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Serpentine alteration as source of high dissolved
silicon and elevated §39Si values to the marine
Si cycle

3
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Serpentine alteration is recognized as an important process for element cycling, however,
related silicon fluxes are unknown. Pore fluids from serpentinite seamounts sampled in the
Mariana forearc region during IODP Expedition 366 were investigated for their Si, B, and Sr
isotope signatures (&30Si, 8'B, and 87Sr/86Sr, respectively) to study serpentinization in the
mantle wedge and shallow serpentine alteration to authigenic clays by seawater. While
serpentinization in the mantle wedge caused no significant Si isotope fractionation, implying
closed system conditions, serpentine alteration by seawater led to the formation of authigenic
phyllosilicates, causing the highest natural fluid 830Si values measured to date (up to +5.2 +
0.2%0). Here we show that seafloor alteration of serpentinites is a source of Si to the ocean
with extremely high fluid 839Si values, which can explain anomalies in the marine Si budget
like in the Cascadia Basin and which has to be considered in future investigations of the global

marine Si cycle.
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erpentinites are expected to play a fundamental role in the

exchange of Si between the Earth’s mantle and the global

ocean since dissolved Si is taken up during serpentine for-
mation!. Serpentine is a hydrated Mg-silicate (MgeSi;O,0(OH)g)
which forms during the reaction of hydrous fluids with mantle
rocks and occurs in a variety of marine settings including slow-
spreading mid-ocean ridges, rifted continental margins, and fore-
arc regions of subduction zones under a wide range of tem-
perature and pressure regimes?©. At slow and ultra-slow
spreading ridges, serpentinites can make up to 20% of the sea-
floor, extending 3-4 km into the footwall as seawater circulates
through fractures and faults®’. Despite the increasing awareness
of the importance of serpentinization influencing global element
cycles, serpentine alteration (here defined as weathering reaction
after preceding serpentinization) during water-rock interactions
at low temperatures (<20°C) is not well understood. During
alteration reactions, Si is removed from mafic or ultramafic rocks
and partially re-precipitates as authigenic clay minerals, never-
theless resulting in a net gain of Si to the ocean®. However, this Si
flux is associated with an unknown Si isotope composition (839Si)
adding a large uncertainty to models simulating the global Si
cycles. Dissolution and precipitation processes have been found
to induce significant Si isotope fractionation during biotic and
abiotic processes (see recent reviews by Frings et al.” and Sutton
et al.19), spanning a natural range in solid phase §30Si values
between —5.7%o (silcretes)!! and +6.1%o (phytoliths)!2 and in
fluid &%0Si values between —2.05%o (soil solutions)!?® and
+4.66%o (freshwater)!4. Pacific Ocean 80Si values are mainly
controlled by diatom uptake in surface waters, subsequent
dissolution and water mass mixing, spanning a range from
-+0.8%o in Northern Pacific deep water masses to +4.4%o in the
photic zone (average deep Pacific: +1.2+0.2%o, 1 standard
deviation (SD)!>16; for a compilation see Sutton et al.!0 and
Grasse et al.1”). During IODP Expedition 366, pore fluids from
serpentinite seamounts in the Mariana and Izu-Bonin arc region
were sampled, in order to study Si isotope fractionation during
serpentinite-seawater alteration reactions. In addition, radiogenic
Sr (87Sr/%6Sr) and stable B isotopes (811B) were investigated to
further unravel fluid sources and fractionation mechanisms.
Serpentine can incorporate large amounts of B in its crystal
structure (up to 100 ugg~!) and preferentially incorporates the
10B isotope, enriching associated fluids with the 1B isotope!8-21.
Despite this distinct fractionation behavior, a large range of §!1B
values in serpentinites has been detected to date, ranging from
—15.3 to +40.7%0!8-23. B isotopes have been used to study
mineral reactions as B is a fluid mobile element and high amounts
of B can be incorporated in the serpentine crystal lattice, when B
concentrations in the fluids are high (Diserprrz0) = 0.2524).
Therefore, B is a useful tracer to identify fluid-rock processes?>,
including serpentine alteration. Coupling of Si and B isotopes
should result in a positive correlation, in that the light isotope is
incorporated in the authigenic mineral for both isotope systems.
The combination of a new tracer (Si) with a well-established
tracer (B) will help to reveal processes during seawater alteration
of serpentine and authigenic mineral precipitation. The isotopic
results were further evaluated by transport-reaction modeling to
quantify rates of serpentine alteration reactions in contact with
seawater and isotopic fractionation.

