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Bimetallic nickel-molybdenum/tungsten nanoalloys
for high-efficiency hydrogen oxidation catalysis in
alkaline electrolytes
Yu Duan1,6, Zi-You Yu1,6, Li Yang2,3,6, Li-Rong Zheng4, Chu-Tian Zhang1, Xiao-Tu Yang1, Fei-Yue Gao1,

Xiao-Long Zhang 1, Xingxing Yu1, Ren Liu1, Hong-He Ding5, Chao Gu1, Xu-Sheng Zheng5, Lei Shi1, Jun Jiang 2,

Jun-Fa Zhu 5, Min-Rui Gao 1✉ & Shu-Hong Yu 1✉

Hydroxide exchange membrane fuel cells offer possibility of adopting platinum-group-metal-

free catalysts to negotiate sluggish oxygen reduction reaction. Unfortunately, the ultrafast

hydrogen oxidation reaction (HOR) on platinum decreases at least two orders of magnitude

by switching the electrolytes from acid to base, causing high platinum-group-metal loadings.

Here we show that a nickel-molybdenum nanoalloy with tetragonal MoNi4 phase can cata-

lyze the HOR efficiently in alkaline electrolytes. The catalyst exhibits a high apparent

exchange current density of 3.41 milliamperes per square centimeter and operates very

stable, which is 1.4 times higher than that of state-of-the-art Pt/C catalyst. With this catalyst,

we further demonstrate the capability to tolerate carbon monoxide poisoning. Marked HOR

activity was also observed on similarly designed WNi4 catalyst. We attribute this remarkable

HOR reactivity to an alloy effect that enables optimum adsorption of hydrogen on nickel and

hydroxyl on molybdenum (tungsten), which synergistically promotes the Volmer reaction.
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Over the past few years, market penetration by hydrogen
fuel cell vehicles has begun owing to the tremendously
advanced proton exchange membrane fuel cell (PEMFC)

technologies1. Nevertheless, considerable market barriers still
exist because current PEMFCs rely heavily on platinum (Pt)-
based catalysts that drive the sluggish cathode oxygen reduction
reaction (ORR) at low pHs, which raises poor cost competitive-
ness2. Alternatively, hydroxide exchange membrane fuel cells
(HEMFCs) give critical merits over PEMFCs, which permit the
adoption of Pt group metal (PGM)-free catalysts to negotiate the
formidable ORR3–5, leading to substantial cost reduction.
Unfortunately, the anode hydrogen oxidation reaction (HOR)
activity on PGM catalysts (e.g., Pt, Ir, and Pd) is about two to
three orders of magnitude slower in alkali than in acidic
electrolytes6,7. This consequently causes higher PGM loadings at
the anode that could largely offset the reduced cost from the use
of PGM-free cathodes8. As a result, the development of durable
PGM-free catalytic materials with high intrinsic HOR activity in
alkali is important to the eventual success of HEMFC technology.

Recent advances in the design of alkaline HOR catalysts and
related mechanistic understanding have primarily focused on
PGMs and their alloys9–11. Numerous PGMs, such as Pt, palla-
dium (Pd), iridium (Ir), ruthenium (Ru), and rhodium (Rh,) have
been studied for HOR in alkaline electrolytes10,12, among which
Pt and Ir are particularly active and stable. Moreover, alloying
PGMs with other metals can enable performance enhancements
resulting from the modified surface structures; typical examples
include PtNi13, PtRu14, Pt-coated Cu15, body-centered cubic
PdCu9, and others16–20. In the quest to understand why the HOR
reactivity in alkaline media is significantly slower than that in acid
on PGMs, there has been extensive debate over whether such
sluggish HOR kinetics in alkali is determined by hydrogen
binding energy (HBE) or OH binding energy (OHBE)/
oxophilicity8,10,11,13,21–27. The lack of a conclusive mechanistic
relevance has somewhat hampered success in designing better-
performing HOR catalysts from PGMs. With regard to cost-
effective HEMFC anode, replacement of the PGMs with PGM-
free catalysts—for example, nickel (Ni)28, Ni3N29, Ni/CeO2

30, Ni/
NiO/C31, NiMo/C32, CoNiMo33, Ni/N-doped carbon nano-
tubes34, and Cr-decorated Ni35—has been intensively proposed.
However, the HOR activity and durability of these Ni-based
catalysts are ordinary. To our best knowledge, although numer-
ous efforts have been devoted to developing PGM-free catalysts
for alkaline HOR since 1960s36, no catalyst with activity superior
to commercial Pt/C has been reported, which severely limits their
practical adoption in HEMFCs.

