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Quantitative and multiplexed chemical-genetic
phenotyping in mammalian cells with QMAP-Seq
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Chemical-genetic interaction profiling in model organisms has proven powerful in providing

insights into compound mechanism of action and gene function. However, identifying

chemical-genetic interactions in mammalian systems has been limited to low-throughput or

computational methods. Here, we develop Quantitative and Multiplexed Analysis of Phe-

notype by Sequencing (QMAP-Seq), which leverages next-generation sequencing for pooled

high-throughput chemical-genetic profiling. We apply QMAP-Seq to investigate how cellular

stress response factors affect therapeutic response in cancer. Using minimal automation, we

treat pools of 60 cell types—comprising 12 genetic perturbations in five cell lines—with 1440

compound-dose combinations, generating 86,400 chemical-genetic measurements. QMAP-

Seq produces precise and accurate quantitative measures of acute drug response comparable

to gold standard assays, but with increased throughput at lower cost. Moreover, QMAP-Seq

reveals clinically actionable drug vulnerabilities and functional relationships involving these

stress response factors, many of which are activated in cancer. Thus, QMAP-Seq provides a

broadly accessible and scalable strategy for chemical-genetic profiling in mammalian cells.

https://doi.org/10.1038/s41467-020-19553-8 OPEN

1 Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA. 2 Simpson Querrey
Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA. 3 Robert H. Lurie Comprehensive Cancer Center,
Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA. 4 Driskill Graduate Program in Life Sciences, Northwestern University Feinberg
School of Medicine, Chicago, IL 60611, USA. 5Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, IL 60611,
USA. 6 Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA. 7Department of Molecular Biosciences, Northwestern
University, Evanston, IL 60208, USA. ✉email: mendillo@northwestern.edu

NATURE COMMUNICATIONS |         (2020) 11:5722 | https://doi.org/10.1038/s41467-020-19553-8 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-19553-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-19553-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-19553-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-19553-8&domain=pdf
http://orcid.org/0000-0002-6817-3237
http://orcid.org/0000-0002-6817-3237
http://orcid.org/0000-0002-6817-3237
http://orcid.org/0000-0002-6817-3237
http://orcid.org/0000-0002-6817-3237
http://orcid.org/0000-0001-5108-2470
http://orcid.org/0000-0001-5108-2470
http://orcid.org/0000-0001-5108-2470
http://orcid.org/0000-0001-5108-2470
http://orcid.org/0000-0001-5108-2470
http://orcid.org/0000-0003-3318-964X
http://orcid.org/0000-0003-3318-964X
http://orcid.org/0000-0003-3318-964X
http://orcid.org/0000-0003-3318-964X
http://orcid.org/0000-0003-3318-964X
http://orcid.org/0000-0002-5618-2582
http://orcid.org/0000-0002-5618-2582
http://orcid.org/0000-0002-5618-2582
http://orcid.org/0000-0002-5618-2582
http://orcid.org/0000-0002-5618-2582
http://orcid.org/0000-0001-8128-0128
http://orcid.org/0000-0001-8128-0128
http://orcid.org/0000-0001-8128-0128
http://orcid.org/0000-0001-8128-0128
http://orcid.org/0000-0001-8128-0128
mailto:mendillo@northwestern.edu
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Chemical–genetic interaction profiling in model organisms,
such as yeast, has emerged as a powerful strategy to reveal
functional insights into compounds, genes, and cellular

processes. In these studies, the mechanism of action of a com-
pound can be deduced by comparing its chemical–genetic inter-
action profile (the quantitative landscape of the effects of a panel
of individual genes on the efficacy of this particular compound) to
the profiles of compounds with known cellular targets to identify
the most similar profiles1–5. Likewise, the function of a gene can
be inferred by comparing its chemical-genetic interaction profile
(the quantitative landscape of the effects of this particular gene on
the efficacy of a panel of compounds) to the profiles of genes with
known functions6.

The development of highly specific and efficient genetic per-
turbation tools based on CRISPR-Cas9 has enabled similar types
of chemical–genetic studies in mammalian systems, albeit at
much smaller scales than in model organisms. Most often,
chemical–genetic studies in mammalian systems involve genome-
scale loss-of-function screens against one compound over the
course of several weeks to identify drug targets7 and define
mechanisms of drug resistance8,9. Even focused studies inter-
rogating limited numbers of chemical–genetic interactions can
reveal critical insights. For example, one recent study demon-
strated that the efficacy of a handful of clinical compounds was
unaffected by knockout of their putative targets10, highlighting
the power of using chemical–genetic approaches to validate on-
target activity of drug candidates. Despite their utility, these
studies are low-throughput and thus limited to investigating small
numbers of compounds.

There is a growing interest in identifying synthetic lethal and
synthetic rescue chemical–genetic interactions that can serve as
the basis for cancer therapeutic strategies. Chemical–genetic
synthetic lethality, a concept rooted in classical genetics11,
describes cell death resulting from the combination of a genetic
variant and a chemical perturbation, where each individual per-
turbation is viable. By exploiting genetic variants (e.g., somatic
mutations, copy number variations, chromosomal rearrange-
ments, or gene expression changes) that differentiate tumor from
normal tissue, synthetic lethal interactions provide a therapeutic
window for selectively targeting cancer cells. The potential of
synthetic lethality is best exemplified by the development and
FDA approval of PARP inhibitors for patients with BRCA-
mutated ovarian, breast, and prostate cancers12,13. There is also
value in identifying synthetic rescue interactions, where a cyto-
toxic compound has reduced efficacy in the presence of a parti-
cular genetic variant, thus providing insights into drug resistance
mechanisms14. The only existing strategies for identifying clini-
cally relevant chemical–genetic interactions for more than a
handful of genetic variants and compounds rely entirely on
predictive approaches. Some of these predictions are based on
genetic or chemical–genetic interactions identified in yeast15,16,
while others, such as the Cancer Cell Line Encyclopedia17,
Genomics of Drug Sensitivity in Cancer18–20, Cancer Ther-
apeutics Response Portal21–23, and PRISM24,25, are based on
computational methods that correlate genetic and molecular
features of human cancer cell lines with drug response. While
these correlative approaches have been useful, they are limited by
the fact that many features are rare and lack sufficient repre-
sentation—or are not even present—in current cancer cell line
collections, reducing the statistical power to detect significant
correlations. Related to this, even correlations involving more
common features are confounded by the multitude of additional
features that also distinguish each cell line. Thus, these approa-
ches still require direct experimental validation, ideally in a
manner that tests individual features along with their corre-
sponding isogenic controls in relevant mammalian models.

Here, to systematically and directly measure the contribution
of individual genes to acute drug response, we devise quantitative
and multiplexed analysis of phenotype by sequencing (QMAP-
Seq). Unlike most chemical–genetic strategies in mammalian
systems, QMAP-Seq is characterized by short-term compound
treatment, which better recapitulates the timing of most high-
throughput drug screening assays and enables testing of thou-
sands of compounds in parallel. As proof-of-concept, we apply
QMAP-Seq to the protein homeostasis (proteostasis) network, a
critical set of cellular stress response factors that maintain proper
protein function from synthesis to folding to degradation.
Because individual proteostasis factors are activated to varying
degrees across tumors to cope with cancer-associated and drug-
induced stress26–31, but are not easily druggable32, we reasoned
that QMAP-Seq could be used to identify synthetic lethal
chemical–genetic interactions dependent on the activation status
of these factors. Furthermore, because the individual branches of
the proteostasis network are typically studied in isolation, and the
functional relationship within and between the branches remains
largely unexplored, we postulated that QMAP-Seq could also be
used to provide functional insight into the proteostasis network.
We first perform QMAP-Seq with one cell line and demonstrate
that it generates precise and accurate quantitative measures of
compound efficacy that are concordant with established cell
viability assays based on live-cell imaging. We then expand
QMAP-Seq to multiple cell lines, which enables the parallel
measurement of 86,400 cell viability phenotypes in a single
experiment. Altogether, we identify 60 sensitivity interactions and
124 resistance interactions and validate a subset of these inter-
actions individually using an established metabolic-based cell
viability assay. This work illustrates the power of systematic, high-
throughput chemical–genetic profiling in mammalian systems.

