lower score samples from each IGP group.
The results showed that group 1 had a good prediction value

relative to the other two groups (Fig. 3b–d), and tumors cate-
gorized as having a high group 1 score were shown to have a
worse survival prognosis (Fig. 3b, p < 0.05). Taken together, these
results indicated that the glycoproteins carrying non-sialylated
fucosylated glycans were associated with HGSC tumors with
worse survival outcomes. The tumor cluster with elevated levels
of non-sialylated fucosylated glycans mainly contained the mes-
senchymal HGSC subtypes from the proteomic and tran-
scriptomic subtypes (Fig. 1a). In addition, we performed the
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Fig. 2 Specificity of intact glycopeptides and glycans in tumor clusters. a Correspondence of intact glycopeptides and proteomics clusters. Values
correspond to the square of number of subjects for each proteomic subtype that belong to a corresponding IGP cluster divided by both sample number of
the proteomic subtype and sample number of the IGP cluster. * Indicates a p value <0.01 based on a hypergeometric test. b Averaged Z score of each group
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to the minimum and maximum “averaged Z score”. c The glycans for each IGP group. d Three examples show the different expressions in different tumor
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multivariate analysis for age and IGP clusters using the cox
proportional hazards regression model. Age is significantly
associated with survival (p < 0.005), while IGP clusters have no
significant association with it (p= 0.33). Even after adjusting for
these two factors, the IGP group 1 score still maintained a strong
association with survival (p= 0.03) (Supplementary Fig. 4A). We
also investigated the association of proteins and mRNAs that
corresponded to the genes in IGP group 1 with survival, and the
results showed that proteins (Supplementary Fig. 4B) and
mRNAs (Supplementary Fig. 4C) have no significant associations
with survival, while glycoproteomic level analysis showed asso-
ciation of IGP group 1 with survival (Fig. 3b). Similar analyses
were performed for the IGP groups 3 and 4 (Supplementary
Fig. 4D–I).

Glycosylation aberration analysis of HGSCs. Since aberrant
glycosylation has been associated with oncongenesis, and is
independent of DNA/mRNA gene expression profiles, we
examined the degree of glycosylation aberration in HGSC by
assessing the disconcordance of glycosites and total glycoprotein
expression patterns. We made the hypothesis that if SPEG-global
had higher correlation, i.e. low perturbation, in a sample, the
glycan processing is mainly controlled by the substrate; if not
correlated, the glycosylation may be regulated by other factors
such as glycosylation enzymes. Sample-wise spearman correlation
was calculated using SPEG data of 413 glycosite-containing
peptides and global data of 120 glycoproteins. Interestingly, we

observed IGP cluster 1 displayed a high correlation between
global proteins and SPEGs for glycosite-containing peptides,
while IGP cluster 3 displayed a lower degree of correlation
(Fig. 4a, b), indicative of IGP cluster 3 samples showing a higher
degree of glycosylation disturbance. To determine whether glyco-
related genes were impacting the observed glycosylation dis-
turbance, we leveraged the bioinformatic resource cBioPortal
(http://cbioportal.org) in order to investigate the frequency of
mutations in these respective genes32 (Fig. 4c). We found that
mutations in glyco-related genes were quite rare, possibly
reflective of a selection mechanism via cellular lethality associated
with potential loss of function of these genes, or other genomic
fidelity mechanisms. Copy number amplification, mRNA upre-
gulation, and protein upregulation were also annotated for each
sample in Fig. 4c. Copy number amplification and mRNA
upregulation of glyco-related genes were evenly distributed
among samples. In contrast, we observed, on average, 4.7 and 3.5
glyco-related genes were upregulated at the protein level among
the top 50 samples with higher correlations and 50 samples with
lower correlations (t test p= 0.03), respectively (Fig. 4c). Taken
together, these results indicate protein-level expression of glyco-
related genes has a larger impact on glycosylation disturbance
compared to the impact of genomic and transcriptomics events.