Herein, we report an important development in totally PGM-
free HEMFC anode by using bimetallic MoNi4 alloy as a catalyst,
which enables the HOR catalysis in alkaline electrolytes highly
efficient. The nanostructured MoNi4 catalyst yields a geometric
exchange current density of 3.41 mA cm−2 towards the HOR,
which is 1.4 times higher than that of commercial Pt/C catalyst
and compares superior to previously reported PGM-free catalysts
measured in alkali. At 50 mV, a geometric kinetic current density
of 33.8 mA cm−2 is obtained for MoNi4 catalyst, which represents
105- and 2.8-fold increase as compared to the freshly synthesized
Ni and commercial Pt/C catalyst, respectively. This alloy catalyst
also shows impressive tolerance against surface poisoning by
impurity carbon monoxide (CO) in hydrogen fuel. We find that
the HOR activity does not degrade obviously after 20 h of
operation. The high reactivity is obtained by the optimized
Ni–molybdenum (Mo) alloy nanostructure and surface that offer
synergistic optimization for the adsorption of hydrogen on Ni
and hydroxyl on adjacent Mo (tungsten (W)). Similarly designed
WNi4 alloy also demonstrates marked HOR activity in alkaline
environments. Our results thus suggest a promising alloy design

strategy for producing active and durable HOR catalysts for low-
cost HEMFC anodes.

Results
Synthesis and characterization of Ni–Mo/W. We designed HOR
catalysts on the basis of Ni and Mo (W) because they were
thought to be essential elements of hydrogenase enzymes37,38 and
because Ni-based compounds have been observed to mediate the
HOR catalysis in alkali with mild rates31,34. We first synthesized
the sheet-like Mo (W)-doped Ni(OH)2 precursors through
microwave heating of Ni(NO3)2·6H2O and (NH4)6Mo7O24·4H2O
(or (NH4)10W12O41·xH2O) in a NH3·H2O/ethylene glycol/H2O
mixture at 200 °C (Fig. 1a and Supplementary Figs. 1 and 2). The
resultant green powders were then annealed in hydrogen/argon
(H2/Ar: 5/95) atmosphere at 400 °C to produce Mo–Ni alloy (or
500 °C for W–Ni alloy; Fig. 1a). Our microwave reactor equipped
with an automatic arm enables us to gain multigram-scale Mo
(W)–Ni alloys in one batch (insets in Fig. 1b, e), implying a
potentially large-scale use. Both two obtained alloys reveal similar
morphologies when imaged by scanning electron microscopy
(SEM) (Fig. 1b, e). More slit-like pores that were generated by
aggregation of nanosheets during annealing process are seen for
Mo–Ni alloy (Fig. 1b). Aberration-corrected high-angle annular
dark-field scanning transmission electron microscopy (HAADF-
STEM) of Mo–Ni alloy shows interconnected nanosheets with
porous surfaces (Fig. 1c and Supplementary Fig. 3), whereas the
W–Ni alloy was formed as an aggregation of overlapping nano-
particles (Fig. 1f and Supplementary Fig. 4). The morphological
features yield Brunauer–Emmett–Teller (BET) surface areas of
63.3 and 33.9 m2 g−1 for Mo–Ni and W–Ni alloys (Supplemen-
tary Fig. 5), respectively. Atomic-resolution HAADF-STEM
images with corresponding fast FT analyses demonstrate the
formation of tetragonal MoNi4 and WNi4 crystalline phases
(Fig. 1d, g, insets). Abundant atomic steps on the surface of
MoNi4 and WNi4 alloys can be observed (see white arrows in
Fig. 1d, g), probably induced by the high-temperature annealing
treatments. X-ray diffraction (XRD) studies further confirm the
successful transformation of Mo(W)-doped Ni(OH)2 precursors
(Supplementary Fig. 1) into fully alloyed tetragonal MoNi4
(JCPDS 65-5480) and WNi4 (JCPDS 65-2673) phases (Fig. 1h;
corresponding crystal structures are shown as insets). It is noted
that the diffraction peaks of MoNi4 and WNi4 differ from those of
pure Ni synthesized by the same route (Fig. 1h and Supple-
mentary Fig. 6), suggesting the alloy-induced structural change
that might tune the catalytic functions. Energy-dispersive X-ray
(EDX) spectrum elemental mapping in Fig. 1i presents a uniform
spatial distribution of Mo(W) and Ni in Mo(W)Ni4 products, and
the overall Mo(W) to Ni ratio was determined to be 1:4 on the
basis of EDX and inductively coupled plasma atomic emission
spectroscopy (ICP-AES) measurements (Supplementary Fig. 7
and Supplementary Table 1).

