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Constructing phase boundary in AgNbO3
antiferroelectrics: pathway simultaneously
achieving high energy density and efficiency
Nengneng Luo 1,2,8✉, Kai Han1,8, Matthew J. Cabral3,8, Xiaozhou Liao 3, Shujun Zhang 4✉,

Changzhong Liao5, Guangzu Zhang6, Xiyong Chen1, Qin Feng1, Jing-Feng Li 7 & Yuezhou Wei 1✉

Dielectric capacitors with high energy storage density (Wrec) and efficiency (η) are in great

demand for high/pulsed power electronic systems, but the state-of-the-art lead-free

dielectric materials are facing the challenge of increasing one parameter at the cost of the

other. Herein, we report that high Wrec of 6.3 J cm-3 with η of 90% can be simultaneously

achieved by constructing a room temperature M2–M3 phase boundary in (1-x)AgNbO3-

xAgTaO3 solid solution system. The designed material exhibits high energy storage stability

over a wide temperature range of 20–150 °C and excellent cycling reliability up to 106 cycles.

All these merits achieved in the studied solid solution are attributed to the unique relaxor

antiferroelectric features relevant to the local structure heterogeneity and antiferroelectric

ordering, being confirmed by scanning transmission electron microscopy and synchrotron X-

ray diffraction. This work provides a good paradigm for developing new lead-free dielectrics

for high-power energy storage applications.
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D ielectric capacitors are widely utilized in numerous
advanced high/pulsed power electronic systems, due to
their distinctive features of high power density, ultrafast

charge/discharge capability, long storage lifetime, robust, and
excellent thermal stability1–4. However, they possess inferior
energy density in comparison with other electrochemical energy
storage systems such as batteries. Therefore, extensive efforts have
been made to improve their energy densities to meet the demands
of integration, compactness, and miniaturization of electronic
devices5,6. In addition, from practical application viewpoint, high
energy efficiency (η) is desired since the energy dissipation will
greatly degrade the thermal breakdown strength thus impact the
reliability and performance of the energy storage capacitors.
However, previous investigations have shown that the energy
density and efficiency can be enhanced only at the expense of
each other for most dielectric materials.

Dielectric materials developed for energy storage capacitors
include linear dielectrics (LD), ferroelectrics (FEs), antiferro-
electrics (AFEs), and relaxor ferroelectrics (RFEs)5. Among them,
AFEs have been attracted extensive attention for energy storage
application because of their unique double hysteresis loop origi-
nating from the electric field induced antiferroelectric-
ferroelectric (AFE–FE) phase transition and zero remnant
polarization (Pr) in pristine AFE phase. These advantages have
been fully reflected in PbZrO3-based AFE ceramics, in which
large energy storage densities ranging from 6.4 to 11.2 J cm−3

were reported7–9. However, the disadvantage of AFE is high
energy loss due to large hysteresis associated with the first-order
AFE–FE phase transition, being confirmed by its polarization vs.
electric field (P–E) loop10. It is thus a challenge to achieve high
energy storage density and efficiency simultaneously in anti-
ferroelectric materials.

On the other hand, RFEs exhibit hysteresis-free polarization
response owing to the existence of local structure heterogeneity,
thus leading to a high energy efficiency11–14. Analogous to RFEs,
it is expected that relaxor antiferroelectrics (RAFEs) might be a
good choice to address the hysteresis, which inevitably exists in
AFE, where disruption of the long-range ordered AFE domains
will smear the AFE–FE phase transition due to the weakly
intercoupled nanodomains15,16. Based on this concept, a para-
electric or relaxor ferroelectric end member was judiciously
introduced to AFEs to break the long-range AFE order into
nanodomains. The introduction of (Sr0.7Bi0.2)TiO3 relaxor end
member into (Na0.5Bi0.5)TiO3 forms a new RAFEs solid solution
with high energy efficiency of 95% and energy storage density of
2.5 J cm−316. In addition, an ultrahigh energy storage density of
12.2 J cm−3 was achieved in (Bi0.5Na0.5)TiO3-NaNbO3 ceramics,
where the relaxor component (Bi0.5Na0.5)TiO3 was added into
NaNbO3, with the purpose to stabilize the room temperature
antiferroelectric phase in NaNbO3 and introduce relaxor fea-
ture17, but with less success in energy efficiency being below 70%
due to the inferior AFE stability.