Correlation of glycopeptides to mRNA, proteins, and glyco-
sites. To further expand on the assessment of the patterns of
expression correlation among multi-omics, we performed gene-
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wise correlation of mRNA, protein, and IGP levels (Fig. 5). We
found a median correlation value of 0.428 between paired mRNA
transcripts and protein abundances of the identified glycopro-
teins, which is similar to the results reported previously in HGSCs
from mRNA and overall protein levels11. We then evaluated the
correlation between SPEGs from glycosite-containing peptides
and proteins of the corresponding glycoproteins, observing a
median correlation value of 0.824 (Fig. 5a). Interestingly, when
we examined the correlation of different types of IGPs to global
glycoproteins, we found IGPs to have a more variable expression
pattern. Relative to high mannose IGPs (Spearman
correlation= 0.572), complex type glycan-containing IGPs
(including sialic acid and fucose glycan structures) showed a
higher correlation (Fig. 5a). This trend was observed across the
five IGP groups, specifically seeing a lower median correlation in
groups 4 and 5 (Fig. 5b), the latter of which was enriched for high
mannose glycan structures. These results posit cellular mechan-
isms that are aberrant or differentially regulate high mannose-
containing glycan structures relative to more complex glycans.

Correlation of glycosylation enzymes to intact glycopeptides.
The conjugation and biosynthesis of N-linked glycans conjugated
to a nascent peptide chain not only involve the glycoprotein
substrates, but also a myriad of glycosylation enzymes (e.g. gly-
cotransferases and glycosidases) to build or modify the attached
glycan moiety through a series of concerted steps (Supplementary
Fig. 5). To link the global protein expression of glycotransferases
and glycosidases to the expression profiles of IGPs, we performed
pairwise correlation analysis (Fig. 6a). We observed that two
groups of enzymes were highly correlated to IGPs carrying high
mannose glycans. One group included three glucosidases—
GANAB, MOGS, and PRKCSH—which were highly correlated to
high mannose-containing IGPs, but negatively correlated to more
complex type glycans (Fig. 6a). The second group included the

three subunits of the OST complex (DDOST, RPN1, and RPN2),
which binds to the membrane-anchored Dol-P-P-oligosaccharide
and transfers the glycan to the nascent protein. Interestingly, this
latter group showed no clear differences in correlation between
high mannose and complex types. Investigation of individual
glycosylation enzymes revealed the glycosidase MAN1A1 was
negatively correlated to intact glycopeptides carrying high man-
nose structures (Fig. 6b). Similarly, the fucosidases, FUCA1 and
FUCA2, were found to have a negative correlation to fucosylated
glycopeptides, whereas the fucosyltransferase, FUT11, showed a
positive correlation to the fucosylated peptides. Moreover,
sialylation-related enzymes, ST3GAL1 and ST6GALNAC, corre-
late to sialylated IGPs. We found mRNA expression data to be a
poor correlator of measured known enzyme-glycan activity
shown in Fig. 6b (Supplementary Fig. 6A and B). This feature was
best exemplified by the relationship of the glucosidase PRKCSH
and high mannose-containing IGPs. PRKCSH is the glucosidase
that trims glucose residues from the immature glycan precursor
in the endoplasmic reticulum, and although global protein levels
of PRKCSH correlated with high mannose-containing IGPs,
mRNA-level expression was much more dynamic across all
tumors with no observed relationship to IGP composition
structure. Overall, these results indicate that the protein level of
glycosylation enzymes is more reflective of glycosylation activity
rather than mRNA level expression, and those glyco-related genes
may undergo post-transcriptional regulation33.

Glycoproteomics-based model of HGSC. Based on the rela-
tionship among different glycans and glycosylation enzymes, we
proposed glycoproteomic-based signatures regulated by different
glycan biosynthesis pathways in the three HGSC tumor clusters
(Fig. 7). For immunoreactive and proliferative subtypes repre-
sented by IGP cluster 2, high mannose is elevated, which may be
impacted, in part, by the expression of glucosidases and certain
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Fig. 5 Correlation analysis between mRNA, proteins, and intact glycopeptides. a Correlation analysis following the central dogma. b Correlation analysis
between proteins and intact glycopeptides in five subgroups of intact glycopeptides with different glycans. In group 1, n= 26 glycopeptides; In group 2,
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values. Source data are provided as a Source data file.
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subunits of OST complex. Glucosidases have a specific effect on
high mannose, while the subunits of OST complex have a broad
effect on N-linked glycan synthesis. For the mesenchymal subtype
that was highly enriched, represented by IGP cluster 3, the down-
regulation of fucosidases (FUCA1 and FUCA2) and up-regulation
of fucosyltransferase, FUT11, contributed to the observed fuco-
sylation pattern. While the differentiated and stromal subtypes

were represented by IGP cluster 1 that was defined by sialylation
and the two enzymes, ST3GAL1 and ST6GALNAC.