The X-ray absorption spectroscopy is used to probe the impact
of alloying Mo(W) on the Ni chemical environment. Figure 2a
presents the X-ray absorption near-edge structure (XANES)
spectra of MoNi4 and WNi4 at Ni K-edge, which are similar to
those of the freshly synthesized Ni and Ni foil references, but
greatly differ from that of NiO reference, indicating the metallic
nature of the alloyed products. The radial structure function
around Ni was determined by Fourier transform (FT) of extended
X-ray absorption fine-structure (EXAFS) spectra (Fig. 2b and
Supplementary Fig. 8). We associated the major peak at ~2.2 Å
with Ni–Mo(Ni) and Ni–W(Ni) bonds in MoNi4 and WNi4
alloys39,40. No Ni–O and Ni–Ni bonds belonging to NiO
reference have been observed. The decrease in peak intensity as
compared to Ni–Ni bonds in freshly synthesized Ni and Ni foil
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indicates the damped coordination structure of Ni. In addition,
the Ni K-edge EXAFS fittings show that the first-shell Ni–Mo(W)
coordination numbers (CNs) decrease from Ni (~10.5) to MoNi4
(~8.8) and WNi4 (~8.6), respectively. (Fig. 2c, Supplementary
Fig. 9, and Supplementary Table 2). The lower CN could be
attributed to the rich surface steps on our alloyed catalysts
(Fig. 1d, g), which may increase the active sites that modulate the
adsorption capability. The FT curves at Mo K and W L3 edges in
Fig. 2d show predominant peaks at ~2.2 Å, corresponding to
Mo–Ni and W–Ni bonds (Supplementary Figs. 10 and 11),
respectively. The results from EXAFS wavelet transform (Fig. 2e)
—a powerful technique that can discriminate the backscattering
atoms41—exhibit only one intensity maximum at ~8.0 Å−1 in k
space that corresponds to Mo–Ni and W–Ni bonds in MoNi4 and
WNi4 alloys. By contrast, wavelet transform analysis of Mo foil
and W powder references give higher intensity maximum
(Fig. 2e), suggesting that Mo/W atoms are forming structures
in which their first coordination shell is formed only by Ni atoms
and no local Mo and W metals generate in the prepared alloys, in
agreement with the results in Fig. 2d. In addition, the X-ray
photoelectron spectroscopy (XPS) analyses indicate a superior
surface passivation resistance of our alloyed catalysts as compared

to single Ni (Supplementary Fig. 12). Together, we conclude that
alloying Ni with Mo(W) cerates clear compositional and
structural modulations, which we expect to benefit the HOR
catalysis in alkaline electrolytes.

Electrocatalytic HOR in alkaline electrolytes. We now examine
the electrocatalytic activity of the MoNi4 and WNi4 catalysts
toward HOR in H2-saturated 0.1 M KOH electrolyte in a three-
electrode setup; with reference measurements of freshly synthe-
sized Ni as well as commercial Pt/C (20 wt% Pt on Vulcan XC72R
carbon) for comparison (see “Methods”). A very slow sweep rate
of 0.5 mV s−1 was selected to minimize the capacitance con-
tribution and to guarantee a steady-state measurement (Supple-
mentary Fig. 13). The optimal catalyst loading on inert glassy
carbon rotating-disk electrode (RDE) was experimentally deter-
mined to be 0.5 mg cm−2 (Supplementary Fig. 14). We note that
the electrochemical data reported here were iR-corrected (i,
current; R, resistance) for the uncompensated Ohmic drop
(Supplementary Fig. 15).