Our findings show that serpentine dissolution and the sub-
sequent formation of authigenic minerals is a source of Si and B
to the ocean with very high §3Si and §!!B values. We hypo-
thesize that the results from serpentine alteration are directly
transferable to basalt alteration on the seafloor due to similar
geochemistry of the authigenic mineral assemblages. With regard
to Si cycling, seafloor alteration reactions result in the release of
isotopically heavy Si, which likely impacts marine water mass

isotope signatures and may explain local anomalies in the marine
Si cycle, for example in the Cascadia Basin.

Results and discussion

The Mariana and Izu-Bonin forearc is the only known region on
Earth where serpentinite seamounts form above a non-
accretionary convergent plate margin. Permeable faults serve as
long-lived pathways for deep-sourced fluids and serpentinized
mud to ascend to the surface?0-8. Two seamounts were inves-
tigated (Yinazao and Fantangisfia), which are located at 55 km
and 62 km from the trench axis, respectively (Fig. 1a, b). Three
drill cores were recovered from Yinazao (1491B and C, 1492B)
and three from Fantangisia seamount (1498A and B, 1497B;
Fig. 1a, b; Supplementary Table 1). Drill cores were taken from
the flanks of the seamounts (except coring location 1497B, which
was located close to the seamount summit), in order to study
mineral reactions during water-rock reactions induced by sea-
water circulating through the mount flanks. Thermal gradients
induce temperature changes of <2 °C from the shallowest (about
4°C) to the deepest sample (about 6°C) for both seamounts?8
and reaction temperatures are thus similar between the individual
samples with regard to the maximum seawater penetration depth
of about 30 m. Recovered material in the uppermost 4-5 m core
sections consisted of pelagic clays at Yinazao and sandy silt at
Fantangisfia seamount. Deeper parts of the seamounts were
composed of serpentinite mud which contained xenoliths of the
underlying forearc crust and mantle, and the subducting plate?8.
A detailed description of the lithostratigraphic units of the
investigated seamounts can be found in Fryer et al.28.

The Si concentrations in fluids from both seamounts vary
unsystematically with depth (range from 44 to 516 uM Si, Sup-
plementary Table 1; NW Pacific seawater: 146 uM Si'®). In contrast
to the Si concentrations, Si isotope values generally increase from
+0.4%0 to +5.2%0 with depth, with the majority being higher
compared to deep NW Pacific seawater (§3Sigy: +1.05%0!%). The
maximum §30Si value in the fluids sampled at the mount flanks
(+5.2£0.2%0; 2SDeyternal reproducibility) constitutes the highest
natural fluid §3°Si measured to date (Fig. 1c). In contrast to the
large isotope variability observed in the fluids, serpentinite muds
show only a small range in §30Si between —0.6%o and +0.1%o,
independent of seamount and sampling site (Supplementary
Table 2, Supplementary Fig. 1). The fluids are further char-
acterized by high B concentrations (from 245 to 758 uM B) with a
wide range in 8!1B (416.1 to +43.5%o), which encompasses §!1B
of seawater (seawater B concentration: 432.6 uM2%; §11Bgy:
+39.6%0%0) (Fig. 1c).

The combination of pore fluid §!!B and §30Si values shows a
very good correlation of these two isotope systems (Fig. 2). For
both systems, the isotope values are below and above the seawater
signature, indicating dissolution of presumably serpentine and
precipitation of authigenic mineral phases, respectively. In order
to decipher the processes controlling mineral dissolution and
precipitation, fluid sources and compositional changes in relation
to depth need to be examined.

Origin of pore fluids. Two major fluid sources can be dis-
tinguished based on magnesium (Mg2"), strontium (Sr), and
chloride (Cl™) concentrations, radiogenic Sr isotopes, and pH
(Figs. 3, 4a—c).

Most of the pore fluids show seawater-like signatures in the
upper ~30m (surface layer), except samples from Fantangisia
sites 1498 A and B (Figs. 3, 4a-c). Samples from site 1498B
overlap with the local fluid mantle endmember and can thus be
identified as mantle fluids, showing depleted Mg?* concentra-
tions, high pH values (~11), decreasing Cl~ concentrations, and
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Fig. 1 Sampling location and isotope results. a Sampling area of the two seamounts (Yinazao and Fantangisfia) investigated during IODP Expedition 366
and close up of the sample locations for both seamounts and (b) sketch of the Mariana forearc region with indicated sampling locations (modified after
Fryer et al.28). Blue dotted lines indicate fluid flow along faults. Note mantle-derived fluid flow for site 1498B (see sections “Origin of pore fluids” and

“Drivers of deep mantle-derived 830Si and 8''B values”). ¢ Isotope compositions versus depths (m) are displayed for 830Si and 8"B. Error bars (2 SD of
individual measurements) are within symbol size. Brown area denotes depth of uppermost pelagic clays (<5 m depth) and green area shows mineralogy

dominated by serpentinites and mafic xenoliths.

increasing Sr concentrations, characteristic trends reported for
deep mantle fluids from the Mariana forearc region?%27, Also, a
87Gr/86Sr ratio similar to deep-sourced mantle fluids is measured
(37Sr/86Sr of 0.70535: ODP Site 1200 at South Chamorro
Seamount?®) (see also lower red circle in Fig. 1b). Therefore, we
interpret the related Si and B isotope values to originate from
the deep mantle affected by pervasive serpentinization. Sample
1498 A 15-R-1 shows a high Sr concentration (189 uM) and
a more radiogenic 87Sr/36Sr signature (0.70763; Fig. 4) compared
to the mantle-derived fluids and likely results from mixing
between the two endmembers (seawater and deep-mantle fluid)
discussed above.