Results
Engineering barcoded breast cancer cell lines with inducible
single-gene knockouts. Because the proteostasis network is het-
erogeneously activated in cancer, but is not easily druggable and
is incompletely understood, we created a custom sgRNA library
to disrupt a set of 10 genes that play pivotal roles in regulating the
proteostasis network. These genes included critical factors
involved in the heat-shock response (HSF1, HSF2), unfolded
protein response (IRE1 (ERN1), XBP1, ATF3, ATF4, ATF6),
oxidative stress response (NRF2 (NFE2L2), KEAP1), and
in autophagy (ATG7). As a control to validate that QMAP-Seq
can detect known chemical–genetic interactions, our library also
contained an sgRNA targeting SLC35F2, a solute carrier required
for cellular uptake of the cytotoxic compound, YM15533. We
engineered MDA-MB-231 triple-negative breast cancer cells with
these 11 single-gene knockouts and a pool of five non-targeting
(NT) sgRNA controls. Because constitutive expression of Cas9
can result in off-target effects34 and cell toxicity35, we designed a
system with doxycycline-inducible Cas9, providing temporal
control over gene knockout (Supplementary Fig. 1a). Cas9 was
induced in a doxycycline dose-dependent manner (Supplemen-
tary Fig. 1b). To enable future pooling and identification of
multiple cell lines, we introduced unique 8 bp cell line barcode
sequences downstream of the sgRNA within the lentiGuide-Puro
plasmid (Supplementary Fig. 1c).

To assess the efficacy of the sgRNAs, we performed Western
blot analysis 96 h after Cas9 induction and confirmed efficient
whole population knockout of the proteostasis factors (Supple-
mentary Fig. 1d). Although we could not easily detect KEAP1
expression or knockout by western blot, we observed the expected
upregulation of NRF2 protein levels in the KEAP1 knockout cells
(Supplementary Fig. 1d). In addition, we used an ATP-based cell
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viability assay to confirm the ability of the sgRNAs that target
SLC35F2 to confer resistance to YM155 (Supplementary Fig. 1e).

QMAP-Seq generates precise and accurate quantitative mea-
sures of drug response. We sought to develop and apply QMAP-
Seq to quantify the response of a mixed pool of MDA-MB-231
cells possessing our panel of proteostasis factor knockouts to
treatment with 89 compounds targeting diverse biological pro-
cesses at four doses in duplicate (Fig. 1a). Our experimental
workflow involved inducing Cas9 to initiate knockout, treating
with either DMSO control or compound for 72 h, and then

preparing crude cell lysates. Previous studies have demonstrated
the utility of spike-in standards for quantification when per-
forming RNA-Seq36 and ChIP-Seq37,38. To enable a quantitative
assay, we introduced 293T cell spike-in standards composed of
predetermined numbers of cells for each of five unique sgNT
barcodes into each sample. Spike-in cell numbers were custo-
mized for each experiment to cover the expected range of cell
numbers for any individual perturbation at the time of cell lysis
(see “Methods” for details). We next amplified the 768 samples,
corresponding to distinct compound-dose-replicate combina-
tions, using unique sets of i5 and i7 indexed primers (Fig. 1b,
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Supplementary Data 1, Supplementary Data 2). To facilitate
Illumina sequencing, our PCR primers incorporated P5 and P7
adaptors complementary to flow cell oligos. To improve sequence
diversity, we utilized a mix of P5 primers with varying stagger
lengths. After PCR amplification, we pooled and purified the PCR
products followed by Illumina sequencing with a single 164 bp
read to sequence the sgRNA and cell line barcodes (Fig. 1b).

To simplify the processing of large numbers of samples, we
built a multistep QMAP-Seq bioinformatic analysis pipeline
(Supplementary Fig. 2). First, the pipeline demultiplexed the 768
individual samples according to i5 and i7 index sequences
(Supplementary Data 3 and 4). Second, it extracted the cell line
barcode (Supplementary Data 5) and sgRNA barcode (Supple-
mentary Data 6) from each read and counted the number of reads
for each cell line-sgRNA pair. Third, the pipeline used the cell
spike-in standards to generate a sample-specific standard curve
and used the standard curve to interpolate cell number from
sequencing reads. Finally, it calculated the number of cells for
each cell line-sgRNA pair in the presence of compound relative to
DMSO control.

We next performed a series of analyses to assess the quality of
the data generated from QMAP-Seq. We first asked whether we
could resolve differences in cell number by next-generation
sequencing. Indeed, analysis of the cell spike-in standards
revealed the expected increase in sequencing reads with increased
input cell number (Fig. 1c). To assess the precision of QMAP-Seq,
we compared the interpolated cell number between the two
replicates for every compound-dose pair. Importantly, QMAP-
Seq replicates were highly correlated (r= 0.9714) (Fig. 1d). To
compare QMAP-Seq with an established method of measuring
cellular response to compounds, we assessed the percent
confluence of the population of cells in each compound-treated
well using live-cell imaging immediately prior to cell lysis
(Fig. 1a). As expected, live-cell imaging revealed a reduction in
cell confluence with increasing concentrations of YM155 (Fig. 1e,
f, top left). The area under the dose–response curve (AUC) for the
population of cells as determined using QMAP-Seq was similar to
live-cell imaging analysis (live-cell imaging AUC= 74.12,
QMAP-Seq AUC= 85.95). Importantly, QMAP-Seq was further
able to resolve differences in drug response between the
knockouts, such as knockout of SLC35F2 conferring resistance
to YM155 (Fig. 1f, bottom left). As another example, live-cell
imaging revealed a dose-dependent reduction in cell confluence
with the HSP90 inhibitor, Ganetespib (Fig. 1e, f, top right). Once
again, the AUC for the population of cells calculated using
QMAP-Seq was similar to live-cell imaging analysis (live-cell
imaging AUC= 120.90, QMAP-Seq AUC= 104.80). Further-
more, QMAP-Seq detected that knockout of HSF1 sensitized cells
to Ganetespib, confirming another previously established
chemical–genetic interaction39 (Fig. 1f, bottom right). Notably,
the nearly identical results obtained from the two assays were not

limited to these two compounds. The AUCs for the population of
cells calculated using QMAP-Seq were remarkably concordant
with those calculated using live-cell imaging across all 89
compounds (r= 0.9228), demonstrating the high degree of
accuracy of QMAP-Seq (Fig. 1g). Taken together, these results
indicate that QMAP-Seq generates precise, accurate, and sensitive
quantitative measures of pharmacologic response in pooled
format.