Discussion
Significant inter-tumor heterogeneity was observed across human
HGSC delineating molecular subtypes defined by transcriptomic
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and proteomic features10,11. In this study, we evaluated the
contribution of glycosylation to disease heterogeneity in HGSC,
revealing three major tumor clusters defined by intact glyco-
peptide patterns. Moreover, a deeper characterization of the
prominent glycan composition of each of these three clusters
delineated specific glycoforms associated with protein levels of
glyco-enzyme expression and inferred activity. Integrating pre-
vious characterized proteomic subtype information showed select
glycoform features were enriched, including the “Differentiated”
and “Stromal” subtypes enriched in sialylated and fucosylated
intact glycopeptides, the “Immunoreactive” and “Proliferative”
subtypes enriched in high-mannose intact glycopeptides, and the
“Mesenchymal” subtype enriched in fucosylated only intact gly-
copeptides. Overall, these results highlight the molecular com-
plexity of HGSC tissues, and the distinct information that is
provided at the transcriptional, translational, and post-
translational levels. Many studies have focused on tumor
subtyping of HGSC based on gene expression profiles. TCGA
study using mRNA expression showed four transcriptomic
HGSC subtypes defined as differentiated, immunoreactive,

mesenchymal, and proliferative10. In CPTAC’s proteomic study,
TCGA samples were designated as differentiated, immunor-
eactive, mesenchymal, proliferative, and stromal subtypes11.
However, the role of glycosylation in tumor heterogeneity
remains unknown. In this study, we have provided the most
comprehensive glycoproteomic characterization of 119 HGSC
samples to-date through measurements of glycosite-containing
peptides (SPEGs) and intact glycopeptides (IGPs).

To gain insight into the functional relationship of our observed
glycoform profiles, our protein–protein interaction analysis
showed fucosylated glycans were carried by extracellular matrix-
associated proteins, sialylated glycans by proteins involved in
complement cascades, and high mannose glycans by lysosomal
proteins (Supplementary Fig. 3). Fucosylated glycoproteins are
often expressed on cell surfaces, or secreted in biological fluids,
and are involved in a variety of functions related to cell-to-cell
adhesion and recognition processes34,35. Although sialic acid is
well known to play a role in complement cascades, few studies
focused on the function consequences of sialylated glycoproteins
in this cellular process36. Finally, unlike the oligosaccharides on

Fig. 6 Heatmap of expression correlation between N-linked glycosylation enzyme and intact glycopeptides with different glycans. a Bi-clustering was
performed on correlations between intact glycopeptides (column) and glycosylation enzyme expression in total protein level (row) across 119 tumor
samples. Red indicates positive correlation while blue indicates negative correlation. b Boxplot panel of the correlation difference between enzyme
expression (protein level) and specific intact glycopeptides. For PRKCSH, n (No)= 128 glycopeptides, n (Yes)= 47 glycopeptides, p= 1.84e-15 (Yes vs.
No); For MAN1A1, n (No)= 128 glycopeptides, n (Yes)= 47 glycopeptides, p= 4.93e−17 (Yes vs. No); for FUCA1, n (No)= 97 glycopeptides,
n (Yes)= 78 glycopeptides, p= 4.10e−4 (Yes vs. No); for ST3GAL1, n (No)= 117 glycopeptides, n (Yes)= 58 glycopeptides, p= 9.04e−7 (Yes vs. No).
Two-tailed unpaired t-test without adjustment is used in b. The box outlines denote the IQR, the solid line in the box denotes median correlation value, and
the whiskers outside of the box extend to the minimum and maximum correlation values. Source data are provided as a Source data file.
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secretory and membrane N-glycoproteins, which are processed to
complex-type glycoforms, mannose residues often function in
conjunction with phosphorylation to localize lysosomal enzymes
to the lysosome organelles37. Through survival analysis, fucosy-
lated peptides could be used in survival prediction (Fig. 3). Stu-
dies have shown that elimination of terminal fucose with
fucosidase or through the knockdown of fucosytransferase inhi-
bits tumor growth38,39.