To achieve both high energy storage density and efficiency
simultaneously, we propose to design material system with a
highly stabilized antiferroelectricity with relaxor feature. AgNbO3

(AN) has been actively studied for dielectric energy storage
application, due to its unique antiferroelectric feature. It under-
goes a series of phase transitions with increasing temperature,
possessing a ferrielectric (FIE) M1 phase and two disordered AFE
phases (M2 and M3) below Curie temperature18,19, as shown in
Fig. 1a. At room temperature (RT), the M1 phase exhibits
metastable AFE feature under applied electric field, leading to a
large Pr and hysteresis in the P–E loops, as shown in Fig. 1b.
Nevertheless, a relatively high Wrec of 1.5–2.0 J cm−3 was
obtained in AN, with an efficiency only around 38%20,21.
Numerous attempts have been made on A-site22–24, B-site25,26,

and A/B-site27,28 chemical modifications with the idea to shift the
highly stable AFE M2 phase to RT, where P–E loop with small Pr
and reduced hysteresis have been achieved (Fig. 1c), exhibiting
good energy storage densities varying in the range of 2.5–4.5 J cm
−3 and efficiency of 55–69%. A more attractive energy storage
density of 5.2 J cm−3 was reported in Ag0.91Sm0.03NbO3 ceramics
but with yet low efficiency of 68.5%29. It should be noted that the
disorder feature can be induced by aliovalent ion dopant in AN
system, which can be confirmed by the obvious frequency dis-
persion over M1–M2 phase transition and high diffuseness
parameter30. This may be associated with the downward shifting
of M2–M3 phase transition temperature with diffused dielectric
maximum31, being generally ascribed to the different degrees of
displacement orders in M2 and M3 phases32. Therefore, relaxor
characteristic with slim P–E loop is expected if M2–M3 phase
transition temperature (TM2-M3) shifts downward to RT, which
can be represented by the minimized Pr and hysteresis as given in
Fig. 1d, leading to high energy storage density and efficiency
simultaneously.

Analogous to AN, the AgTaO3 (AT) material possesses
numerous phase transitions as a function of temperature, with
room temperature rhombohedral phase18,33. Of particular sig-
nificance is that AN and AT have the infinite miscibility thus (1-
x)AgNbO3-xAgTaO3 (ANTx) solid solution can be formed with
the addition of AgTaO3 in AgNbO3, leading to successive physical
property transformations, such as phase transition sequence and
dielectric permittivity depending on solid solution composition34.
It is expected that the M1–M2 and M2–M3 phase transition
temperatures of AN can be tailored over a wide temperature
range downward to below RT with addition of AT, which pro-
vides a feasible way for tuning the physical properties of the solid
solution.

In this work, we designed the ANTx solid solutions, where the
M2–M3 phase boundary was built at RT with significantly sta-
bilized antiferroelectric phase, meanwhile possessing relaxor
features. As expected, high energy storage density of 6.3 J cm−3

and efficiency of 90% were achieved simultaneously. In addition,
the local structure heterogeneity and antiferroelectric ordering of
M2–M3 phase boundary were confirmed on the atomic scale,
giving a solid proof on the long-term confusion about the broad
dielectric anomaly of TM2–M3.