Expanding QMAP-Seq to multiple cell lines. Because the genetic
and epigenetic background of a cell line can impact therapeutic
response, we next expanded QMAP-Seq to multiple cell lines
(Fig. 2a). We selected a panel of breast cancer cell lines com-
prising three major subtypes of breast cancer: ER+ (ZR-75-1),
HER2+ (SKBR3), and triple-negative (HCC-38, MDA-MB-231,
BT-20). We assembled a 180 compound collection for QMAP-
Seq (Supplementary Fig. 3, Supplementary Data 7) in a manner
that allowed us to achieve two primary objectives for this assay.
First, we selected FDA-approved drugs or compounds in clinical
trials to facilitate the discovery of clinically relevant
chemical–genetic interactions and to enable drug repurposing
(Fig. 2b). This included chemotherapeutics and targeted therapies
that are either standard-of-care or currently being investigated in
the context of breast cancer. Second, we selected compounds that
target biological processes from 19 diverse pathways because
proteostasis factors broadly impact cell biology (Fig. 2c).

To ensure that each cell line would be similarly represented in
our assay despite different doubling times, we measured the
relative abundance of each of the five cell lines grown in
heterogeneous pools. We prepared five pools, each containing
20% of one cell line expressing ZsGreen and 20% of each of the
other four cell lines expressing dTomato (Fig. 2d). We co-
cultured and analyzed the pools by flow cytometry to quantify the
percentage of GFP positive cells over time. We found that SKBR3
cells were the most depleted, whereas MDA-MB-231 cells were
the most enriched (Fig. 2e, left). We used the relative cell
abundances from this competition experiment to mathematically
model an optimized pooling ratio to ensure adequate representa-
tion of all cell lines at seven days post-pooling, the timepoint
when the cell lines are exposed to compounds during QMAP-Seq
(Fig. 2e, right, 0 days). Optimized pools predicted to contain 20%
of each cell line after 7 days exhibited similar representation of
the cell lines at this timepoint (Fig. 2e, right, 7 days).

After pooling the five cell lines each possessing our panel of
proteostasis factor knockouts at the optimized pooling ratio, we
performed the QMAP-Seq workflow (Fig. 2a). Seven days after
thawing, we treated the pooled cells with compounds or DMSO.
After 3 days of treatment, we measured the representation of the
cell line-sgRNA pairs in the DMSO samples. Each of the cell lines
was covered by at least 10% of the total sequencing reads,
indicating adequate representation of the five cell lines (Fig. 2f).

Fig. 1 QMAP-Seq generates precise and accurate quantitative measures of drug response. a Experimental workflow for QMAP-Seq with one cell line.
b Schematic of QMAP-Seq library preparation using unique sets of i5/i7 indexed primers followed by next-generation sequencing of amplicons. c Standard
curves generated from five uniquely barcoded 293T cell spike-in standards introduced at known cell numbers. Data are represented as mean number of
sequencing reads across the six or eight DMSO samples on a plate ± standard deviation. d Scatterplot of interpolated cell number for two biologically
independent replicates. Statistical significance of Pearson correlation was determined using a two-tailed test (n= 288 compound-dose combinations).
e Live-cell imaging of MDA-MB-231 sgPool cells 72 h after treatment with YM155 or Ganetespib. Images are representative of two biologically independent
replicates. Scale bar= 100 μm. Source data are provided as a Source data file. f Top: Dose–response curves for MDA-MB-231 sgPool cells as measured
using live-cell imaging 72 h after treatment with YM155 or Ganetespib. Bottom: Dose–response curves for 12 genetic perturbations of MDA-MB-231 cells
as measured using QMAP-Seq 72 h after treatment with YM155 or Ganetespib. Each data point represents one of two biologically independent replicates.
The shaded region indicates the area under the curve (AUC) for sgPool. g Scatterplot of the dose–response curve AUC for sgPool as determined using live-
cell imaging versus QMAP-Seq. Statistical significance of Pearson correlation was determined using a two-tailed test (n= 89 compounds). Source data are
available in the Source data file.
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We also observed sufficient representation of most cell line-
sgRNA pairs (Fig. 2g). Unsurprisingly, the two cell line-sgRNA
pairs with the lowest representation in the pool (ZR-75-1 sgHSF1
and ZR-75-1 sgKEAP1) exhibited the greatest variation between
DMSO samples (standard deviation >0.7) and were thus excluded
from downstream analysis (Fig. 2h).

Next, we asked whether cell spike-in standards could reduce
the technical variation between plates that we observed in the raw
sequencing reads across the DMSO control samples (Supple-
mentary Fig. 4b, top). For example, Plate 6 had markedly fewer
sequencing reads compared to the other plates, but this plate also
had a standard curve with a lower y-intercept, reflecting
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the starting representation of the five co-cultured breast cancer cell lines. Original cell line pools were prepared by mixing equal numbers of one cell line
expressing ZsGreen with each of the other four cell lines expressing dTomato. Flow cytometry analysis measured the percentage of GFP positive cells in
each pool over time. e Heat maps displaying the percentage of GFP positive cells at various time points as measured using flow cytometry. Left: Original
cell line pools that started with 20% of each cell line on Day 0. Right: Optimized cell line pools predicted to contain 20% of each cell line on Day 7. Source
data and gating strategy are provided as a Source data file. f Representation of five breast cancer cell lines as measured by counting the number of
sequencing reads for each cell line barcode across the 96 DMSO samples. g Representation of sgRNAs as measured by counting the number of sequencing
reads for each sgRNA barcode relative to the total number of sequencing reads for that cell line across the 96 DMSO samples. h Standard deviation of the
interpolated cell number for each cell line-sgRNA pair across the 96 DMSO samples. Dotted line indicates threshold for excluding cell line-sgRNA pairs
with high variability. Source data are available in the Source data file.
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proportionally lower total reads compared to the other plates
(Supplementary Fig. 4a). Thus, utilizing sample-specific standard
curves to interpolate cell number from sequencing reads
improved this and other variation between plates (Supplementary
Fig. 4b, bottom). For each of the five cell lines, we observed a
statistically significant decrease in variation between plates upon
interpolation (ZR-75-1: SD, −53% compared with raw reads, F
test: P= 6.3e−3) (SKBR3: SD, −66% compared with raw reads, F
test: P= 1.4e−4) (HCC-38: SD, −88% compared with raw reads,
F test: P= 5.9e−11) (MDA-MB-231: SD, −71% compared with
raw reads, F test: P= 2.4e−5) (BT-20: SD, −67% compared with
raw reads, F test: P= 1.1e−4) (Supplementary Fig. 4c). Thus, cell
spike-in standards serve as an internal control for normalizing
data for each sample, thereby reducing technical variation and
improving overall data quality.

Identification and validation of cell line–gene–drug interac-
tions. We next examined whether we could detect known cell
line-specific and gene-specific drug vulnerabilities within complex
mixtures of cells (five cell lines × 12 genetic perturbations) using
QMAP-Seq. As expected, the ER+ cell line ZR-75-1 was pre-
ferentially sensitive to 4-Hydroxytamoxifen, and the HER2+ cell
line SKBR3 was preferentially sensitive to Lapatinib (Fig. 3a). In
addition, knockout of SLC35F2 conferred resistance to YM155,
most prominently in the triple-negative breast cancer cell lines
that were most sensitive to this compound (Fig. 3a).

In total, a single next-generation sequencing run consisting of
1.3 billion reads provided the capacity to make 86,400 relative cell
number measurements (Supplementary Data 8), plot 10,800
dose–response curves (Supplementary Fig. 5), and calculate
21,600 AUCs (Supplementary Data 9). Despite profiling five
times as many cell lines for this QMAP-Seq experiment
compared to our pilot QMAP-Seq experiment with one cell line,
the AUC measurements from the common cell line-compound
pairs were highly correlated between these two independent
experiments (r= 0.9324) (Fig. 3b). Thus, neither mixing different
parental cell lines nor increasing the total number of cell types
analyzed altered the performance of QMAP-Seq.