Drivers of deep mantle-derived §39Si and §!!B values. During
serpentinization, pore fluid pH can increase rapidly to alkaline
values (pH ~9-1228), so that dissolved B is tetrahedrally coor-
dinated. This is also the species preferentially bound in the ser-
pentine mineral structure, and so limited fractionation between
mineral and water is expected taking also the high formation
temperatures into account (average T of 200 °C)?%-31. The mantle-
derived pore fluids of site 1498B have the lowest §!!B values of
about +16%o and the lowest B concentrations of the investigated

fluids (between 84 and 111 pM; Supplementary Table 1). These
low 8!1B values overlap within error with serpentinized peridotite
clasts and serpentinite matrix identified by Benton et al.!® with
811B values of about +14%o for Conical Seamount in the Mariana
forearc. Consequently, we conclude that no significant B isotope
fractionation occurs during early pervasive high pH serpentini-
zation reactions. In contrast, Si isotopes vary between potentially
mantle-derived fluids (839Si = +1.6%0) and serpentinite muds
(on average 830Si = —0.3 + 0.2%o; 1 SD; Supplementary Table 2).
However, by comparing pristine mantle rocks (§30Si = —0.29 +
0.08%0)32 with the serpentinized muds investigated in this study,
we show no, or only minor, Si isotope fractionation occurs during
the transformation of olivine/ pyroxene to serpentine. This also
confirms the isochemical nature of pervasive serpentinization’.
The pore fluid §30Si value is likely affected during ascent of the
serpentinite muds and accompanied cooling, which induces Si
precipitation and fractionation of Si isotopes.

Processes of serpentine alteration. The investigation of Si and B
isotopes revealed a similar fractionation response during ser-
pentine alteration and shows the potential of coupled Si and B
isotope data to trace serpentine alteration reactions (Fig. 2).
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Fig. 2 Pore fluid 311B versus 539Si values reveal different stages of silicate dissolution and Si precipitation. The mixing curve is calculated following
Eqg. (1) between seawater and a mantle-derived fluid. The gray-shaded area takes the varying low Si concentrations of the mantle-derived fluids into
account (see section “Methods”, “Mixing curve between seawater and a mantle-derived fluid” for details). Error bars (2 SD of individual measurements)
not indicated are within symbol size. Note that the §30Si value of the mantle-derived fluid is likely affected by Si precipitation during fluid ascent and that
the data point from the serpentinite mud is derived from direct 830Si measurements (Supplementary Table 2) and inferred for !B from pore fluids given
that no fractionation occurs during serpentinization (detailed in section “Drivers of deep mantle-derived 83°Si and 8''B values”).
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Fig. 3 Depth-profiles characterizing the layering of the seamount fluid system. a Mg2* concentrations in pore fluids, (b) pH values, (¢) sediment
porosity. Functions were fitted through the data to generate continuous depth profiles for the transport-reaction modeling (Supplementary Methods).

Mg2+ and porosity data are reported in Fryer et al.28.

Interestingly, despite generally increasing Si and B concentra-
tions, the isotope values of both elements increase as well. This
observation seems counterintuitive, in that concentration
increases generally relate to mineral dissolution processes, which
are not associated with significant isotopic fractionation33.
Motivated by this observation, a one-dimensional transport-
reaction model (see “Methods” section and Supplementary
Methods for model details) was set up to constrain—for the first
time—the seawater entrainment rate, the precipitation and dis-
solution rates, and the isotopic fractionation during authigenic

4

mineral formation. This model is a simplification as it does not
capture the additional changes which are likely induced by the 3-
D geometry of the seamounts, and the time-dependency and
space-dependency of mixing rates and fluid flow velocities.