Results
Dielectric property of ANTx. Figure 2a gives the temperature-
dependent dielectric permittivity and loss for the representa-
tive ANTx compositions. Typical dielectric anomalies asso-
ciated with various phase transitions are observed in AN,
consistent with the results reported previously20. Similar phase
transition behaviours are observed for ANTx solid solutions.
As expected, the phase transition temperatures TM1–M2 and
TM2–M3 are found to shift significantly downward. Of parti-
cular importance is that the TM2–M3 of ANT55 composition
decreases to around RT, as represented in the schematic phase
diagram of Fig. 2b. In addition, the phase transition of TM1–M2

is found to become smeared and diffused with clear frequency
dispersion over a broad temperature range, as shown in Fig. 2c,
indicating a typical relaxor feature35. To further analyze the
relaxor behaviour of ANTx ceramics, the frequency dispersion
is calculated based on △T= TM1–M2 (100 kHz)− TM1–M2

(100 Hz), where the TM1–M2 (100 kHz) and TM1–M2 (100 Hz)
are determined by the dielectric anomalies. The △T is found
to increase with increasing Ta content, indicating the addition
of Ta component in AN will induce a strong relaxor char-
acteristics, which will greatly benefit the energy storage density
and efficiency.
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Fig. 2 Dielectric properties of ANTx ceramics. a Temperature- and frequency-dependent dielectric permittivity and loss. b Schematic phase diagram
based on the temperature-dependent dielectric permittivity. c Dielectric permittivity and loss of ANT55 ceramic over the temperature range from −180 to
−100 °C. d Composition dependence of the frequency dispersion △T.
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Energy storage performance of ANTx. To evaluate the energy
storage performance of the as-designed ceramics, P–E loops are
measured prior to their corresponding breakdown strengths at a
frequency of 1 Hz, as shown in Fig. 3a. The P–E loops conform to
the typical feature of AFEs, where the AFE–FE phase transition is
shifted to higher electric fields with the addition of Ta. Of par-
ticular importance is that the remnant polarization monotonically
decreases with the increase of Ta content, reaching the value of
zero at x= 65mol%, while the hysteresis of P–E loops reduces
obviously with nearly hysteresis-free feature at compositions with
x above 50mol%. The obvious evolutions of AFE–FE phase
transition electric field and remnant polarization, together with
the less electric field dependent dielectric permittivity with
increasing Ta concentration (Supplementary Fig. 1), give solid
proof of high stability of antiferroelectricity in ANT system. It
should be noted here that the relaxor characteristic would smear
the P–E loops, which also increases AFE–FE phase transition
electric field and decreases remnant polarization. As a con-
sequence, the energy storage efficiency η is remarkably increased
with addition of Ta, reaching above 90% for ANTx with x > 55%
(Fig. 3b). Of particular significance is that ultrahigh energy sto-
rage density up to 6.3 J cm−3 is achieved for ANT55, showing a
pronounced enhancement of ~330% comparing to 1.9 J cm−3 for
the pure AN counterpart. The ultrahigh energy storage density is
closely associated with a high breakdown strength (Eb). Figure 3c
gives the Eb values based on the Weibull distribution, in which
good linear relationship between X and Y axes can be observed
for all compositions. The Eb increases substantially after the
addition of Ta, demonstrating ultrahigh values of 470 and 550 kV
cm−1 for ANT55 and ANT65 (Fig. 3d), respectively. To under-
stand the underlying mechanisms responsible for the significantly
improved Eb in ANTx solid solution, the micro-morphology and

grain size, the band gap, as well as the polarizations at high
electric fields are studied. All ANTx ceramics show highly com-
pacted grains with nearly pore-free microstructure (insets of
Fig. 3d), leading to high relative bulk density of >96%. The
average grain size decreases obviously with the increase of Ta
content (6.8 µm for AN vs. 1.3 µm for ANT65), as represented in
Fig. 3d, due to the refractory nature of Ta2O5

36. More detailed
composition-dependent micro-morphology and average grain
size distribution can be found in Supplementary Figs. 2 and 3,
respectively. The high relative bulk density and reduced grain size
will greatly benefit the enhanced breakdown strength37. Fur-
thermore, improved band gap (Eg) is observed with the increase
of Ta content, with values ranging from ~2.8 eV (AN) to ~3.0 eV
(ANT65), obtained from the UV–vis absorption spectra (Fig. 3e).
The wider band gap will make the electrons in the valence band
more difficult to jump into the conduction band, which con-
tributes to a higher intrinsic breakdown strength38. Finally, the
polarization is clearly decreased after Ta addition, as shown in
Fig. 3f, which is associated with the smeared AFE–FE phase
transition and relaxor behaviour. The decreased polarization
results in much lower dielectric permittivity (dP/dE) maxima
upon AFE–FE phase transition, as shown in the inset of Fig. 3f. A
moderate increase in polarization and/or dielectric permittivity as
a function of applied electric field will impede the dramatic
enhancement in electric energy density, thus leading to improved
breakdown strength39. All the above-mentioned factors are
responsible for the significantly increased breakdown strength for
ANTx ceramics.