Statistical analysis revealed 60 cell line–gene–drug interactions
that conferred compound sensitivity (AUC difference <−25 and
P < 0.05) and 124 cell line–gene–drug interactions that conferred
compound resistance (AUC difference >25 and P < 0.05) com-
pared to sgNT (see “Methods” for details) (Fig. 3c, Supplementary
Data 10). To characterize the type of pathways enriched among
the compounds involved in the top sensitivity and resistance
interactions, we compared the expected distribution of the 19
pathways in our compound collection (Fig. 2c) with the observed
distribution of these pathways among the 60 sensitivity interac-
tions and the 124 resistance interactions. Notably, the most
significantly enriched pathway among the sensitivity interactions
was proteasome and metabolic enzyme compounds, particularly
proteasome inhibitors (Fig. 3d), suggesting that proteasome
inhibition is especially lethal under conditions of proteostasis
factor depletion. Epigenetics and apoptosis were also significantly
enriched among the sensitivity interactions, whereas anti-infec-
tion, cytoskeleton, protein tyrosine kinase, cell cycle, and DNA
damage were the most enriched pathways among the resistance
interactions (Fig. 3d).

Among the top chemical–genetic interactions identified using
QMAP-Seq (Fig. 3e) was loss of four proteostasis factors (ATF4,
HSF2, HSF1, NFE2L2) further sensitizing MDA-MB-231 cells to
the proteasome inhibitor, Carfilzomib (Fig. 3f, top), corroborating
previous findings that loss of these factors enhances sensitivity to
proteasome inhibitors in cancer cells40–43. To validate these
pooled screening hits in traditional arrayed format, we treated

MDA-MB-231 cells possessing individual gene knockouts with
Carfilzomib for 72 h and measured their intracellular reducing
potential as a proxy of cell viability. As we observed using
QMAP-Seq, knockout of these proteostasis factors further
sensitized MDA-MB-231 cells to Carfilzomib (Fig. 3f, bottom).
We conclude that proteostasis factor depletion is synthetic lethal
with proteasome inhibition and more broadly, chemical–genetic
interactions uncovered using heterogenous mixtures of cell lines
are reproducible using homogenous cell lines.

QMAP-Seq enables proteostasis network mapping in breast
cancer. To further investigate the strongest chemical–genetic
interactions in our dataset, we assembled a chemical–genetic
interaction map of the highest confidence interactions (absolute
AUC difference >60 and P < 0.05) (Fig. 4a). This network
incorporated both synthetic lethal gene–drug interactions and
synthetic rescue gene–drug interactions. The map revealed hub
compounds that synergize with loss of multiple proteostasis fac-
tors. For example, the proteasome inhibitor, Carfilzomib dis-
played five synthetic lethal chemical–genetic interactions with
proteostasis factors from distinct branches of the proteostasis
network. We also observed hub characteristics for compounds
not previously connected to proteostasis, including the
procaspase-3 activator, PAC1, and the DNA methyltransferase
inhibitor, Lomeguatrib.

To model the overall structure of the proteostasis network, we
assessed the functional similarity of each proteostasis factor’s
chemical–genetic interaction profiles. Specifically, we quantified
the Spearman correlation between all gene–gene pairs based on
AUC difference across all cell line and compound contexts
(Fig. 4b). Using this approach, genes with similar compound
sensitivity and resistance profiles clustered together, revealing
several known genetic relationships (Fig. 4c). For example,
because KEAP1 negatively regulates NRF2 (NFE2L2), the master
transcriptional regulator of the oxidative stress response44, we
expected a low degree of correlation between these two factors.
Indeed, NFE2L2 and KEAP1 displayed the third lowest correla-
tion. In addition, we observed a high correlation between ERN1
and XBP1, which was expected given that the ER stress sensor,
IRE1 (ERN1), activates XBP1 through mRNA splicing45.

This approach also revealed previously unknown genetic
relationships (Fig. 4c). For example, the highest correlation was
observed between NFE2L2 and XBP1. While the relationship
between these two factors in the context of breast cancer is
unknown, XBP1 has been shown to activate NRF2 in athero-
sclerosis46 and retinal pigment epithelium cells47. Furthermore,
the paralogs HSF1 and HSF2 have been reported to function
cooperatively48–51, antagonistically52, and in a context-dependent
manner53. Interestingly, HSF1 and HSF2 displayed the second
highest correlation, providing evidence in support of a coopera-
tive interaction in breast cancer. The lowest correlation genetic
interaction was observed between ATF4 and KEAP1, which is not
entirely surprising considering KEAP1 has been reported to
negatively regulate ATF4 expression in other cancer models54.
Altogether, we conclude that chemical–genetic profiling using
QMAP-Seq provides insight into the organization of the
proteostasis network in breast cancer cells and has the power to
reveal genetic relationships.

Discussion
Here, we introduce QMAP-Seq, a highly multiplexed chemical–
genetic profiling strategy that enables systematic phenotyping of
dozens of cell lines with defined genetic perturbations across
thousands of individual compound treatments. We also present a
bioinformatic analysis pipeline that simplifies the processing of
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thousands of fastq files into over 10,000 dose–response curves.
QMAP-Seq has several major advantages over existing methods
for the identification of chemical–genetic interactions in mam-
malian cells. For one, our pooled approach provides substantial

gains in throughput, facilitating over 50 times as many cell via-
bility measurements per sample as established arrayed assays. By
introducing sample-specific indexes, thousands of compound
treatment samples are further pooled and sequenced together in a
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Fig. 3 Identification and validation of cell line–gene–drug interactions. a Heat maps displaying the relative cell number for each cell line-sgRNA pair 72 h
after treatment with 4-Hydroxytamoxifen (4-OHT), Lapatinib, or YM155 as measured using QMAP-Seq. Data are represented as mean of two biologically
independent replicates. Asterisks denote positive controls. b Scatterplot of the dose–response curve AUC as determined using QMAP-Seq with one cell
line versus QMAP-Seq with multiple cell lines. Common compounds for MDA-MB-231 cells are shown. Statistical significance of Pearson correlation was
determined using a two-tailed test (n= 220 compound-sgRNA combinations). c Volcano plot depicting cell line–gene–drug interactions. Magnitude was
determined by calculating the difference in mean AUC between sgRNA and sgNT for every cell line-compound combination. Statistical significance was
determined using an unpaired, two-tailed t test (n= 2 biologically independent replicates). Blue dots indicate interactions where the knockout confers
greater sensitivity than sgNT. Red dots indicate interactions where the knockout confers greater resistance than sgNT. d Pathways targeted by compounds
involved in the top 60 sensitivity interactions (blue circles) or top 124 resistance interactions (red circles) that were significantly enriched compared to
expected pathway representation. Statistical significance of pathway enrichment was determined using a one-tailed binomial test to compare observed
distribution with expected distribution (n= 180 compounds). e List of the top 12 conditions that confer compound sensitivity or resistance. f Top:
Dose–response curves for four of the top chemical–genetic interactions as measured using QMAP-Seq. Each data point represents one of two biologically
independent replicates. Bottom: Dose–response curves as measured using Resazurin Cell Viability Kit. Each data point represents one of three biologically
independent replicates. For clarity, individual proteostasis factor knockout curves are partioned across four panels; sgNT is same in all cases.
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single next-generation sequencing run. This distinguishes QMAP-
Seq from PRISM24, an approach that uses microsphere bead
technology for multiplexing cell lines, but not compound treat-
ments. Another important feature of QMAP-Seq is the use of
genetically engineered isogenic cell line pairs, which enables direct
assessment of the contribution of a single genetic perturbation to
compound sensitivity. It is worth noting, however, that other
pooled assays could in principle profile isogenic cell line pairs,
while QMAP-Seq could be performed with pools of non-isogenic
cell lines. QMAP-Seq leverages readily available next-generation
sequencing, which itself continues to improve in throughput, and is
compatible with common sequencing libraries, such as RNA-Seq.
As a result, the costs associated with QMAP-Seq are 1/10th the cost
of an ATP-based cell viability assay of the same magnitude per-
formed in 384-well format. The compound requirements are also
lower, which is particularly useful when profiling scarce com-
pounds or natural products.