Polarization curves for the HOR on studied catalysts are given
in Fig. 3a, which show that MoNi4 and WNi4 catalysts possess an
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onset potential for yielding HOR current as low as 0 V versus the
reversible hydrogen electrode (RHE), indicating their remarkable
energetics for HOR in alkali. By contrast, the freshly synthesized
Ni catalyst affects only negligible HOR activity. The two PGM-
free HOR alloy catalysts can reach the diffusion-limiting current
in the potential region >0.05 V, while a mixed kinetic-diffusion
control region happens between 0 to 0.05 V. Figure 3a also reveals

that the MoNi4 catalyst even outperforms the state-of-the-art Pt/
C catalyst from the kinetic to the diffusion-limiting regions. The
half-wave potential for MoNi4 catalyst at 1600 r.p.m. is mere 14
mV, which is ~5 mV lower than that of the Pt/C catalyst, further
evidencing excellent HOR activity of the MoNi4 catalyst.

We then studied the HOR polarization curves on our MoNi4
and WNi4 catalysts as a function of the rotation rate, where the
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plateau current density grows with increasing rotation rate due to
the promoted mass transport (Fig. 3b, c). The Koutecky–Levich
plots constructed at 25 mV show a linear relationship between the
inverse of overall current density and the square root of the
rotation rate, which yield calculated slopes of 4.60 cm2 mA−1 s−1/

2 for MoNi4 (inset in Fig. 3b) and 4.32 cm2 mA−1 s−1/2 for WNi4
(inset in Fig. 3c), reasonably matching with the theoretical value
of 4.87 cm2 mA−1 s−1/2 for the two-electron HOR process34. We
further used Koutecky–Levich equation to calculate the kinetic
current density (jk). At 50 mV, a geometric jk of 33.8 mA cm−2

was obtained for MoNi4 catalyst, which represents 105- and 2.8-
fold increase compared with those of freshly synthesized Ni and
commercial Pt/C catalysts (Fig. 3d).

Next, we extracted the exchange current density (j0) on studied
catalysts from linear fitting of micropolarization regions (−5 to 5
mV; Supplementary Fig. 16). The MoNi4 catalyst shows a
geometric j0 of 3.41 mA cm−2, far higher than 0.19 mA cm−2 for
the freshly synthesized Ni and 2.47 mA cm−2 for the Pt/C catalyst
(Fig. 3d and Supplementary Table 3). The geometric j0 on WNi4
catalyst is 1.87 mA cm−2, which is slightly lower than that of Pt/C
catalyst. These values are in good agreement with the fitting
results of Butler–Volmer equation in the Tafel regions (Fig. 3e;
see “Methods” for details). Intrinsic HOR activities of studied
catalysts were further compared by the electrochemical active
surface area (ECSA)-normalized j0 (for details see “Methods” and
Supplementary Figs. 17 and 18). The MoNi4 and WNi4 catalysts
deliver very high ECSA-normalized j0 of 0.065 and 0.068 mA cm
−2, respectively, which, to the best of our knowledge, has not been
achieved by any other PGM-free catalysts in alkaline electrolytes,
including various Ni-based compounds synthesized by other
methods (Supplementary Fig. 19 and Supplementary Table 4).

In addition, we probed the activation energy (Ea) of the HOR
on studied catalysts via plotting geometric j0 with the inverse of
temperature (Fig. 3f). It has been found that a linear relationship
between 283 and 313 K follows the Arrhenius behavior, from
which Ea values of 18.59, 27.42, and 20.07 kJ mol−1 were obtained
for the MoNi4, WNi4, and Pt/C catalysts (Fig. 3f and
Supplementary Figs. 20 and 21), respectively. We note that the
Ea of 20.07 kJ mol−1 measured for Pt/C catalyst matches reason-
ably with 23 kJ mol−1 for Pt(110) reported previously25. The
considerably smaller Ea values achieved for MoNi4 catalyst
suggest marked kinetics for HOR in alkaline environments, even
outperforming the Pt/C benchmark. Moreover, we conducted a
series of control experiments and disclosed that the Mo(W) to Ni
ratio and the annealing temperature are critical to the HOR
activity (Supplementary Figs. 22 and 25). These experiments
show that Mo–Ni and W–Ni alloys with Mo(W) to Ni ratios of
1:4 obtained by annealing at 400 and 500 °C, respectively, would
lead to the best HOR performances. We further note that our
MoNi4 sheets outperform conventional MoNi4 nanoparticles for
HOR owing to the porous structure that offers rich active sites
(Supplementary Fig. 26).