To verify the antiferroelectric characteristics of ANT55, the
electric field dependent P–E loops and current vs. voltage (I–V)
curves were measured, as given in Fig. 4a, b, respectively. Linear
P–E loops with very low polarization are observed at low electric
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field, similar to those observed in antiferroelectric materials. With
the increase of electric field, the P–E loops gradually bend upward
with remarkable enhancement of polarization, being associated
with the AFE–FE phase transition, beyond which, the P–E loops
gradually bend downward, due to the saturated polarization in FE
phase. The P–E loops remain slim in shape with minimal
hysteresis over the entire measuring electric field range, ascribing
to the relaxor characteristics of ANT55. The AFE feature is
further confirmed by the unipolar I–V curves in Fig. 4b, in which
two peaks are observed with the increase of electric field. These
peaks are associated with the AFE-to-FE (EF, ~330 kV cm−1) and
FE-to-AFE (EA, ~270 kV cm−1) phase transitions, respectively.
The energy storage density also exhibits strong electric field
dependent behavior, which increases significantly around phase
transition (Fig. 4c), as generally observed in antiferroelectrics. The
energy storage efficiency maintains high level of >90% over the
measuring electric field. It should be noted that the breakdown
strength is sample dimension dependent, where a higher

breakdown strength of 530 kV cm−1 with the maximum
polarization of 32 μC cm−2 is achieved in sample with thickness
of ~80 μm and electrode diameter of 2 mm. This leads to
improved energy storage density up to 7.5 J cm−3, meanwhile
with yet high energy storage efficiency of 86% (Supplementary
Fig. 4). Compared with state-of-the-art lead-free bulk
ceramics17,20,24,25,29,40–49, the ANT55 exhibits more attractive
energy storage performance with both high energy storage density
and efficiency, as shown in Fig. 4d.

From application viewpoint, the temperature stability and
cycling reliability of energy storage properties are important16,50.
The temperature-dependent energy storage property of ANT55 is
evaluated at 400 kV cm−1 to guarantee the safety in practical
application, the corresponding results are given in Fig. 4e. The
ANT55 exhibits very good temperature stability over temperature
range of 25–150 °C, with minimal variations of <5 and <2% for
energy storage density and efficiency respectively. Figure 4f gives
the cycling reliability of ANT55. Both energy storage density and
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efficiency maintain the same values at 400 kV cm−1 after 106

cycles, indicating the ANT55 has outstanding cycling reliability.
In general, the large volume strain accompanied with AFE–FE
phase transition in classic antiferroelectrics might accelerate the
mechanical failure due to the electromechanical breakdown51,
while the strong relaxor feature in ANT55 smears the phase
transition, leading to the highly improved cycling reliability16.

In addition to the stability and reliability, the charge–discharge
of dielectric capacitor is also important for high-power energy
storage application. The charge–discharge performance of
ANT55 is measured at RT using a resistance–capacitance (RC)
circuit. The discharge energy density (Wdis) is calculated
according to Wdis ¼ R

R
iðtÞ2dt=V52, where V is the sample

volume and R is the load resistor (13 kΩ). The time dependence
of Wdis under various electric fields is displayed in Fig. 4g. The
Wdis is measured to be 6.1 J cm−3 at 470 kV cm−1, comparable to
that calculated from P–E loops. The small variation in values
between two methods may be associated with the loss of
discharged energy in the equivalent series resistor (ESR), domain
walls movement and measurement frequency16,53. Moreover, the
discharge time (t0.9, 90% of all stored energy is released) is less
than 15 μs, revealing a high discharge speed.