The attached glycan structures on the glycoprotein backbone
reflect the concerted enzymatic activity of multiple glycosylation
enzymes. Previously, it was demonstrated that these changes in
glycosylation are dependent on biochemical factors, such as the
availability of nucleotide sugar pools and differential expression
of certain glycosyltransferases40. However, just how complex the
role of aberrant glycosylation is in carcinogenesis is still unclear.
To address this challenging question, we leveraged a multi-faceted
approach investigating the degree of glycosylation disturbance,
concordance of glyco-enzyme expression and glycoform abun-
dance, and the regulatory elements of glyco-enzyme expression.
We found global protein expression to be the primary factor for
downstream observations related to glycoform expression.
Genomic-associated and transcriptomic-associated events were
found to have minimal influence on the observed glycosylation
patterns. Previously, select microRNAs were reported to play
crucial role in controlling the levels of specific glycosyltransferases
involved in cancer33, and although post-transcriptional level
regulation was not investigated in our study, future exploration is
warranted.

Since glycosylation enzymes were associated with protein gly-
cosylation when contributing to tumor heterogeneity, we further
explored the potential role of glyco-related genes in the produc-
tion of specific glycans. The synthesis of N-linked glycans is
initiated by the synthesis of a Glc3Man9GlcNAc2 lipid-linked
precursor and the co-translational transfer to nascent polypeptide
chains in the lumen of the endoplasmic reticulum (ER). Imme-
diately after transfer of the glycan to Asn side chains glucose
(Glc), trimming is initiated by the cleavage of the terminal a1,2-
Glc residue by a-glucosidase I (MOGS)41. Subsequent cleavage of
the two internal a1,3-Glc residues is accomplished by the het-
erodimeric enzyme a-glucosidase II (GANAB/PRKCSH)42,43 to
produce the Man9GlcNAc2-Asn processing intermediate (Sup-
plementary Fig. 5). The intermediate could be further trimmed by
mannosidase, like mannosyl-oligosaccharide 1,2-alpha-mannosi-
dase IA (MAN1A1). Reduced mannosidase MAN1A1 expression
leads to aberrant N-glycosylation and impaired survival in breast
cancer44. All three glucosidases (MOGS/GANAB/PRKCSH) show
significant positive correlation to high mannose glycopeptides,
whereas MAN1A1 shows negative correlation in this study
(Fig. 6a and b). The turnover of fucose residues in glycoconju-
gates is achieved through the involvement not only of fucosyl-
transferases, but also of the fucosidase. Alpha-L-fucosidase,
encoded by two genes—FUCA1, which codes the tissue enzyme45,
and FUCA2, which leads to plasma alpha-L-fucosidase46—is a
lysosomal enzyme that removes terminal L-fucose residues pre-
sent on the oligosaccharide chains of glycoconjugates. Inhibiting
the ER α-glucosidases was proposed to be used in treating viral
infections21, and could also be considered as an approach to
ovarian cancer treatment. FUCA1 and FUCA2 show negative
correlation whereas fucosyltransferase 11 (FUT11) shows
positive correlations to the product of fucosylated peptides. For
sialylation, ST6 beta-galactoside alpha-2,6-sialyltransferase 1
(ST6GAL1) is a well-known N-glycan sialyltransferase47, but we
did not observe a strong correlation between ST6GAL1 and sia-
lylated peptide. However, two O-glycan sialyltransferases,
ST3 β-galactoside α-2,3-sialyltransferase 1 (ST3GAL1)48,
and ST6 (α-N-acetyl-neuraminyl-2,3-β-galac tosyl-1,3)-N-

acetylgalactosaminide α-2,6-sialyltransferase 1 (ST6GALNac1)49,
show strong correlations to sialylated peptides. ST3GAL1 was
found to have several conserved features with ST6GAL150.
Whether these two O-glycan sialyltransferases have an effect on
N-glycan peptides has yet to be confirmed. In addition, Tumor
suppressor candidate 3 (TUSC3) is also correlated with sialylated
peptide (Fig. 6b). The previous study revealed an increase in
sialylation in TUSC3-positive H134 ovarian cancer cell lines
compared to TUSC3-negative cells51. That information could
help us to control the biosynthesis of glycosylated proteins. As a
result, we have proposed three models for three glyco clusters of
HGSC (Fig. 7). For immunoreactive and proliferative subtypes,
OST complex may take a broadly positive effect, whereas gluco-
sidases have a specific effect on the production of glycopeptides
carrying high mannose. A mesenchymal subtype is mainly related
to fucosylation, fucosidases, and FUT11 expression. Two sialyl-
transferases (ST3GAL1 and ST6GALNAC1) may be related to
differential and stromal subtypes. That information could provide
some clues for gene therapy targeted on glycosylation genes.
Several drugs have been used for targeting glycosylation genes; for
example, castanopermine inhibits glucosidase I and leads to
altered glycoproteins with Glc3Man7GlcNAc2 structures52.
Interestingly, mRNA expression of some glycosylation genes does
not correlate well to those intact glycopeptides, which may have
been caused by posttranscriptional regulation of those glyco-
related genes.