Importantly, the short-term nature of QMAP-Seq (i.e., 72 h
compound treatment) enables profiling of thousands of com-
pounds, which would be technically challenging with existing
genome-scale chemical–genetic methods that require several
weeks of passaging and treating cells prior to readout. The short-
term format also minimizes potential secondary effects that may
arise due to several weeks of exposure to compounds, and thus
identifies the most relevant chemical–genetic interactions. Col-
lectively, these attributes of QMAP-Seq enable accurate mapping
of biological network structure, as we demonstrated for the
proteostasis network.

Nevertheless, QMAP-Seq has certain limitations. For one,
pooling multiple cell lines requires optimization of cell pooling
ratios to ensure adequate representation. However, this could be
bypassed by pooling cell lines with similar doubling times25 or by
profiling one cell line at a time. Additionally, factors secreted by

one cell line could conceivably alter the compound sensitivity of
another cell line in the pool. Although such paracrine-mediated
effects would certainly warrant further studies, we (Fig. 3b, f) and
others24,25 have yet to observe any major difference in drug
response measurements from pooled versus arrayed formats.
Finally, while QMAP-Seq is compatible with standard cell via-
bility readouts, it is less suitable for assessing non-cell viability
phenotypes. It could, however, be adapted to non-standard
readouts by isolating cells that possess the desired phenotype
prior to sequencing.

We envision several potential applications of QMAP-Seq. For
one, networks of genes identified using genome-scale
chemical–genetic studies could be investigated further using
QMAP-Seq with a broader range of compounds and a more
focused set of genes. Notably, the QMAP-Seq experiments
described in this paper were performed without significant
automation. By employing automation, this assay could readily be
scaled to encompass an even larger number of compounds. In
addition, QMAP-Seq could be used to directly characterize the
impact of individual cancer-specific alterations55,56 on ther-
apeutic response, which may improve patient stratification and
treatment outcomes. Moreover, QMAP-Seq could be adapted to
enable more sophisticated assays. For example, to better model
the contribution of the tumor microenvironment to drug
response, it could be used for chemical–genetic profiling of bar-
coded cancer cells grown in the presence of stromal cells. Lastly,
other types of perturbations besides chemical treatments could be
applied, such as nutrient conditions, to assess the consequence of
diverse perturbations on cell viability across multiple genetic
contexts. As more QMAP-Seq data is collected over time from
these and other potential applications, we see value in building
searchable databases that could serve as a resource for the broader
scientific community.
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Overall, we report the development of the QMAP-Seq
experimental and bioinformatic pipeline and the application of
this chemical–genetic profiling approach to the proteostasis net-
work. QMAP-Seq addresses the need for a direct, non-correlative
method for assessing compound selectivity across multiple cel-
lular and genetic contexts in a high-throughput and scalable
manner. It provides a path toward cancer precision medicine by
predicting clinically actionable synthetic lethal and synthetic
rescue interactions. QMAP-Seq represents the first application of
chemical–genetic profiling to map biological networks and reveal
functional genetic relationships in mammalian cells. Above all,
the QMAP-Seq platform is well-suited to answer a broad range of
clinical and biological questions and can be readily adopted by
standard laboratories without the need for highly specialized
equipment.

Methods
Plasmid construction. For cloning doxycycline-inducible Cas9, 3xFLAG-Cas9-
EGFP was amplified from pSpCas9(BB)-2A-GFP (Addgene, Plasmid #48138)57

with Cas9 EcoRI F and EGFP BamHI R (Supplementary Data 11) and inserted
within the EcoRI and BamHI restriction sites of the pLVX-TetOne vector (Clon-
tech, #631846) using the In-Fusion HD Cloning Kit (Clontech, #638909),
according to manufacturer’s instructions.

For inserting cell line barcodes downstream of the gRNA scaffold and upstream
of cPPT/CTS within the lentiGuide-Puro vector (Addgene, Plasmid #52963)58,
EcoRI and BamHI restriction sites were introduced flanking the future cell line
barcode insertion site by amplifying two overlapping fragments with Barcode Frag1
F/R and Barcode Frag2 F/R (Supplementary Data 11). The two fragments were
inserted within the Mph1103I and SmaI restriction sites of lentiGuide-Puro using
the In-Fusion HD Cloning Kit (Clontech, #638909), according to the
manufacturer’s instructions. Six unique 8 bp cell line barcode sequences were
inserted within the EcoRI and BamHI restriction sites of the modified lentiGuide-
Puro vector by resuspending the top and bottom strands of the cell line barcode
oligos (Supplementary Data 11) to a final concentration of 100 μM. Oligo pairs
were phosphorylated and annealed by combining 1 μL 100 μM cell line barcode
top, 1 μL 100 μM cell line barcode bottom, 5 μL 2x Quick Ligation Buffer, 1 μL T4
PNK, and 2 μL ddH2O and incubating in thermocycler as follows: 37 °C for 30 min,
95 °C for 5 min, ramp down to 25 °C (5 °C per minute). Cell line barcode oligos
were inserted within the EcoRI and BamHI restriction sites of the modified
lentiGuide-Puro vector.

Gene-targeting sgRNAs sourced from the Brunello Human CRISPR Knockout
Pooled Library59 and non-targeting (NT) sgRNAs sourced from ref. 58 and ref. 9

were inserted into the cell line barcoded lentiGuide-Puro vectors by resuspending
the top and bottom strands of the sgRNA oligos (Supplementary Data 11) to a final
concentration of 100 μM. Oligo pairs were phosphorylated and annealed by
combining 1 μL 100 μM sgRNA top, 1 μL 100 μM sgRNA bottom, 5 μL 2x Quick
Ligation Buffer, 1 μL T4 PNK, and 2 μL ddH2O and incubating in thermocycler as
follows: 37 °C for 30 min, 95 °C for 5 min, ramp down to 25 °C (5 °C per minute).
sgRNA oligos were cloned into the barcoded lentiGuide-Puro vectors by combining
100 ng vector, 2 μL 1:200 diluted oligo duplex, 2 μL 10x FastDigest Buffer, 1 μL 10
mM DTT, 1 μL 10mM ATP, 1 μL BsmBI, 0.5 μL Quick Ligase, and ddH2O to a
final volume of 20 μL and incubating in thermocycler as follows: 37 °C for 5 min,
21 °C for 5 min, repeat for a total of 6 cycles. Ligation reactions were treated with
PlasmidSafe exonuclease by combining 11 μL ligation reaction, 1.5 μL 10x
PlasmidSafe Buffer, 1.5 μL 10 mM ATP, and 1 μL PlasmidSafe exonuclease and
incubating in thermocycler as follows: 37 °C for 30 min, 70 °C for 30 min. Ligation
reactions were transformed into Stbl3 cells. All plasmid sequences were verified by
Sanger sequencing.