The depth profiles indicate a seamount surface layer with a
thickness of about 30 m where bottom water is entrained into the
muds by shallow seawater circulation and an underlying layer that is
affected by the ascent of deep fluids originating from the subducted
slab (Figs. 3, 4). The strong increase in Si and B concentrations in the
surface layer is induced by rapid dissolution of serpentine, which is
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Fig. 4 Depth profiles of conservative tracers. a Dissolved Sr, (b) 87Sr/86Sr ratios in pore fluids, (¢) Dissolved CI~ (taken from Fryer et al.28), (d) The non-
local mixing coefficient  was derived by fitting the model to the data (a-c). Dissolved CI—, Sr, and 87Sr/86Sr ratio in the pore fluid samples were employed
to constrain the steady-state mixing rate and fluid flow velocity assuming that the depth-distribution of these dissolved tracers is governed by transport
processes rather than precipitation/dissolution reactions. The best fit to these data was obtained applying mixing in the upper 30 m with a non-locale
mixing coefficient of 5x10~4yr~1 and an upward fluid flow velocity of 0.01cmyr~". Thick lines indicate steady-state model results (Supplementary

Methods).

undersaturated due to the entrainment of almost pH-neutral seawater
(Fig. 5). The persistent mixing in the surface layer with seawater
supports high dissolution rates (~1.2 umol cm™3 yr—1) whereas the
rates are low in the deeper layers (<10~> umol cm™3 yr—1) that are
not affected by mixing with ambient seawater (Fig. 5). Serpentine,
which formed in the mantle wedge, becomes unstable after
deposition on the seafloor either as serpentinized clasts or as
serpentinite mud and begins to dissolve during interaction with
seawater via hydrolysis34, following:

Mg, (Si,05)(OH), + 5H,0 — 3Mg*" + 2H,SiO, + 60H ",

thereby releasing Si and B into the pore fluid (see also upper red

circle in Fig. 1b; Fig. 6a, b). The 83°Si and §!!B values increase in
the about upper 30 m of the seamounts even though isotopically
depleted Si (§39Si = —0.3%o; Supplementary Table 2) and B (5§!1B
= +16%o; see section “Drivers of deep mantle-derived §30Si and
SUB values”) are released by the dissolving serpentine. This
observation can only be explained by formation of authigenic
minerals removing isotopically depleted Si and B from the pore
fluids (Figs. 2, 6). The formation of authigenic minerals was
simulated by allowing talc (Mg;Si,O,0(OH),) precipitation in the
model. Talc was chosen because thermodynamic equilibrium
calculations conducted with PHREEQC3® show that the surface
layer of the seamounts is strongly oversaturated with respect to
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this mineral (Fig. 5). Other Al-containing silicate phases may
form as well; however, we were not able to simulate the formation
of these phases due to the lack of dissolved Al data. The modeling
indicates that a large fraction of the Si and B released from the
dissolving serpentine is removed from solution by authigenic
mineral precipitation (Fig. 5). We obtained a good fit to the §30Si
data applying a Si isotope fractionation of A30Si = —3%o, where
A30S; is defined as A30Si = §30Si, i eral — 63’0Sipore fluia- Lower and
higher Si isotope fractionation could not reproduce the observed
530Si values of the sample as tested by model runs using A3Si of
—2%o and —4%o (Fig. 6¢). This Si isotope fractionation is the
highest abiotic fractionation observed for authigenic mineral

formation so far. In natural systems, only Si precipitation from
supersaturated solutions to form amorphous silica and experi-
mentally investigated Si adsorption to Al shows A30Si values in
this range or higher (up to —5%o)36-38,

The almost complete removal of dissolved Si by authigenic
mineral precipitation (~99% Si removed from pore fluid) induces
a strong §30Si maximum at the base of the surface layer, which is
the highest pore fluid 830Si value that has been observed in
natural environments. There is only a limited data set available on
marine pore fluid 80Si, mostly originating from continental
margin settings. The 83Si values range between —0.5 to +2.5%o
and are dominantly controlled by dissolution of biogenic silica
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"“Processes of serpentine alteration” and Supplementary Methods for details). Error bars (2 SD of individual measurements) within symbol size. Thick or

dashed lines indicate steady-state model results (Supplementary Methods).

and the formation of authigenic clays with a A30Si of —29%03%-41.

The Si isotope fractionation depends on the chemical composi-
tion and crystal structure of the authigenic mineral, the
precipitation rate, and temperature3®37:4243 We can only
speculate that a combination of slow reaction rates associated
with low temperatures (authigenic mineral precipitation rate ~1.2
pmol Si cm—3 yr~! at ~4°C; Fig. 5) and a Mg-rich authigenic
mineral composition drives the Si isotope fractionation to higher
values at the Mariana seamounts compared to continental margin
settings (e.g., Peruvian margin) with faster reaction rates at higher
temperatures (authigenic mineral precipitation rate up to ~27

umol Si cm™3 yr—! at ~11°C; Ehlert et al.3%) and an Al-rich
authigenic mineral composition. This assumption needs to be
tested in further studies, however, similar reactions and associated
Si isotope fractionation as observed for the Mariana seamounts
may occur in other settings, where oceanic crust and serpentinite
interact with seawater at low temperatures (see section “Impact of
seafloor alteration on the global Si (isotope) cycle”).