In conclusion, our results show that glycosylation further
contributes to the observed heterogeneity of HGSC tumors, with
specific glycoform features associated with disease progression
and severity. Integration of our comprehensive profiling of the N-
linked glycoproteome with preexisting datasets characterizing
genomic, transcriptomic, and proteomic features of HGSC reveals
the unique insights that are gained by exploring this prominent
post-translational modification. Glycoproteomic study identified
that glycans conjugated on glycosites are associated with tumor
subtypes and intact glycopeptides from a combination of glyco-
sylation sites and site-specific glycosylation provides a survival
predictor beyond proteins and transcripts of the glycoproteins.
Furthermore, integration of glycoproteomics and global pro-
teomics revealed that glycan biosynthesis in tumor subtypes
might be controlled by glycan processing enzymes, and are fur-
ther indicative to clinical outcomes. Overall, our study will serve
as a comprehensive resource to the community in the areas of
ovarian oncology and glycobiology, and will contribute to lever-
aging glycoform information for clinical diagnostic applications
and therapeutic intervention.

Methods
Tumor samples. The tumor samples used in this manuscript are from the TCGA
Biospecimen Core Resource, as described previously11. Demographics, histo-
pathologic information, and treatment details were collected11. Clinical-pathologic
characteristics of TCGA ovarian cases selected for glycoproteomic analysis are
summarized in Supplementary Data 1. The average age at diagnosis was 59.9 years.
We have complied with all relevant ethical regulations and obtained informed
consent from all participants; Johns Hopkins University approved the study
protocol.

Protein extraction and tryptic digestion. Approximately 50 mg of each of the
sectioned TCGA ovarian tumor tissues were sonicated separately in 1.5 mL of lysis
buffer (8 M urea, 0.8 M NH4HCO3, pH 8.0). The protein concentrations of the
lysates were determined by BCA assay (Pierce). Proteins were reduced with 10 mM
TCEP for 1 h at 37 °C, and subsequently alkylated with 12 mM iodoacetamide for
1 h at RT in the dark. Samples were diluted 1:4 with deionized water and digested
with sequencing grade modified trypsin at a 1:50 enzyme‐to‐protein ratio. After
12 h of digestion at 37 °C, another aliquot of the same amount of trypsin was added
to the samples and further incubated at 37 °C overnight. The digested samples were
then acidified with 10% trifluoroacetic acid to pH < 3. Tryptic peptides were
desalted on C18 columns and dried using Speed-Vac.
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iTRAQ labeling of peptides. Desalted peptides were labeled with 4-plex iTRAQ
reagents according to the manufacturer’s instructions (AB Sciex, Foster City, CA).
Peptides (1 mg) from one pooled tissue, the reference sample, and three TCGA
tumors were dissolved in 125 μL of 0.5 M triethylammonium bicarbonate, pH
8.5 solution, and further mixed with 5 units of iTRAQ reagent that was dissolved
freshly in 375 μL of ethanol. Channel 114 was used for labeling the pooled reference
sample throughout the TCGA sample analysis. After 2 h of incubation at room
temperature, 10% TFA solution was added to bring it to a pH < 3 to stop the
reaction. Peptides labeled by different iTRAQ reagents were then mixed and 200 μg
of iTRAQ-labeled peptides were desalted on strong cation exchange columns and
fractionated by offline bRPLC for global proteomic analysis11.