Cell culture. 293T, ZR-75-1, SKBR3, HCC-38, MDA-MB-231, and BT-20 cells
were obtained from ATCC. 293T cells were cultured in DMEM medium (Gibco,
#11995073) supplemented with 10% Tet System Approved Fetal Bovine Serum
(Clontech, #631106) and 1% Penicillin/Streptomycin (Gibco, #15140122). To
facilitate co-culturing cell lines in mixtures, ZR-75-1, SKBR3, HCC-38, MDA-MB-
231, and BT-20 cells were cultured individually or collectively in a common growth
medium: RPMI-1640 medium (Gibco, #11875119) supplemented with 10% Tet
System Approved Fetal Bovine Serum (Clontech, #631106) and 1% Penicillin/
Streptomycin (Gibco, #15140122). All cell lines were authenticated at the Uni-
versity of Arizona Genetics Core and tested negative for mycoplasma
contamination.

Cell engineering. For engineering Cas9-expressing breast cancer cell lines, virus
was produced from pLVX-TetOne Cas9 lentiviral transfer plasmid as specified in
the application note for Lipofectamine 3000 Transfection Reagent (Invitrogen,
#L3000015), but substituting pMD2.G envelope plasmid and psPAX2 packaging
plasmid for ViraPower Lentiviral Packaging Mix. ZR-75-1, SKBR3, HCC-38,

MDA-MB-231, and BT-20 cells were transduced with virus and induced with
either 100 ng/mL doxycycline (ZR-75-1, SKBR3, BT-20) or 10 ng/mL doxycycline
(HCC-38, MDA-MB-231) for 7 days (refreshing doxycycline every 3 days).
Induced cells were gated into three equal-size bins based on GFP brightness and
sorted for medium GFP+ cells.

For introducing sgRNA libraries, pooled sgRNA plasmid libraries possessing
appropriate cell line barcodes were generated by combining equal amounts of 11
gene-targeting sgRNA plasmids and a pool of five NT sgRNA plasmids (sgNT_0-4).
Virus was produced with Lipofectamine 3000 Transfection Reagent (Invitrogen,
#L3000015) as described above and was functionally titered on its respective cell line
using serially-diluted virus. ZR-75-1, SKBR3, HCC-38, MDA-MB-231, and BT-20
Cas9 cells were transduced with appropriate sgRNA libraries at MOI= 0.3,
maintaining coverage of at least 7500 cells per sgRNA. Transduced cells were selected
using 2 μg/mL puromycin (InvivoGen, #ant-pr-1) for 3 days.

For generating cell spike-in standards, virus for five NT sgRNA plasmids
(sgNT_5-9) possessing the 293T cell line barcode was produced in an arrayed
format. 293T cells were transduced with the viruses individually. Transduced cells
were selected using 2 μg/mL puromycin (InvivoGen, #ant-pr-1) for 3 days. To pool,
cell lines were detached, resuspended in PBS, counted, and pooled at the following
ratio: 1x sgNT_5, 3x sgNT_6, 9x sgNT_7, 27x sgNT_8, 81x sgNT_9. Pooled cells
were aliquoted, pelleted at 425 × g for 5 min, and stored at −20 °C.

Western blot analysis. For assessing induction of FLAG-Cas9, MDA-MB-231
pLVX-TetOne Cas9 cells were treated with 0, 0.5, 1, 2, 5, or 10 ng/mL doxycycline
(Clontech, #631311) for 48 h. Cells were harvested and lysed in buffer containing
50 mM Tris, pH 7.5, 1 mM EDTA, 150 mM NaCl, 1% Triton X-100, 0.1% SDS.
Protein concentration was measured using the BCA Protein Assay Kit (Pierce,
#23225). Five micrograms of total protein per lane was electrophoresed and
transferred using an iBlot 2 Dry Blotting System (Thermo Fisher Scientific).
Membrane was probed with 1:1000 Anti-FLAG primary antibody (Sigma-Aldrich,
#F3165) followed by 1:10,000 Anti-Mouse IgG-Peroxidase secondary antibody
(Sigma-Aldrich, #A9044), developed with Immobilon Western Chemiluminescent
HRP Substrate (Millipore, #WBKLS0500), visualized using a ChemiDoc Touch
Imaging System (Bio-Rad), and analyzed using Image Lab 5.2.1 (Bio-Rad).
Membrane was stripped with ReBlot Plus Mild Antibody Stripping Solution
(Millipore, #2502) and reprobed with 1:10,000 Anti-Alpha Tubulin primary anti-
body (Abcam, #ab80779) followed by 1:10,000 Anti-Mouse IgG-Peroxidase sec-
ondary antibody (Sigma-Aldrich, #A9044).

For confirming whole population knockout of the proteostasis factors, MDA-
MB-231 pLVX-TetOne Cas9 cells transduced with appropriate sgRNAs were
treated with 10 ng/mL doxycycline (Clontech, #631311) for 96 h (refreshing
doxycycline every 2 days) to induce Cas9 expression prior to harvesting. Western
blot analysis was performed as described above using the following antibodies:
1:1000 Anti-HSF1 (Santa Cruz Biotechnology, #sc-9144), 1:1000 Anti-HSF2 (Santa
Cruz Biotechnology, #sc-13517), 1:1000 Anti-IRE1 (Cell Signaling Technology,
#3294), 1:1000 Anti-XBP1 (Cell Signaling Technology, #12782), 1:1000 Anti-ATF3
(Abcam, #ab207434), 1:1000 Anti-ATF4 (Cell Signaling Technology, #11815),
1:1000 Anti-ATF6 (Cell Signaling Technology, #65880), 1:1000 Anti-ATG7 (Cell
Signaling Technology, #8558), 1:1000 Anti-NRF2 (Cell Signaling Technology,
#12721), 1:1000 Anti-KEAP1 (Cell Signaling Technology, #4617), 1:10,000 Anti-
Alpha Tubulin (Abcam, #ab80779), 1:10,000 Anti-Beta Actin (Thermo Fisher
Scientific, #MA5-15739). All uncropped blots are provided as a Source data file.

Relative cell abundance competition experiment. ZR-75-1, SKBR3, HCC-38,
MDA-MB-231, and BT-20 cells were transduced with pHIV-Luc-ZsGreen
(Addgene, Plasmid #39196) or pUltra-Chili-Luc (Addgene, Plasmid #48688) and
sorted for GFP+ or RFP+ cells, as appropriate.

For preparing the five original pools, fluorescently labeled cell lines were
counted, pooled, and frozen in liquid nitrogen. Pools were thawed on Day 0 and
cultured normally. Six days and 13 days after thawing, the percentages of GFP+
and RFP+ cells were quantified by flow cytometry analysis using a LSRFortessa
Cell Analyzer (BD Biosciences).

For estimating the growth rate (r) of each of the five cell lines, the equation for
exponential cell growth was used:

xt ¼ x0ð1þ rÞt ;

where xt= percentage at day t, x0= percentage at day 0, r= growth rate, and t=
time [days]. Growth rates (r) were then used to calculate the optimal starting
percentage (x0) of each cell line to achieve 20% representation at t= 7 days.

For preparing the five optimized pools, fluorescently labeled cell lines were
counted, pooled according to our model, and frozen in liquid nitrogen. Pools were
thawed on Day 0 and cultured normally. Seven days after thawing, the percentages
of GFP+ and RFP+ cells were quantified by flow cytometry analysis using a
LSRFortessa Cell Analyzer (BD Biosciences). Heat maps were generated using
Cluster 3.0 and Java TreeView 1.1.6r4.

Cell pooling. For preparing cell pools for QMAP-Seq with multiple cell lines (five
cell lines × 12 genetic perturbations), individual cell line pools consisting of
12 sgRNAs (11 gene-targeting sgRNAs+ 5 pooled NT sgRNAs) were prepared as
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described in “Cell engineering”. Each of the five individual cell line pools was
counted, pooled with the other four cell line pools according to ratios derived from
the relative cell abundance competition experiment, and frozen in liquid nitrogen
(2,000,000 total cells per vial).