The results above demonstrate exceptional HOR catalysis in
alkaline electrolytes on MoNi4 and WNi4 catalysts, from which
the reactivity of MoNi4 even exceeds that of Pt/C benchmark.
Besides activity, another very important factor for future HEMFC
anode applications is electrochemical and operating stabilities.
We therefore conducted aggressive long-term stability measure-
ments on the MoNi4 and WNi4 catalysts (Fig. 4). First, we
performed accelerated stability tests by applying linear potential
scans between 0.05 and 0.15 V at 100 mV s−1 in H2-saturated 0.1
M KOH electrolytes at room temperature. At 50 mV over-
potential, the HOR current density for MoNi4 catalyst shows a
small loss of 0.25 mA cm−2 after 2000 cycles (Fig. 4a), versus a
loss of 0.41 mA cm−2 for WNi4 catalyst (Fig. 4b). Second, the

studied catalysts were deposited onto carbon papers (catalyst
loading: 2 mg cm−2) and assessed the operational stability by
means of chronoamperometry (j ~ t). Figure 4c shows that the
current density at 60 mV is stable without noticeable decay
during a 20 h continuous test for MoNi4 catalyst, whereas no
HOR current was generated in Ar-saturated 0.1 M KOH at the
same overpotential (Supplementary Fig. 27). Multiple “post-
mortem” characterizations display that the morphology and
structure of MoNi4 catalyst are well maintained (Supplementary
Figs. 28–30). By contrast, Pt/C catalyst undergoes a marked
degradation, which retains a mere 57% of its original current
density after 20 h operation. This large drop could be ascribed to
the gradual agglomeration of Pt nanoparticles during the stability
test (Supplementary Fig. 31). The WNi4 catalyst also shows
degradation, but at a much slower manner in comparison to the
Pt/C catalyst (Fig. 4c and Supplementary Figs. 28, 29, 32). These
results thus suggest that our MoNi4 and WNi4 catalysts have
stability much better than the commercial Pt/C catalyst.

CO-tolerance evaluation. In fuel cells, PGM catalysts (especially
Pt) at the anodes are readily poisoned by impurity gas such as CO
that existed in hydrogen fuel. Such poisoning is caused by the
preferential CO binding on Pt, which consequently blocks the
sites for hydrogen adsorption and dissociation. Unexpectedly, we
observed that the MoNi4 catalyst shows exciting HOR activity
even in the presence of 20,000 p.p.m. CO (Fig. 4d). At the same
CO concentration, no HOR activity on the Pt/C catalyst was
detected, suggesting complete poisoning of the sites for H2 oxi-
dation by CO binding (Fig. 4d). Our density functional theory
(DFT) calculations exhibit a significant higher CO adsorption
ability of Pt as compared to the MoNi4 alloy (Supplementary
Fig. 33), leading to the surface of Pt covered by CO and thus
deactivation. Moreover, the preferable OH adsorption on MoNi4
surface assists in the oxidation of CO adsorbed, which also
explains its notable CO-tolerance property. The high CO toler-
ance of our MoNi4 alloy catalyst could further affect the quest for
designing advanced fuel cell anodes based on PGM-free materials.

HOR enhancement mechanism. Although Ni and Ni-based
materials have been extensively studied as PGM-free HOR cata-
lysts in alkaline electrolytes, almost all previous Ni-based HOR
catalysts demonstrate a relatively low level of activity and their
long-term stability is also problematic. Here, the superb HOR
catalytic capability observed on our readily made MoNi4 and
WNi4 alloys prompted us to investigate the intrinsic mechanism
of the high performances, thus offering a guide for the design of
more advanced HOR catalysts.