Antiferroelectric ordering and local structure heterogeneity
analysis. The excellent energy storage properties in ANTx solid
solution are believed to be associated with its microstructure, i.e.,
the existence of AFE phase and relaxor component. In order to
understand the relationship between the microstructure and
energy storage properties, the synchrotron X-ray diffraction
(SXRD), Raman spectra and annular dark-field scanning trans-
mission electron microscopy (ADF-STEM) imaging were per-
formed on the ANTx samples. Figure 5a shows the SXRD of
ANTx ceramic powders, where pure perovskite structure can be

observed for all ANTx solid solutions. The (220) and (008)
reflections appear as a single peak at x > 50 mol%. The corre-
sponding Rietveld refinements of SXRD profiles based on Pbcm
space group are given in Supplementary Fig. 5. The low reliability
factor values indicate the structural model is valid and the
refinement results fit well with the experimental data. The Riet-
veld parameters are given in Fig. 5b–d, all of which exhibit strong
composition-dependent behavior. The reduced cell volume might
be attributed to the lower effective electronegativity of Ta5+ (1.5)
compared to that of Nb5+ (1.6) since their ionic radii and valence
are the same54,55. The displacements for Ag1 (located in 4d site in
the Pbcm structure, see Supplementary Fig. 6a) and B-site (Nb/
Ta) cations are calculated and found to decrease with increasing
Ta content (Fig. 5c), indicating a weaker ordering of local dis-
placements55. The [Nb/TaO6] octahedral tilting angles θ and Φ
(the θ and Φ are tilting angles along b and c axes, respectively)
also decrease with increase of Ta content (Fig. 5d), due to the
smaller size of [TaO6] octahedra. The decreased cell volumes,
cation displacements and octahedral tilting angles are thought to
reflect an improved stability of AFE phase32,55. Of particular
significance is that the parameters exhibit different trends as
function of Ta level over the range of 50 mol to 60 mol% (guided
by the blue shaded area in Fig. 5). Similar phenomenon is also
observed for the lattice parameters, (220)/(008) d-spacing and |B-
O | distance (Supplementary Fig. 6b–d). The abnormal variations
in parameters might be attributed to M2–M3 phase transition, as
generally observed in pure AN counterpart around M2–M3 phase
transition temperature32, demonstrating that the x= 50–60 mol%
compositions possess room temperature M2–M3 phase bound-
ary. Figure 5e gives the Raman spectra of ANTx solid solution,
where the incorporation of Ta is found to shift Raman wave-
numbers to lower values, due to the higher atomic mass of Ta
comparing to that of Nb. All Raman peaks become weaker in
intensity and broader in shape with the increase of Ta content,
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being related to the improved disorder or relaxor feature. The
peaks around 83, 205, and 632 cm−1, which are associated with
the M1–M2 (FIE–AFE) phase transition, disappear at x= 20 mol
%, being consistent with the dielectric measurement. The peaks
with wavenumber at 500–650 cm−1 were fitted by using Gaussian
function. Of particular interest is that the three fitted peaks in AN
are merged into two peaks with Ta content over 40 mol%
(Fig. 5f), revealing a possible M2–M3 phase transition above this
composition, in agreement with the above dielectric and SXRD
analysis regardless of the small deviation in composition.

The simultaneous integrated differential phase contrast (iDPC)
and annular dark-field scanning transmission electron micro-
scopy (ADF-STEM) imaging are performed on samples with x=
0 mol and 55 mol%, in order to investigate the local heterogeneity
after Ta incorporation. While ADF imaging affords mass contrast
imaging, the phase contrast of iDPC imaging is sensitive to light
elements, allowing for the observation of oxygen56. Supplemen-
tary Fig. 7 shows atomic resolution iDPC images for AN and
ANT55 samples on grains oriented along the [100]pc and [011]pc
zone axes. Structural models generated from SXRD measure-
ments are overlaid on the respective images illustrating the effect
of octahedral distortion on the shape of the oxygen columns.
Observations made directly from iDPC images are in agreement
with SXRD measurements showing decreased octahedral distor-
tion in ANT55 in comparison with AN. Figure 6a, b illustrates the
oxygen–oxygen distances measured directly from iDPC images
acquired for AN and ANT55 samples on grains oriented along
the pseudocubic [011]pc zone axis, respectively. Obviously, the
overall distortion on the oxygen sublattice decreases with mean
oxygen–oxygen distances, which is 394.2 pm for AN and 393.1
pm for ANT55. It is important to note that while these mean
values do not change significantly, the standard deviation of the
distances decrease from 40 pm for AN to 25 pm for ANT55, in
agreement with the expected decrease in octahedral tilting. The
difference in cation–cation distances can also be determined for