The isotopic fractionation of B during mineral precipitation is
related to two processes: the pH-dependent fractionation between
borate and boric acid in the pore fluid and the fractionation
during borate uptake in the solid phase3!. Hence, we calculated the
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Fig. 7 Mariana seamount 53°Si value in the global context. Mariana
seamounts median fluid §39Si value (error bar equals the coefficient of
quartile deviation) versus the inverse Si concentration (1/Si in uM~1). In
addition, Pacific seawater, Subantarctic Zones (SAZs), Indian Antarctic
Zone (AZ), Indian Polar Frontal Zone (PFZ), and the Cascadia Basin are
shown for waters below 2000 m (modified after Beucher et al.>8, Hendry
and Brzezinski®®, and Grasse et al.!”” and references therein). Note that
most seawater data fall on a single mixing line (shown in black), between
waters of the Cascadia Basin and the SAZs. High Si concentrations and
830Sj values in the Cascadia Basin might result from serpentine alteration
(see text for details).

concentrations of borate and boric acid and their isotopic
composition applying the dissociation constant for boric acid in
seawater®* and the isotopic equilibrium constant for borate and
boric acid*>. The model results confirm that dissolved borate has a
much lower 8§!1B than total dissolved boron in the surface layer
(Fig. 6d) such that 19B is removed from solution when borate is
preferentially bound in the authigenic silicate phase. The modeling
showed that an additional fractionation between dissolved borate
and solid phase borate has to be applied to match the §!!B data.
The best fit was attained applying an isotopic fractionation factor
of Alleineralfborate of —20%o0 where Alleineralfborate is defined
as 611Bborate authigenic mineral_611Bdissolved borate- This Bborate iSOtOPe
fractionation results in an average §!'B value of the authigenic
clay of —2.4 £2.0%o (1 SD), supposing an average of the modeled
8" Byorate in the upper 15m (highest talc precipitation rate) of
+17.6%o. This results in a general B isotope fractionation between
authigenic mineral and the pore fluid of —43.3 £2.3%0 (1 SD),
with AllBmineral—pore ﬂuid:élleineral_SHBpore fluid (aVerage of
the modeled 8!'Bpoye fiuia in the upper 15 m of +40.9%o). This B
fractionation fits well to modeled values for low temperature
phyllosilicate formation by Boschi et al.!® based on data by Liu &
Tossel3!.

The coupling of Si and B isotopes showed that the light isotope is
preferentially incorporated in authigenic minerals and that the
combination of both isotope systems can trace serpentine alteration
reactions (Figs. 2, 6). Pore fluids with §30Si and 8§!1B values lower
than seawater (839Si from +0.4%o to +0.8%o; 8B from +37.5%o
to +38.2%o; Figs. 1, 2) originate from the shallow, uppermost part
of the seamounts (depth <5 m depth; except samples from 1498B,
which originate from the mantle, see also section “Origin of pore
fluids™). A possible reason for these low isotopic values might be the

dissolution of authigenic minerals, which formed during potentially
higher upward fluid flow velocities in the past. Lower fluid flow
velocities in the present would cause dissolution of these authigenic
phases as seawater is the dominant ambient fluid phase. Fluid flow
velocities can vary significantly between the seamounts in the
Mariana forearc region (ie., between 2 mmyr~! to 4 cm yr—1)20
and thus changes over time are not unlikely as well. More data are
needed to unequivocally disentangle additional process occurring
during serpentine alteration, however, our data show for the first
time the potential of coupled Si and B isotope data to trace
serpentine alteration reactions.