We studied the electronic structures of MoNi4, WNi4, and
freshly synthesized Ni by using ultraviolet photoelectron spectro-
scopy). From the valence band spectra, we found that all these
catalysts have electronic bands across the Fermi level (EF; Fig. 5a).
The peaks located between 0 and 2 eV could be ascribed to the
metal d-band42,43, which reaches the maximum at 0.28, 0.80, and
1.09 eV for freshly synthesized Ni, MoNi4, and WNi4, respec-
tively. The metal d-band maximum with respect to the EF in our
MoNi4 and WNi4 alloys shifted far away relative to the Ni
reference. According to the d-band theory, these results suggest
that the filling of metal-H antibonding states above EF is
improved for MoNi4 and WNi4 catalysts, affording them a
weaker adsorption energy as compared to Ni44. Despite the HOR
mechanism on PGMs in alkaline environments is still under
debate, previous studies have proposed that the low HOR activity
on Ni catalyst was caused by the too high HBE34. Thus, we
partially attribute the notable HOR reactivity observed on MoNi4
and WNi4 catalysts to the appropriately weakened HBEs.
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We note that OHBE, or both HBE and OHBE, are also thought
to be the activity descriptor for HOR catalysis, which have
recently been theoretically predicted and experimentally
explored9,27, such as the study on PdCu nanocatalyst for alkaline
HOR9. Considering that CO can adsorb specifically on many
metal surfaces10,45,46, we thus performed CO-stripping experi-
ments to monitor the OH binding on our catalyst surface because
OHad facilitates the removal of COad

21. Results of our CO-
stripping experiments shown in Fig. 5b reveal that CO-stripping
peak on Pt/C catalyst locates at 0.69 V, consistent with the
previous reports23. Figure 5b further shows lower CO-stripping
peaks at 0.52 and 0.49 V for MoNi4 and WNi4 catalysts, whereas
the freshly synthesized Ni exhibits negligible CO-stripping peak.
Some prior works have ascribed the sluggish HOR kinetics on Pt
to its weak OHad binding in alkali8,23,27. Our CO-stripping results
here suggest that the enhanced OHBE on MoNi4 and WNi4 could
also be responsible for their high HOR energetics.

To better understand the mechanism underlying the notable
HOR performance, DFT calculations were further performed. We
created and optimized catalyst models of MoNi4(211),
WNi4(211), Ni(111), and Pt(111) to represent the catalytic
surfaces (see “Methods”; Supplementary Figs. 34–36). The DFT
results show that the HBE of Ni(111) is too strong, while
MoNi4(211) gives a very similar HBE with Pt(111) model
(Fig. 5c–f). When comparing the OHBE of MoNi4(211) with
that of Pt(111), we observed a greatly promoted hydroxyl
adsorption, which can explain the superior HOR reactivity of
MoNi4 catalyst (Fig. 5c–f and Supplementary Table 3). Our
computational results suggest that alloying Ni with Mo(W) not
only weakens the HBE on Ni sites but also permits an enhanced
OHBE on the Mo(W) sites, which substantially promote the key
Volmer step (Supplementary Figs. 37–39), leading to the HOR
enhancements. We also computed the HBE and OHBE of other
catalysts, such as Mo, W, CoNi4, and FeNi4, for comparison
(Fig. 5c and Supplementary Figs. 36 and 40), and more

calculation information are shown in Supplementary Figs. 38,
39, and 41. The simulations reveal that although these materials
have stronger OHBE than Pt(111), their HBEs are unfortunately
too strong (Fig. 5c), giving rise to the poor HOR activity
(Supplementary Figs. 42–45).

Taken together, our UPS and CO-stripping measurements, in
conjunction with DFT calculations, have proposed that a
synergistic interplay between HBE and OHBE likely determines
the HOR rate in alkaline electrolytes; and the striking HOR
reactivity observed on MoNi4 and WNi4 alloys could be
interpreted as the optimum adsorption of hydrogen on Ni and
hydroxyl on Mo(W), thus boosting the rate-limiting Volmer
reaction in alkaline HOR catalysis (Fig. 5d–f and Supplementary
Fig. 46).

Discussion
In conclusion, ultrahigh HOR activity in the alkaline electrolyte
has been achieved on PGM-free bimetallic MoNi4 and WNi4,
from which the MoNi4 exhibits exceptional apparent exchange
current density that even outperforms the commercial Pt/C cat-
alyst. We explain such high HOR rates of our catalysts by the
optimized adsorption of both hydrogen and hydroxyl species
owing to a synergistic effect between Ni and Mo (W). The cat-
alysts do not show obvious deactivation over a 20-h testing period
and demonstrate a good CO-tolerant property. We anticipate that
further improvement in activity would be attainable by alloying
other metallic elements into a single nanocatalyst. Our results
reinforce the importance of alloy design concept for obtaining
high-performance PGM-free HOR catalysts for future HEMFC
anodes.