each sample. Cation–cation distances for the A sublattice (Ag)
along the [110]pc direction are plotted in Fig. 6c, d for AN and
ANT55 samples, respectively. Similar to O–O distances, the A–A
distances are determined to decrease with Ta content, falling from
276.8 pm for AN to 276.2 pm for ANT55 samples. Conversely,
while the A–A distances tend to decrease with Ta incorporation,
the standard deviation of these distances increases from 2.9 to 4.5
pm between AN and ANT55, suggesting the increased local
structural heterogeneity in ANT55 samples, induced by the
mixing of Nb/Ta on the B sublattices, which is consistent with
observations made in other relaxor systems57. To further
demonstrate local structural heterogeneity, B sublattice (with
respect to the A sublattice) displacements are plotted for the
[100]pc zone axis as shown in Supplementary Fig. 8. For AN
sample, a regular cation displacement pattern consistent with
long-range antiferroelectricity is evident. For comparison, cation
displacements for ANT55 vary significantly and lack long-range
cooperation, being consistent with the scenario in a relaxor58.
These observations provide strong evidence that Ta incorporation
increases local structure heterogeneity in cation structure of
ANT55. The existence of local structure heterogeneity in a fully
stabilized AFE leads to relaxor AFEs and thus effectively impede
the formation of macroscopic domain and smear the AFE–FE
phase transition process. This is responsible for the nearly
hysteresis-free P–E loops and the excellent energy storage
properties in the designed ANT55 ceramics.

In summary, high energy storage density (6.3 J cm−3) and
efficiency (90%) are achieved simultaneously in
0.45AgNbO3–0.55AgTaO3 bulk ceramics, by judiciously con-
structing the diffused M2–M3 phase boundary. The material
exhibits broad usage temperature range up to 150 °C, with
minimal variations less than 5 and 2% for energy storage density
and efficiency, respectively. Meanwhile the minimal variations in
storage density and efficiency as function of cycling number up to
106 reveal excellent cycling reliability. All the merits demonstrate
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that 0.45AgNbO3–0.55AgTaO3 ceramic is a promising candidate
for high-power energy storage applications. It should be noticed
that the energy storage density would be further improved in
ANTx multilayer ceramics and film capacitors, due to the
significantly increased breakdown strength. In addition, the
unfolding of RAFE characteristic of M2–M3 phase boundary on
atomic scale in AN-based solid solution gives a solid evidence to
the long-term confusion of the broad dielectric anomaly over
M2–M3 phase transition temperature, which opens a broad range
of applications where relaxor feature is desired, such as
electrocaloric solid-state cooling devices59,60 and hysteresis-free
actuators61,62.

Methods
Ceramic fabrication. The (1-x)AgNbO3–xAgTaO3 (x is 0, 10, 20, 30, 40, 45, 50, 55,
60, and 65 mol%, abbreviated as ANTx: ANT0-65) ceramics were synthesized by a
conventional solid-state reaction method. The raw materials Ag2O (99.7%), Nb2O5

(99.5%), and Ta2O5 (99.99%) were carefully weighed and ball milled for 24 h in a
nylon jar with alcohol using yttrium stabilized zirconia balls as milling media. The
mixed powders were dried and then calcined at 900 °C for 6 h in oxygen atmo-
sphere, followed by a second ball milling. The granulated powers were pressed into
pellets with a diameter of 8 mm and thickness of ~1 mm, followed by cold isostatic
pressing under 200MPa to improve the green density. The pellets were then sin-
tered at 1070–1180 °C based on the compositions for 6 h in oxygen atmosphere.
For electrical properties measurement, the ceramics were polished down to a
thickness of ~0.15 mm and then two parallel surfaces were coated with silver paste
(~3 mm in diameter), and finally fired at 560 °C for 30 min as electrodes.