Enrichment of glycosite-containing peptides using SPEG. Labeled peptides
(3.6 mg) were oxidized in 60% ACN/0.1% TFA by a 10 mM NaIO4 solution at
room temperature for 1 h in the dark. The samples were desalted by a C18 SPE
column and the elution solution was collected into equilibrated hydrazide resin
(180 μL of 50% slurry for each sample) directly and incubated with 100 mM aniline
at room temperature overnight with shaking. The resin was washed three times
each with 1 mL of 50% ACN, 1.5 M NaCl, water, and 25 mM NH4HCO3 buffer.
N-glycopeptides were released via 3 μL PNGase F (New England Biolabs, Beverly,
MA) in 25 mM NH4HCO3 buffer at 37 °C overnight with shaking. N-linked
glycosite-containing peptides were collected in supernatants/wash solutions and
dried by vacuum. The glycosite-containing peptides were resuspended in 50 μL
0.2% FA solution for LC–MS/MS analysis.

Enrichment of intact glycopeptides by Retain AX Cartridges (RAX). The
remainder of the 200 μg of 4-plex iTRAQ-labeled peptides from each set were
adjusted to 95% ACN (v/v), 1% TFA (v/v) for intact glycopeptide enrichment using
RAX (particle size 30–50 μm, 30 mg sorbent per cartridge, Thermo Fisher Scien-
tific). The RAX columns were equilibrated three times with 1 mL of ACN, three
times with 100 mM triethylammonium acetate, three times with water, and finally
three times with 95% ACN (v/v), 1% TFA (v/v). The samples were loaded onto
RAX columns and washed four times with 1 mL of 95% ACN, 1% TFA. Finally,
bound intact glycopeptides were eluted in 400 μL of 50% ACN (v/v), 0.1% TFA
(v/v). The intact glycopeptides were then dried in a Speed-Vac and stored at
−80 °C prior to LC–MS/MS analysis.

LC–MS/MS for glycoproteomic analysis. The de-glycosylated glycosite-con-
taining peptides were separated on a Dionex Ultimate 3000 RSLC nano system
(Thermo Scientific) with a 75 µm × 50 cm Acclaim PepMap RSLC C18 Easy-Spray
column (Thermo Scientific) protected by a 100 μm× 2 cm Acclaim PepMap 100
guard column (Thermo Scientific). Mobile phase flow rate was 320 nL/min and
consisted of 0.1% formic acid in water (A) and 0.1% formic acid 95% acetonitrile
(B). The sample injected (6 μL) was trapped using 100% mobile phase A for 13 min
at a flow rate of 5 μL/min before being placed in-line with the analytical column
and subjected to the gradient profile which was set as follows: 2–7% B for 10 min,
7–27% B for 80 min, 27–34% B for 22 min, 34–95% B for 3 min, and 95% B for
10 min. MS analysis was performed using a Q-Exactive mass spectrometer
(Thermo Scientific). The Q-Exactive mass spectrometer parameters were as fol-
lows: electrospray voltage was 2.2 kV; following a 20 min delay from the end of
sample trapping, Orbitrap precursor spectra (AGC 3 × 106) were collected from
400 to 1800m/z for 110 min at a resolution of 70K along with the top 12 data-
dependent Orbitrap HCD MS/MS spectra at a resolution of 35K (AGC 2 × 105) and
max ion time of 120 ms; ions selected for MS/MS were isolated at a width of 1.4m/z
and fragmented using a normalized collision energy of 31%; peptide match was set
to ‘Preferred’; exclude isotopes was set to ‘on’; and charge state screening was
enabled to reject unassigned 1+, and >8+ ions with a dynamic exclusion time of
30 s to discriminate against previously analyzed ions. Each sample was analyzed by
LC–MS/MS in triplicates to increase the SPEG coverages and reduce the missing
values, which is similar to fractionation in proteomics experiments53.