Methods
Synthesis of MoNi4 and WNi4 alloys. All chemicals were used as received
without further purification. The MoNi4 and WNi4 alloys were synthesized through
a two-step method. First, sheet-like Mo(W)-doped Ni(OH)2 precursors were
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synthesized by microwave heating route. Briefly, 872 mg of Ni(NO3)2·6H2O and 96
mg (NH4)6Mo7O24·4H2O (or 190 mg (NH4)10W12O41·xH2O) were dispersed into 3
mL H2O in a 25 mL microwave glass vessel, followed by the addition of 1.2 mL
NH3·H2O and 15mL ethylene glycol. After stirring for 20 min, the mixture was
irradiated in the microwave reactor (Monowave 450, Anton Paar) at 200 °C for 6
min with continuous magnetic stirring. After cooling to room temperature, the
green powders were collected by centrifugation, washed, and dried for use. After
that, the obtained Mo(W)-doped Ni(OH)2 precursors were annealed in H2/Ar (5/
95) atmosphere at 400 and 500 °C for 1 h with a heating rate of 3 °C min−1 to
produce MoNi4 and WNi4 alloys, respectively47.

Synthesis of CoNi4, FeNi4, Ni, Mo, and W. The CoNi4 and FeNi4 alloys were
synthesized by the same method that was used for making MoNi4 alloy, while
replacing the (NH4)6Mo7O24·4H2O with 218 mg Co(NO3)2·6H2O and 303 mg Fe
(NO3)3·9H2O, respectively. The Ni nanopowder was synthesized through the same
method for MoNi4 synthesis, but without adding (NH4)6Mo7O24·4H2O in the first
step. The Mo metal was synthesized by annealing the MoO3− x nanorods in H2/Ar
(5/95) atmosphere at 800 °C for 2 h, in which the MoO3− x nanorods were pre-
pared according to a previous work48. The W metal was synthesized by annealing
the WO3·H2O nanosheets in H2/Ar (5/95) atmosphere at 300 °C for 1 h and
subsequently at 850 °C for 2 h, in which the WO3·H2O nanosheets were prepared
according to the previous work49.

Characterization. SEM (Zersss Supra 40) and TEM (Hitachi H7700) were per-
formed to investigate the morphology of the samples. The STEM and HRTEM
images, and EDX elemental mappings, were obtained on Atomic-Resolution
Analytical Microscope (JEM-ARM 200F) with an acceleration voltage of 200 kV.
N2 adsorption/desorption analysis was taken on an ASAP 2020 (Micromeritics,
USA) at 77 K. XRD was conducted on a Philips X’Pert Pro Super with Cu Kα
radiation (λ= 1.541841 Å). ICP-AES results were taken by Optima 7300 DV
instrument. The UPS was conducted on the BL10B beamline and XPS was

conducted on the BL11U beamline of National Synchrotron Radiation Laboratory
in Hefei (China).

XAFS measurements. The XAFS spectra (Ni K-edge, Mo K-edge, and W L3-edge)
were collected at 1W1B station in Beijing Synchrotron Radiation Facility. The k3-
weighted EXAFS spectra were obtained by subtracting the post-edge background
from the overall absorption, followed by normalizing with respect to the edge-jump
step. Next, the real (R) space is obtained by Fourier transformation of k3-weighted
χ(k) data with a Hanning window (dk: 1.0 Å−1) to separate the signal contributions
from different coordination shells. Least-squares curve parameter fitting was exe-
cuted using the ARTEMIS module of the IFEFFIT software packages50 to study the
quantitative structural parameters around the central atoms.

Electrochemical measurements. The HOR electrochemical measurements were
conducted by a conventional three-electrode system on the electrochemical
workstation (IM6ex, Zahner-Elektrik). An RDE with glassy carbon (PINE with a
diameter of 5.00 mm and a disk area of 0.196 cm2) was applied as the working
electrode. The Ag/AgCl (3.5 M KCl) electrode and carbon rod were used as
reference electrode and counter electrode, respectively. The RHE calibration was
performed in high-purity H2-saturated 0.1 M KOH with a Pt foil as the working
electrode (ERHE= EAg/AgCl+ 0.967 V).