Cell viability assays. For confirming the efficacy of the sgRNAs that target
SLC35F2, MDA-MB-231 pLVX-TetOne Cas9 cells engineered with either sgNT or
one of the four sgRNAs targeting SLC35F2 were induced with 100 ng/mL dox-
ycycline for 6 days (refreshing doxycycline every three days). In total, 1000 cells
were seeded in a volume of 50 μL in opaque 384-well plates. The next day, YM155
was added over a nine-point concentration range in quadruplicate using a D300e
Digital Dispenser (Tecan). Seventy-two hours later, cell viability was measured
using the CellTiter-Glo Luminescent Cell Viability Assay (Promega, #G7572).
Luminescence was read using an Infinite M1000 PRO (Tecan) with an integration
time of 500 ms.

For live-cell imaging, pooled MDA-MB-231 pLVX-TetOne Cas9 cells
engineered with 12 sgRNAs were induced with 100 ng/mL doxycycline for six days
(refreshing doxycycline every 3 days). In total, 5000 pooled cells were seeded in a
volume of 100 μL in 96-well plates. The next day, 89 compounds were added over
the indicated four-point concentration range in duplicate from custom compound
plates prepared at the High Throughput Analysis Laboratory (Northwestern
University). Seventy-two hours later, the percent confluence of the population of
cells in each well was measured (4X objective, whole-well imaging, phase channel)
using an IncuCyte ZOOM Live-Cell Analysis System GUI version 2015A (Essen
BioScience). To calculate relative cell confluence, the percent confluence of a
compound-treated well was normalized to the median percent confluence of
DMSO-treated wells.

For validating QMAP-Seq hits using Resazurin, MDA-MB-231 pLVX-TetOne
Cas9 cells engineered with appropriate sgRNAs were induced with 100 ng/mL
doxycycline for 6 days (refreshing doxycycline every 3 days). In total, 5000 cells
were seeded in a volume of 100 μL in 96-well plates. The next day, Carfilzomib was
added over the indicated four-point concentration range in triplicate using a D300e
Digital Dispenser (Tecan). Seventy-two hours later, cell viability was measured
using the Resazurin Cell Viability Kit (Cell Signaling Technology, #11884). Relative
fluorescent units were read (excitation= 550 nm, emission= 605 nm) using an
Infinite M1000 PRO (Tecan).

For all cell viability assays, dose–response curves were fit in GraphPad Prism 8
using the log(inhibitor) vs. response model (three parameters) with the top
constrained to 100%.

Compounds. YM155 was obtained from Selleckchem (#S1130). Compounds for
QMAP-Seq were obtained from the FDA-Approved Drug Library (MedChemEx-
press, #HY-L022), the Clinical Compound Library (MedChemExpress, #HY-L026),
or from the following vendors: 4-Hydroxytamoxifen was obtained from Sigma-
Aldrich (#H7904), and Bortezomib was obtained from Cayman Chemical
(#10008822). For validation experiments, Carfilzomib was obtained from a dif-
ferent vendor (Cayman Chemical, #17554) than where it was sourced for QMAP-
Seq.

Selection of compounds and doses for QMAP-Seq. Compounds for QMAP-Seq
with multiple cell lines spanned six categories: positive controls, chemotherapeutics,
targeted therapies (NCI), targeted therapies (OncoKB), diverse compounds
(Informer Set), and proteostasis-modulating compounds. Relevant positive controls
(4-Hydroxytamoxifen, Fulvestrant, Lapatinib, and YM155) were included. For all
remaining compound categories, compounds that were not part of the FDA-
Approved Drug Library (MedChemExpress, #HY-L022) or the Clinical Compound
Library (MedChemExpress, #HY-L026) were filtered out. One compound per
compound class was selected from breast cancer chemotherapeutics (Supplementary
Fig. 3). Compounds that were classified as OncoKB Levels 1–4 for the indications of
breast cancer, all solid tumors, or all tumors were selected from the OncoKB tar-
geted therapies60. The existence of specific genetic alterations in breast cancer was
confirmed using cBioPortal61,62. Up to two proteostasis-modulating compounds per
target were incorporated.

Compounds were applied over a four-point concentration range (10-fold
dilutions) in duplicate using one of two dose ranges. The standard dose range
encompassed doses from 10 nM to 10 μM, and the low dose range covered doses
from 1 nM to 1 μM. Dose ranges were selected by referencing doses previously used
for treating cancer cell lines, including the Informer Set22, Cancer Therapeutics
Response Portal v221–23, Genomics of Drug Sensitivity in Cancer18–20, and
Selleckchem.

QMAP-Seq
Induction, seeding, and compound treatment. A step-by-step protocol describing
the QMAP-Seq protocol can be found at Protocol Exchange63. For QMAP-Seq
with multiple cell lines, pooled cell lines (five cell lines × 12 genetic perturbations)
were thawed in media containing 100 ng/mL doxycycline (Clontech, #631311).
Three days later, cells were expanded and doxycycline was refreshed. Three more
days later, 5000 pooled cells were seeded in a volume of 100 μL in 96-well plates
using an EL406 Microplate Washer Dispenser (BioTek Instruments), while

maintaining doxycycline induction. The next day, 180 compounds were added over
a four-point concentration range in duplicate from custom compound plates
prepared at the High Throughput Analysis Laboratory (Northwestern University).
Briefly, compound plates containing 500 nL of compound at 1000× were resus-
pended in 250 μL media per well to achieve 2× compound concentration, and 100
μL of 2× compound was distributed to replicate wells using multichannel pipet.
Cells were treated for 72 h.

Lysis of cell spike-in standards. Cell spike-in standards were thawed at room
temperature for 5 min and resuspended in Lysis Buffer (10% 10x Taq DNA
Polymerase Buffer (Invitrogen, #18067017), 0.45% IGEPAL CA-630 (Sigma-
Aldrich, #I8896), 0.45% TWEEN 20 (Sigma-Aldrich, P9416), 10% Proteinase K
(Qiagen, #19133), 79.1% Nuclease-Free Water (Qiagen, #129115)) to achieve a
concentration of 36.3 total cell spike-in standards/μL. Cells were homogenized
using a 5 mL syringe and a 21G × 1″ needle three times followed by a 27G × ½″
needle three times. Cells were incubated in 60 °C water bath for 1 h, pipetting up
and down every 20 min.

Lysis of compound-treated cells. After 72 h of compound treatment, compound-
treated cells were washed with 100 μL PBS. 50 μL Lysis Buffer containing 36.3 total
cell spike-in standards/μL (1815 spike-in cells/well) was added using multichannel
pipet. Plates were covered with foil adhesive and incubated in 60 °C oven for 1 h.
Cell lysates were transferred to PCR plates using multichannel pipet. Proteinase K
from Lysis Buffer was inactivated at 95 °C for 15 min using thermocycler.

Sequencing library preparation. A 359–367 bp fragment (depending on stagger
length) containing the sgRNA and cell line barcode was amplified with a unique set
of P5 and P7 primers for each well by combining the following reagents: 6 μL 10x
Taq DNA Polymerase Buffer, 1.2 μL 10mM dNTP Mix, 1.8 μL 50 mM MgCl2, 0.6
μL DMSO (Sigma-Aldrich, #D8418), 6 μL 1 μM P5 Primer Mix (mix of 0-8nt
staggered primers), 6 μL 1 μM P7 Primer, 8 μL Lysate (Proteinase K inactivated
again just prior to PCR), 30.16 μL Water, 0.24 μL Platinum Taq DNA Polymerase
(Invitrogen, #10966034). To reduce the likelihood of PCR jackpot effects, half of
the PCR volume from each reaction was transferred to a second set of PCR
plates. PCRs were run in thermocycler as follows: 94 °C for 4 min, (94 °C for 30 s,
60 °C for 30 s, 72 °C for 30 s, repeat for a total of 29 cycles), 72 °C for 15 min,
4 °C hold.