The intact glycopeptides were analyzed on the Orbitrap Fusion Lumos system
(Thermo Scientific). The glycopeptides were separated using Easy nLC 1200
UHPLC system (Thermo Scientific) on an in-house packed 20 cm × 75 mm
diameter C18 column (1.9 mm Reprosil-Pur C18-AQ beads, Dr. Maisch GmbH);
Picofrit 10 mm opening (New Objective). The column was heated to 50 °C using a
column heater (Phoenix-ST). The flow rate was 0.200 μl/min with 0.1% formic acid
and 2% acetonitrile in water (A) and 0.1% formic acid, 90% acetonitrile (B).
Peptides injected were subjected to the following gradient: 2–6% B for 1 min,
6–30% B for 84 min, 30–60% B for 9 min, 60–90% B for 1 min, 90% B for 5 min,
and then back to 50% B for 10 min. The Fusion Lumos mass spectrometer
parameters were as follows: electrospray voltage was 1.8 kV; the ion transfer tube
temperature was at 250 °C; Orbitrap precursor spectra (AGC 4 × 105) were
collected from 350–1800m/z for 110 min at a resolution of 60K along with data-
dependent Orbitrap HCD MS/MS spectra (centroided) at a resolution of 50K
(AGC 2 × 105) and max ion time of 105 ms for a total duty cycle of 2 s; masses
selected for MS/MS were isolated (quadrupole) at a width of 0.7m/z and
fragmented using a high-energy collision dissociation of 38%; peptide charge state
screening was enabled to reject unassigned 1+, 7+, 8+, and >8+ ions with a
dynamic exclusion time of 45 s to discriminate against previously analyzed ions

between ±10 ppm. Similarly, each sample was analyzed by LC–MS/MS in triplicates
to increase the IGP coverage and reduce the missing values53.

Quantification of glycosite-containing peptides from SPEG. MS-PyCloud,
version 1.5.0, was used to identify and quantify glycosite-containing peptides from
SPEG54. RAW files were first converted to universal mzML format using Proteo-
Wizard 3.055. NCBI RefSeq human protein fasta database retrieved on 2 May 2016
was utilized for the database search. MS-GF+ search engine was then used to
assign spectra, within a precursor mass tolerance of 20 ppm, with the following
modifications: dynamic deamidation (+0.984016 Da) on Asn and Gln, static oxi-
dation (+15.9949 Da) on Met, static iTRAQ4plex (+144.102063 Da) on peptide N-
terminus and Lys, and static carbamidomethylation (+57.021464 Da) on Cys.
Peptides were then quantified and assigned to protein groups using the following
filters: a minimum requirement of 1 PSM/peptide after filtering PSMs by the
−Log10(MS-GF+ SpectralEValue) score for each charge state separately such that
the PSM-level FDR remained below 1%. Two Trypsin cleavage termini were
required, along with an allowance of up to two missed cleavages. The rule of NXS/T
(X can be any amino acid except P) motif on peptide sequence for N-glycosylation
site was applied to verify the identified peptides. For SPEG dataset, the quantitative
data was summarized not by the protein-level, but rather at the glycosite-
containing peptide level (Supplementary Data 2).

All the peptides (intact glycopeptides, glycosite-containing peptides, and global
peptides) were labeled with iTRAQ reagent simultaneously. Separation for
glycosite-containing peptide and intact glycopeptide analysis was performed after
the labeling. Thus, the labeling is identical among global proteomic, glycosite-
containing peptide and intact glycopeptide datasets. Therefore, for glycosite-
containing peptide analysis, we applied the normalization factors in the global
proteomic dataset to normalize the relative abundance of glycosite-containing
peptides.

Quantification of intact N-linked glycopeptides. The intact N-linked glycopep-
tides were identified using GPQuest 2.0 software56. Prior to search, Proteowizard 3.0
was used to convert the.RAW files to.mzML files with the “centroid all MS2 scans”
option selected55. GPQuest 2.0 was applied to investigate the expression of protein
glycosylation on the unidentified MS/MS spectra using two approaches: the
searching of spectra containing oxonium ions (‘oxo-spectra’) and the identification
of intact N-linked glycopeptides. The oxonium ions were regarded as the signature
features of the glycopeptides assigned to the MS/MS spectra, which were caused by
the fragmentation of glycans attached to intact glycopeptides in the mass spectro-
meter. In this study, the MS/MS spectra containing the oxonium ions (m/z
204.0966) in the top 10 abundant peaks after removing reporter ions were con-
sidered to be potential glycopeptide candidates. The intact N-linked glycopeptides
were identified by using GPQuest 2.0 to search against the database of glycosite-
containing peptides identified from the SPEG dataset from this study and a database
containing 178 N-linked glycan compositions. The glycan database was collected
from the public database of GlycomeDB57 (http://www.glycome-db.org). All the
qualified (>6 fragment ions matchings) candidate peptides were compared with the
spectrum again to calculate the Morpheus scores by considering all the peptide
fragments, glycopeptide fragments, and their isotope peaks. The peptide having
highest Morpheus score was then assigned to the spectrum. The mass gap between
the assigned peptide and the precursor mass was searched in the glycan database to
find the associated glycan. The best hits of all “oxo-spectra” were ranked by
Morpheus score in descending order, for which those with a FDR < 1% and cov-
ering >10% total intensity of each tandem spectrum were reserved as qualified
identifications. The precursor mass tolerance was set as 10 ppm, and the fragment
mass tolerance was 20 ppm. Similar to the process of glycosite-containing peptides,
the quantification of the intact glycopeptides was also determined at the peptide
level. The median log2 ratio value of all the PSMs of an identical intact glyco-
peptide was used as the relative abundance of the intact glycopeptide. The relative
abundances of intact glycopeptides of samples were also normalized using the
median value of glycoproteins quantified in the global datasets.