To make working electrodes, 10 mg catalyst powders were dispersed in 920 μL
ethanol with 80 μL Nafion (5 wt%), which yield a homogeneous ink by
ultrasonication. Then, 10 µl catalyst ink was pipetted onto a glassy carbon
electrode, resulting in a catalyst loading of ~0.5 mg cm−2. Before HOR
measurements, 0.1 M KOH electrolyte was bubbled with high-purity H2 gas for 30
min. The electrodes were pre-cycled between −1.1 and −0.75 V versus Ag/AgCl
with a sweep rate of 10 mV s−1 for 10 cycles to reach a stable state, then HOR
polarization curves were collected with a sweep rate of 0.5 mV s−1. The
electrochemical impedance spectroscopy measurement was carried out at 30 mV
overpotential and an amplitude of the sinusoidal voltage of 5 mV (frequency range:
100 kHz–40 mHz). For stability test, the catalysts were loaded onto clean carbon
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fiber paper (catalyst loading: ~2 mg cm−2) and used as a working electrode to
perform chronoamperometry experiments at a constant potential of 60 mV versus
RHE (iR free).

The kinetic current density was calculated by Koutecky–Levich equation. The
measured overall HOR current density (j) can be divided into kinetic current
density (jk) and diffusion current density (jd) based on the Koutecky–Levich
equation:

1
j
¼ 1

jk
þ 1
jd
; ð1Þ

where jd for a rotating-disk electrode can be described by the Levich equation:

jd ¼ 0:62nFD3=2v�1=6C0ω
1=2 ¼ BC0ω

1=2; ð2Þ
in which n is the number of electrons involved in the oxidation reaction, F is the
Faraday constant, D is the diffusion coefficient of the reactant, v is the viscosity of
electrolyte, C0 is the solubility of H2 in the electrolyte, B is the Levich constant, and
ω is the rotating speed.

The exchange current (j0) can also be obtained by fitting the linear portion of
the Tafel plots, where the Bulter–Volmer equation can be converted to Tafel
equation:

η ¼ Logðj0Þ þ b ´ LogðjÞ: ð3Þ
CO stripping was performed by holding the electrode potential at 0.1 V versus

RHE for 10 min in the purged CO to adsorb CO on the metal surface, followed by
Ar purging for another 30 min to remove residual CO in the electrolyte. The CO-
stripping current was obtained via cyclic voltammetry in a potential region from 0
to 1.2 V at a sweep rate of 20 mV s−1.

DFT calculations. All the computations were performed by using the Vienna ab
initio Simulation Package51 at the spin-polarized DFT level. The electronic
exchange and correlation effects were described with the Perdew–Burke–Ernzerhof
formalism52 within a generalized gradient approximation. The interaction between
the ion cores and valence electrons was simulated by the all-electron projector-
augmented wave53. The exchange correction treated for the transitional metals was
based on the previous literatures, which includes the same metals as ours for
reliability and comparability33,34,54. A kinetic cut-off energy of 500 eV was
employed for the plane-wave expansion and a Gaussian electron smearing of 0.1 eV
was used. The (3 × 3)-Ni(111), (3 × 3)-Mo(110), (3 × 3)-W(110), (3 × 3)-Pt(111),
(1 × 1)-CoNi4(111), (1 × 1)-FeNi4(111), (1 × 1)-MoNi4(211), and (1 × 1)-
WNi4(211) slabs with four layers and 15 Å vacuum layer were modeled to simulate
the explored surfaces of metals and alloys. The convergence criteria for the forces
and energy were 10−4 eV and 0.02 eV Å−1, respectively, with the bottom layer
fixed, while other layers relaxed during geometry optimization. These convergence
criteria were chosen according to the previous literatures to ensure the
accuracy34,54. The 9 × 9 × 9 and 5 × 5 × 1 Monkhorst–Pack k-point grids were
sampled for the bulk and slab structures, separately.

The adsorption energies of hydrogen and hydroxyl species with the explored
catalysts were calculated according to EH-ads= EH@cat.− Ecat.− EH and EOH-ads=
EOH@cat.− Ecat.− EOH, where EH@cat. and EOH@cat. represent the energy of metals
or alloys slabs with the adsorbed hydrogen and hydroxyl species, while Ecat., EH,
and EOH stand for the energies of the metals or alloys slabs, the hydrogen atoms,
and hydroxyl species, respectively. A more negative EH-ads or EOH-ads indicates a
larger binding energy.

Data availability
The data that support the findings of this study are available from the corresponding
authors upon request.
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