Impact of seafloor alteration on the global Si (isotope) cycle.
The findings of this study have important implications for the
global oceanic Si cycle and isotope budget, as seafloor alteration
of serpentinites is found to be a source of Si with extremely high
830Si values. So far, none of the global marine Si models or
marine budget calculations have considered low temperature
serpentine alteration, which might be a common process as ser-
pentinites are widespread on the seafloor especially in the vicinity
of Mid Ocean Ridges (MOR), transform and bend faults, and
subduction zones®. In general, alteration of serpentinites by cir-
culating seawater has received little attention, even though pre-
vious studies have shown that low temperature weathering of
abyssal serpentinites leads to significant modifications in miner-
alogy, chemical composition, and physical properties?®47. Ser-
pentinites may contribute up to 20 vol.% of the oceanic basement
close to MORs and up to 16.7 vol.% in the vicinity of subduction
zones®. Serpentine alteration results in the formation of authi-
genic minerals like aragonite, Fe-oxyhydroxides, and clays, for
example in the abyssal serpentinites at the Iberia abyssal plain’4,
the Puerto Rico Trench?®, and from the Mid Atlantic Ridge*s.
The clay mineral assemblages are identified as Mg-Fe-smectite,
with saponite and montmorillonite as dominating phases3+4°.
Saponites, as well as other authigenic clay minerals are reported
as authigenic minerals in Yinazao and Fantangisfia seamounts®’
and resemble in their mineralogy (Mg-rich silicates) closely talc,
the mineral phase used in the model approach (see section
“Processes of serpentine alteration”). Therefore, we propose that
geochemical results from the altered Mariana forearc serpenti-
nites can serve as an example for alteration of oceanic serpenti-
nites in general, implying that alteration reactions of marine
serpentinites result in elevated Si concentrations and high §30Si
values of reacting fluids. Further, we hypothesize, that serpentine
alteration reactions are directly comparable to low temperature,
off-axis basalt alteration, given that the most abundant authigenic
mineral replacing igneous phases is also saponite®!. Effusing
fluids associated with off-axis basalt alteration have Si con-
centrations between 200 and 550 uM Si°%°3, which is identical to
the range observed in this study. According to our new data the
associated Si fluid isotope signature with serpentine and likely
basalt alteration may be high (on average +2.7 +0.3%o, locally
even up to +5.2%o; Supplementary Table 1). We further hypo-
thesize, that the Si isotope signature of the oceanic crust shifts
away from the basaltic endmember to lower values with
increasing open-system alteration states due to increasing for-
mation of authigenic clays. This process might additionally be
enhanced by an increasing degree of mineral crystallization with
crustal age®! and an associated lower clay §0Si value>*. To date,
the only direct measurement of altered oceanic crust has an
average §30Si value of —0.32 + 0.06%0°°, overlapping with pristine
mantle rocks (839Si= —0.29 + 0.08%o)32. However, this value of
altered oceanic crust originates from the east side of the East
Pacific Rise, where the alteration degree is <10%°¢ and thus too
small to influence bulk rock 839Si values. The impact on oceanic
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530Si values needs to be assessed by constraining the Si fluxes and
associated §30Si values related to serpentine and basalt alteration
and authigenic mineral formation. Oceanic crust alteration may
also influence oceanic §39Si values at regional scale, especially in
restricted basins and may potentially explain, at least in part, Si
anomalies like the Northeast Pacific Silicic Acid Plume (NPSP).
The NPSP has unusually high Si concentrations (>150 uM Si) and
high 6%0Si signatures of +1.5%o, the highest Pacific deep ocean Si
isotope value®”->8 (Fig. 7), between 2000 and 3000 m water
depths, originating mostly from the Cascadia Basin (about 200
UM Si)>°. This has not been explained unambiguously to date.
Findings of this study show that low temperature alteration of
serpentinites and potentially seafloor basalts are associated with
high Si concentration and §39Si values which are expelled to the
ocean. Such a source is likely to contribute to the unusually high
NPSP and related Si isotope values (see Supplementary Discus-
sion for details). Low temperature seafloor may contribute sig-
nificantly to the §%9Si budget of the ocean, considering the large
areas of serpentinized oceanic crust and the related fluid dis-
charge with extremely high Si isotope values.

Methods

Shipboard sampling and pore fluid analyses. A detailed description of the
sampling and analytical procedures on the JOIDES resolution during IODP
expedition 366 can be found in Fryer et al.28. In short, pore fluids were processed
from whole-round core samples immediately after core retrieval in a nitrogen-filled
glove bag. The inner part of each core section was further processed to avoid
seawater contamination during retrieval and compressed in a titanium squeezer by
a hydraulic press. The pore fluids were filtered with a pre-cleaned Whatman No.1
filter in the titanium squeezer and after extraction filtered through a pre-cleaned
Gelman polysulfone disposable filter. Pore fluid major element analyses were
conducted by ICP-OES on board following Gieskes et al.®0 and IODP standard
analytical protocols. The IAPSO seawater standard was used for assessment of the
measurement uncertainty and the uncertainty was ~5%. The pH was measured
immediately after pore fluid extraction following Gieskes et al.?% using a glass
electrode. Repeated measurements of the IAPSO seawater standard yielded a
precision for the pH measurements better than 0.01 pH units. Some Sr, Si, and B
concentrations were re-measured by ICP-OES (VARIAN 720-ES) at the GEOMAR
Helmbholtz Centre for Ocean Research Kiel. All analyses were tested for accuracy
and reproducibility using the IAPSO salinity standard®.