Glycoproteomic subtyping analysis. The glycopeptides and intact glycopeptides
without missing values were analyzed by CancerSubtypes58 for consensus clus-
tering of tumor subtypes. Specifically, 80% of the original sample pool was ran-
domly subsampled without replacement and partitioned into three major clusters
using partitioning around medoids (PAM) algorithm, which was repeated 500
times. The expression values were transformed into Z-scores using the built-in
standardization function of R 3.2.2. For the IGP clustering, five groups of intact
glycopeptdes were the corresponding glycan types and were also listed on the left
side of the heatmap of the clustered expression matrix to illustrate the possible
relationship between tumor subtypes and the associated glycan types.

Protein-glycopeptide expression consistency analysis. For each glycosite
and intact glycopeptide without missing values, we calculated the Spearman
correlation between glycosite abundance and its corresponding global protein
abundance and mRNA gene expression across TCGA tumor samples, respectively.
Correlation p-values were adjusted for multiple hypotheses testing using the
Benjamini–Hochberg procedure.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19976-3 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:6139 | https://doi.org/10.1038/s41467-020-19976-3 | www.nature.com/naturecommunications 11

http://www.glycome-db.org
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Protein–protein interaction network analysis. A group of interested genes was
inputted in the STRING v1131 to perform protein–protein interaction network
analysis. The proteins with enrichment terms were highlighted.

Glycosylation biosynthetic pathway analysis. The intact glycopeptide expression
was hypothesized to be influenced by at least the expression of two factors: sub-
strates (glycoprotein precursors) and glycosylation enzymes. The log2 ratio values
of intact glycopeptides were correlated with the 22 glycosylation enzymes identified
from the global proteomic data. The correlation matrix was further arranged by
hierarchical clustering on glycopeptides (columns) and glycosylation enzymes
(rows) and visualized in Fig. 5a. The glycan compositions were linked to the intact
glycopeptides. For each comparison, the correlations between the intact glyco-
peptides and specific glycosylation enzymes (FUT11, PRKCSH, or MAN1A1)
across all samples were calculated and shown in a boxplot.

Survival analysis on the intact glycoproteomics-based signature of the
mesenchymal subtype. An index score was derived for each sample as the mean
abundance of intact glycoproteins that defined the mesenchymal subtype on glycol
proteomics data, global proteomics data, and mRNA gene expression data. We
compared 50 samples with higher scores and 50 samples with lower scores for
Kaplan–Meier survival analysis, and the log-rank p-value was calculated using the
Lifelines python package (version 0.24.16)59. Cox proportional hazards regression
analysis (including confidence intervals and p-values) were conducted by fitting the
age and IGP clusters using the “CoxPHFitter” function.

Statistical analysis. Statistical analyses, including a t-test and a hypergeometric
test, were conducted using the statistical package Python (version 3.7.4) and R
(version 3.2.2).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Raw data files and processed files of glycoproteomics data generated in this study have
been deposited to the ProteomeXchange Consortium (http://www.proteomexchange.org/
) through MassIVE (https://massive.ucsd.edu) with the accession codes “PXD019914”
and “MSV000085613 [https://doi.org/10.25345/C5VX3Q]”. Proteomics and genomics
data were collected from the CPTAC Data Portal (https://cptacdcc.georgetown.edu/
cptac/s?id=54784), and cBioPortal (https://www.cbioportal.org/), respectively. The
glycan database was collected from the public database of GlycomeDB (http://www.
glycome-db.org). Source data are provided with this paper.
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