Technical duplicates were recombined. Library size was verified by running 5 μL
of PCR products on E-Gel 96 2% Agarose gels (Invitrogen, #G7008-02). An equal
volume (6 μL) of each PCR product was pooled together. The concentration of the
pooled PCR products was measured using the Qubit dsDNA HS Assay Kit
(Invitrogen, #Q32854). Pooled PCR products were purified using the QIAquick
PCR Purification Kit (Qiagen, #28106) with sufficient PCR purification columns to
avoid exceeding the maximum binding capacity of each column. The concentration
of the purified sample was measured using the Qubit dsDNA HS Assay Kit
(Invitrogen, #Q32854). The purified sample was purified a second time using the
Purification Module with Magnetic Beads (Lexogen, #022.96). The final library
concentration was measured using the Qubit dsDNA HS Assay Kit (Invitrogen,
#Q32854).

Next-generation sequencing. The sequencing library was diluted to 2.5 nM, com-
bined with PhiX (Illumina, #FC-110-3001) to achieve 25% PhiX (to increase
nucleotide diversity), and denatured. The sequencing library was loaded on a
NovaSeq 6000 (Illumina) using a NovaSeq 6000 S1 Reagent Kit, 200 cycles, 1.3B
Reads (Illumina, #20012864). Single-end sequencing was performed using the
following run parameters: Illumina Read 1 Primer: 164 cycles (to sequence sgRNA,
cell line barcode), Illumina Index 1 Primer: 6 cycles (to sequence i7 index), Illu-
mina Index 2 Primer: 6 cycles (to sequence i5 index).

Sequencing data processing. Individual samples were demultiplexed based on i5 and
i7 index sequences (Supplementary Data 3 and 4) by running bcl2fastq2 Con-
version Software v2.20 (Illumina). sgRNA and cell line barcode sequences were
extracted from Read 1 sequences as follows: [ACACCG][sgRNA:20][Interval:102]
[CellLineBarcode:8]. The number of reads for each cell line-sgRNA pair was
counted, allowing up to one nucleotide mismatch per barcode. Next, cell number
was interpolated from sequencing reads using sample-specific standard curves. The
number of cells for a compound-treated sample was normalized to the median
number of cells for the DMSO-treated samples.

Relative cell numbers were plotted as heat maps and dose–response curves.
Heat maps were generated using Cluster 3.0 and Java TreeView 1.1.6r4.
Dose–response curves were fit in GraphPad Prism 8 using the log(inhibitor) vs.
response model (three parameters) with the top constrained to 100%. The area
under the curve (AUC) was calculated using the equation: AUC= 0.5(dose 1 cell
number)+ dose 2 cell number+ dose 3 cell number+ 0.5(dose 4 cell number).

Data were filtered using the following exclusion criteria. First, samples with low
read counts were excluded, which included these compounds: ABT199, Belinostat,
BMS345541, Dexamethasone, Fingolimod, and RacRotigotine. Second, cell line-
sgRNA pairs with high variation (standard deviation of log2(cell number) > 0.7)
were excluded, which included these cell line-sgRNA pairs: ZR-75-1 sgHSF1 and
ZR-75-1 sgKEAP1. Third, compounds with an AUC > 550 for any cell line-sgRNA
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pair were excluded, which included these compounds: Ruxolitinib and STF083010
(both in well B7, suggesting a likely technical problem with that well). Fourth,
noncytotoxic cell line-compound pairs (relative cell number of sgNT with the
highest dose ≥ 90%) were excluded, which included 225 cell line-compound
pairs. Fifth, cell line-compound pairs without a significant dose-dependent
reduction in cell viability (difference in relative cell number of sgNT between
lowest and highest dose < 25%) were excluded, which included 366 cell line-
compound pairs (union between fourth and fifth exclusion criteria= 380 cell line-
compound pairs).

QMAP-Seq with one cell line. Experimental and analysis workflows were performed
as described for QMAP-Seq with multiple cell lines with the following modifica-
tions. MDA-MB-231 cells with 12 genetic perturbations were used instead of five
cell lines with 12 genetic perturbations each. Because each sample had five times as
many cells per perturbation in the one cell line experiment (5000 cells ÷ 12 per-
turbations ≈ 417 cells per perturbation) compared to in the five cell line experiment
(5000 cells ÷ 60 perturbations ≈ 83 cells per perturbation), five times as many cells
for each of the cell spike-in standards were added per sample for the one cell line
experiment. The data from Plate 8 was excluded from analysis due to a technical
problem with the addition of cell spike-in standards for that plate. The sequencing
library was loaded on a NextSeq 500 (Illumina) using a NextSeq 500/550 High
Output Reagent Kit, 400M Reads (Illumina, #20024906).

Network analysis. For constructing a chemical–genetic interaction network, data
were filtered as described above. All interactions were then filtered for those
considered significant (P < 0.05) and that had a large effect size (absolute magni-
tude of AUC change >60). These interactions were visualized as an unweighted
network using a standard force-directed layout in Cytoscape v3.7.2 (cytoscape.org).

For assessing functional similarity between proteostasis genes targeted in our
sgRNA library, data were filtered as described above. The AUC difference was
quantified for each genetic perturbation across all 488 cell line-compound contexts.
A Spearman correlation was then calculated for all gene pairs based on
overall similarity of their chemical–genetic interaction profiles.

Statistical analysis. Statistical analysis was performed with GraphPad Prism
8 statistical software. Replicate measurements were taken from distinct biological
samples.

For correlation analysis of replicates, Pearson r was reported, and statistical
significance of Pearson correlation was determined using a two-tailed test (n= 288
compound-dose combinations after excluding Plate 8 data). For correlation
analysis of AUCs between live-cell imaging and QMAP-Seq, Pearson r was
reported, and statistical significance of Pearson correlation was determined using a
two-tailed test (n= 89 compounds). For correlation analysis of AUCs between two
independent QMAP-Seq experiments, Pearson r was reported, and statistical
significance of Pearson correlation was determined using a two-tailed test (n= 220
compound-sgRNA combinations). For comparing the variation between plates for
reads versus cell number, statistical significance was determined using an unpaired,
two-tailed F test to compare variances (n= 16 plates).

For identifying the chemical–genetic interactions with the greatest effect, a
volcano plot was produced after data filtering as described above. The magnitude
was determined by calculating the difference in mean AUC between sgRNA and
sgNT for every cell line-compound combination. The statistical significance was
determined using an unpaired, two-tailed t test (n= 2 biologically independent
replicates). The chemical–genetic interactions with an Absolute AUC Difference
> 25 and P < 0.05 were designated as hits.

For determining pathway enrichment, statistical significance was determined
using a one-tailed binomial test to compare observed distribution to expected
distribution (n= 180 compounds).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data discussed in this publication, including raw fastq files, read counts, and relative
cell numbers, have been deposited in NCBI’s Gene Expression Omnibus and are
accessible through GEO Series accession number GSE155855. Any other relevant data
are available from the authors upon reasonable request. Source data are provided with
this paper.

Code availability
Custom code is available at GitHub (https://github.com/mendillolab/QMAP-Seq)64 and
Code Ocean (https://codeocean.com/capsule/3022355/tree/v1)65.
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