Silicon sample preparation and isotope analyses by MC-ICPMS. The digestion
of serpentine muds and the reference standard BHVO-2 followed a modified
method of van den Boorn et al.?!. About 30 mg of NaOHxH,O (299.99% suprapur,
Merck) were added to about 1 mg of pulverized serpentine mud and put on a hot
plate by 100 °C for 3 days. Subsequently, the sample-NaOHxH,O mix was re-
dissolved in 1 ml Milli-Q (MQ) water and then centrifuged to separate undissolved
solid material from the supernatant. The solid residue was separated from the
supernatant and further processed with 100 uL 6 M HNO; on a hot plate for about
1 h. After the reaction, the sample was centrifuged and the solid residue separated
from the supernatant. The residue was again mixed with about 30 mg of
NaOHxH,O0, put on a hot plate at 100 °C for three days and subsequently 1 ml MQ
water was added to re-dissolve the sample-NaOH mix. Yields are >97% and the
procedure blank measured by ICP-OES is <1 pg.

Pore fluids and digested serpentine mud samples were purified following a
method of Georg et al.®2. The pH of the samples was adjusted to about 2 with
concentrated HNOs. One ml of the samples with a concentration of ~65 uM Si
were loaded onto pre-cleaned cation-exchange resins (Biorad AG50 W-X8) and
subsequently eluted with two ml MQ water.

Si isotopes of the pore fluids were measured on the NuPlasma HR MC-ICPMS
at GEOMAR in medium resolution using the Cetac Aridus II desolvator. The
intensity for 22 uM Si ranged between 3 to 4 V for 28Si and the MQ blank was <3
mV (blank/signal ratio < 0.1%). Possible effects of organics and sulfate, which can
significantly affect Si isotope measurements®>%4, were found to be negligible (see
Ehlert et al.3 for details). Si isotopes of the serpentinite mud samples were
measured on the NeptunePlus HR MC-ICPMS at GEOMAR in medium-resolution
mode and wet-plasma conditions, using a Teflon spray chamber. The instrumental
mass bias was controlled by Mg doping of the purified samples®>0. The 28Si
intensity of a sample concentration of 35 uM yielded 2.5V and the MQ blank was
<20 mV (blank/signal ratio < 0.8%). All samples were measured using the
standard-sample bracketing method to account for mass drifts of the instrument®”
and are reported in the §°0Si notation, representing the deviation of the sample
305i/288i from that of the international Si standard NBS28 in permil (%o).
NuPlasma HR MC-ICPMS long-term §30Si values of the reference materials Big
Batch, IRMMO018, BHVO-2, and Diatomite are —10.6 + 0.2%o (2 SD; n = 49), —1.5

+0.2%o0 (2SD; n=48), —0.3 +0.2%o0 (2SD; 1= 13), and +1.3 £ 0.2%o (2 SD; n =
44), respectively. In addition, an in-house pore fluid matrix standard has been
measured which has an average §30Si value of +1.3 £ 0.2%o0 (2 SD; n=17) and the
seawater inter-calibration standard Aloha (1000 m) resulted in +1.3 +0.2%o (2 SD;
n=8), which is in very good agreement to Grasse et al.%%. The reference materials
measured at the NeptunePlus HR MC-ICPMS had §3%Si values of —1.46 % 0.09%o
(2 SD; n=45) for IRMMO018, +1.25 +0.10%o0 (2 SD; n = 34) for Diatomite, and
—0.33£0.13%0 (2 SD; n = 12) for BHVO-2. The seawater inter-calibration
standard Aloha (1000 m) had a §30Si values of +1.20 + 0.07%o (2 SD; 1 = 8). Re-
measurements of some serpentine muds on the NuPlasma HR MC-ICPMS were
identical within error to Si isotope results obtained at the NeptunePlus HR MC-
ICPMS. All samples were measured 2-4 times on different days and the sample
830Si uncertainties ranged between 0.1 and 0.4%o (2 SD, Supplementary Table 1).

Boron sample preparation and isotope analyses by MC-ICPMS. For boron
isotope measurements, the pore fluids were purified using the microsublimation
technique after a modified method by Gaillardet et al.%. The samples were diluted
to 162 uM with HNOj; and the pH adjusted to <2, so that all B was trigonal
coordinated. Sample volumes of 30 pl were transferred on a lid of a conical Teflon
vial, closed upside down, and put on a hot plate at 70 °C for 22 h. The Teflon vials
were kept in a heating block to ensure uniform temperature distributions and
condensation of the fluid in the cooler upper tip of the vial. Given that B is highly
mobile during microsublimation, B was extracted from the remaining matrix and
trapped in the vial, while the matrix remained at the lid. After opening the lid, the
matrix and B were separated and the sample diluted with 1.47 ml of 0.5 M HNO; to
measurement concentrations of 3.2 uM B. Boron recoveries were >97% and the
total procedure blank <50 pg.