Dielectric measurements. The temperature dependence of dielectric permittivity
and loss was measured using an LCR analyzer (Model 4294 A, Hewlett-Packard
Co., Palo Alto, CA, USA) over the temperature range from −180 to 440 °C. The
electric field dependence of normalized dielectric permittivity (dielectric tunability)
was measured using an TF Analyzer 2000 (aixACCT, Aachen, Germany) with a
maximum bias field of 80 kV cm−1.

Ferroelectric measurements. P–E loops and I–V curves were measured under a
triangular field at 1 Hz by using the ferroelectric testing system (Precision Multi-
ferroic, Radiant Technologies Inc., Albuquerque, NM) connected to a homemade
heating system.

Charge–discharge measurements. The discharge speed and discharge energy
density were measured using a capacitor charge–discharge test system (PK‐
CPR1701, PolyK Technologies, PA, USA).

Dielectric breakdown test. The Eb was measured using a voltage breakdown tester
(RK2671AM, Shenzhen Meiruike electronic technology Co. Ltd, Shenzhen, China)
on the sample with thickness of ~0.15 mm and diameter of 3 mm. The value of Eb
was evaluated by using the following Weibull distribution functions:21,49

Xi ¼ lnðEiÞ ð1Þ

Yi ¼ ln ln 1=ð1� NiÞ½f g ð2Þ

Ni ¼ i=ðnþ 1Þ ð3Þ
where n is the total number of samples, Ei is the breakdown electric field for the ith
specimen arranging in ascending order, and Ni the probability of dielectric
breakdown. Xi and Yi should have a linear relationship.

Band gap tests. Ultraviolet and visible (UV–vis) absorption spectra was obtained
using a UV–vis spectrometer (UV3600, Shimadzu, Kyoto, Japan), fitted with BaSO4

as the standard material in the wavelength region of 200–800 nm.

Characterization of phase and microstructure. The microstructure of the polished
and thermally etched samples was observed using a scanning electron microscope
(Phenom Pro X, Phenom-World, Eindhoven, Netherlands). The crystal structure was
characterized using synchrotron X‐ray diffractions (SXRD) in a capillary mode. The
high-resolution data were collected at TPS 09 A (Taiwan Photon Source) of the
National Synchrotron Radiation Research Center. The 15 keV X-ray source (wave-
length 0.826569 Å) is delivered from an in-vacuum undulator (IU22), and the powder
diffraction patterns were recorded by a position-sensitive detector, MYTHEN 24 K,
covering a 2θ range of 120°. The full XRD data were analyzed by the Rietveld
refinement using TOPAS 4.2 software (Bruker AXS GmbH, Germany). The Raman
spectra was carried out using a laser confocal Raman microspectroscopy (LabRAM
HR800, Horiba JobinYvo) with excitation at 532 nm and 50mW. Atomic resolution
scanning transmission electron microscope (STEM) was performed on an image and

probe corrected FEI Themis Z 60–300k kV S/TEM (ThermoFisher Scientific, Eind-
hoven, Netherlands) equipped with an X-FEG source and operated at an accelerating
voltage of 300 kV. A beam current of 15 pA and a semi-angle of convergence of 17.9
mrad was utilized. ADF images were collected with a detector semi-angle range of
28–180 mrad while iDPC images were collected with a detector semi-angle range of
7–28 mrad. Distortion corrected images were produced via post processing two
(1024 × 1024 pixel, 10 µs/pixel dwell time) images acquired at orthogonal scan
directions63. Atom column locations were determined via Atomap64 with analysis
being performed with custom MATLAB and Python scripts.

Data availability
The data that support the plots within this paper and other findings of this study are
either provided in the Article and its Supplementary information or available from the
corresponding author upon request.
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