Boron isotopes were measured on the NeptunePlus HR MC-ICPMS in wet
plasma using a Teflon spray chamber in low resolution mode. Details of the
measurement set-up can be found in Jurikova et al.”%. The samples were run using
the standard-sample bracketing technique in order to account for machine-induced
mass fractionation. NIST SRM 951 boric acid was used as bracketing standard. The
1B intensities were ~1 V and the blank yielded intensities of ~20 mV, yielding
sample/blank ratios <2%. Before and after each sample or standard, an on-peak
zero of 0.5 M HNO; was measured containing the same fluid volume (1.5 ml) to
ensure corrections of the B blank and B memories in the spray chamber during the
measurement. Purified GEOTRACES seawater was used as matrix standard and
yielded 8!1B values of +39.7 +0.4%o (2 SD; n = 49). Pure boron reference
materials’! also processed by microsublimation showed §!1B values of —20.5 +
0.3%0 (2 SD; n=6), +19.7 £ 0.2%o (2 SD; n = 14), and +39.7 £ 0.3%o (2 SD; n = 8)
for ERM-AE120, ERM-AE121, and ERM-AE122, respectively. The long term
(years 2016-2018) §!1B values of pure boron reference materials’! not processed
by microsublimation were ERM-AE120 with —20.3 +0.3%o (2 SD; n = 58), ERM-
AE121 with +19.7 £ 0.2%o (2 SD; n = 123), and ERM-AE122 with +39.7 + 0.2%0
(2 SD; n = 104). The samples were measured 2-times per sequence on two to three
days and had reproducibilities between 0.1 and 0.3%o (2 SD; Supplementary
Table 1).

Strontium sample preparation and isotope analyses by TIMS. The Strontium
isotope ratios were measured by Thermal Ionization Mass Spectrometry (TIMS,
Triton, ThermoFisher Scientific). The samples were chemically separated via cation
exchange chromatography using the SrSpec resin (Eichrom). The isotope ratios
were normalized to NIST SRM 987, which has a 87Sr/86Sr ratio of 0.71024872 and
the measurements yielded a precision of +0.000015 (2 SD, n = 12).

Mixing curve between seawater and a mantle-derived fluid. The mixing curve
between the two endmembers seawater and a mantle-derived fluid was calculated
following:

§05i . — (8Sigy x [Silsw < f) + (8% Simantte uid [Si] mande fuia < (1 —£)) (1)

m (I8 eawater X f) + ([Silmante uia > (1 =)

with 830Si,,, and [Si, as the respective seawater Si isotope composition (+1.05%o)
and concentration (145.7 uM)!>, and 830Si, antle fiuia @s the mantle-derived fluid Si
isotope composition (41.6%o; Supplementary Table 1, U1498B). The Si con-
centration of the mantle-derived fluid is below detection limit. Therefore, the Si
concentration of a mantle-derived fluid from the nearby South Chamorro sea-
mount was used (24 uM)2. Further Si concentrations of 5 uM and 70 uM were
tested (gray-shaded area in Fig. 2) in order to account for the Si concentration
range detected at nearby seamounts2®. Mixing fractions are represented by f, varied
over 100% seawater and 0% mantle-derived fluids and vice versa.

The same equation was used for §!1B,y;,, with 811By,, and [B]s,, as the seawater
B isotope composition (+39.6%0)30 and concentration (432.6 M), respectively,
and 8B ande fluid @0 [Bmante fluia 28 the mantle-derived fluid B isotope
composition (+16.1%0) and concentration (111 uM), respectively (Supplementary
Table 1, U1498B).

Numerical transport-reaction modeling. A transport-reaction model was set up
to simulate the processes occurring in the surface zone of serpentinite seamounts.
The 1-D pore fluid model considers molecular diffusion, upward fluid flow, bottom
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water intrusion in surface sediments, serpentine dissolution, and talc precipitation.
The turnover of dissolved species in the pore fluid is simulated applying the fol-
lowing mass balance equation:

(I)x%—f:%((bx<Ds><g—i+v><c>>+(D><oc><(CBW7C)+(D><R (2)
with @: porosity, C: concentration of dissolved species in the pore fluid (umol cm~3),
t: time (yr), x: sediment depth (cm), Dg: molecular diffusion coefficient of dissolved
species in sediment pore fluid (cm? yr~—!), v: upward fluid flow velocity of pore fluid
(cm yr~1), a: mixing coefficient (yr~1), R: turnover rates of dissolved species (umol
cm~> yr~1). The model was set up for the following dissolved species: Si, 3°Si, B, 1B,
Sr, 87Sr, Cl. The isotopic compositions of the pore fluids (5°°Si, §11B, 87Sr/86Sr) are
calculated from the corresponding mole fractions (*Si/Si, 1'B/B, 87St/Sr) applying
previously published approaches®>#0 and the boundary conditions, equations, and
parameter values are given in the Supplementary Methods.

Data availability
All data generated or analyzed during this study are included in this published article
(and its Supplementary Information files).
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All algorithms used in this study are included in this published article (and
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