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A supertough electro-tendon based on spider
silk composites
Liang Pan1, Fan Wang2, Yuan Cheng 3, Wan Ru Leow1, Yong-Wei Zhang3, Ming Wang1, Pingqiang Cai 1,

Baohua Ji4, Dechang Li 4✉ & Xiaodong Chen 1✉

Compared to transmission systems based on shafts and gears, tendon-driven systems offer a

simpler and more dexterous way to transmit actuation force in robotic hands. However,

current tendon fibers have low toughness and suffer from large friction, limiting the further

development of tendon-driven robotic hands. Here, we report a super tough electro-tendon

based on spider silk which has a toughness of 420MJ/m3 and conductivity of 1,077 S/cm.

The electro-tendon, mechanically toughened by single-wall carbon nanotubes (SWCNTs)

and electrically enhanced by PEDOT:PSS, can withstand more than 40,000 bending-

stretching cycles without changes in conductivity. Because the electro-tendon can simulta-

neously transmit signals and force from the sensing and actuating systems, we use it to

replace the single functional tendon in humanoid robotic hand to perform grasping functions

without additional wiring and circuit components. This material is expected to pave the way

for the development of robots and various applications in advanced manufacturing and

engineering.
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The loss of appendages can severely affect a person’s quality
of life. As a result, humanoid robotic hands with cap-
abilities comparable to human limbs have been actively

explored for use as prosthesis1–3. The core component of these
robotic hands is the tendon-driven transmission system, which
relies on a fiber that resembles the human tendon to transmit
power from actuators to joints. Compared to other systems based
on leverages, shafts or gears, tendon-driven transmission is sim-
pler in design and offers better dexterity and flexibility. It has
been widely used in humanoid robotic hands, such as the Okada
Hand4, Utah/MIT Hand5, and DLR Hand6. However, current
tendon fibers, which are typically made from nylon, silicone
rubber, or polyethylene terephthalate (PET), have low toughness
and therefore, cannot endure many bending and stretching cycles.
These fibers also suffer from large friction along the narrow
tendon path, further lowering their durability5,7,8. Given many of
these tendons are non-conductive and have a single function,
integrating wires for the transmission of electrical signals from
sensing systems and additional fibers as tendons onto a slender
robotic finger with the size of a human hand is challenging2,3,9.

Currently, there are no materials or systems that simulta-
neously have high toughness, conductivity, and stretchability for

mechanical engineering applications such as tendons in robotic
hands10,11. Polymer-based conductors typically show low
toughness (<100MJ/m3) and poor conductivity (<100 S/cm)12–17.
For example, the toughness of PDMS-based conductors is only
around 0.6–10MJ/m3 18–23. Although traditional metals such as
Au, Al, and Cu have excellent conductivity, they have low
toughness (around 1–10MJ/m3)24 (Fig. 1a and Supplementary
Table 1), making these materials unsuitable for robotic applica-
tions. There is, therefore, a demand for materials that are
simultaneously flexible, conductive and durable, so they can be
easily integrated on a finger to achieve human-like performance
and functionality.

Here, we report an “electro-tendon” based on spider silk that
has a toughness of 420MJ/m3 and conductivity of 1077 S/cm
(pink star in Fig. 1a), properties that are better than current
flexible and stretchable conductors. The electro-tendon makes
from the Nephila pilipes spider dragline silk, single-walled carbon
nanotube (SWCNT) and poly(3,4-ethylenedioxythiophene)
polystyrene sulfonate (PEDOT:PSS). We show this electro-tendon
can bend and stretch more than 40,000 cycles without any change
in conductivity. When attaching to a pressure sensor and
mounting on a 3D-printed human-like robotic finger, the electro-
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Fig. 1 Toughness and conductivity of spider silk composites. a Graph shows the conductivity and toughness of different flexible materials. Green
represents metals, red is PDMS-based stretchable conductors, and blue represents other special conducting materials/structures. Pink star represents
S-silk@10% SWCNT composites described in this work. b Optical image of a bundle of raw dragline silk from Nephila pilipes. Inset shows a single silk fiber
has a very smooth surface. c SEM image showing the wrinkled surface of a single fiber of S-silk@10% SWCNT composite formed from the intrinsic shrinkage
of the spider silk after immersion in water during PEDOT:PSS and SWCNT coating. The wrinkled structure prevented any changes in the conductive path,
allowing the S-silk composite to maintain its conductivity during stretching and compression. d Cross-sectional scanning electron microscopic image of a
spider silk composite. The core is spider silk, and the diameter is about 3–4 μm. The outer conducting layer is about 2 μm. e Stress–strain curves of natural
spider silk (S-silk), spider silk with PEDOT:PSS@0%SWCNT (S-silk composite@0%SWCNT), spider silk with PEDOT:PSS@10%SWCNT (S-silk
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f, g Conductivity and toughness of the S-silk composite increased with increasing weight percent of SWCNT, before experiencing saturation at 12.5 wt%. The
maximum conductivity and toughness achieved were 1077 S/cm and 420MJ/m3, respectively. Our S-silk composite is more conductive and tougher than
the other flexible materials shown in Fig. 1a. The error bars in f and g show standard deviations based on 50 independent samples.
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tendon enables the robotic fingers to respond and capture various
objects without damaging the objects. This feat is because of the
stable transfer of both electrical signals through the tendon fiber
from the pressure sensor and force signals from the actuating
system. Because the electro-tendon can transmit signals to and
from both the actuating and sensing systems, it can be mounted
on a slender robotic finger without the need for additional wires
or circuit components, significantly simplifying any robotic setup.

Results
Spider silk composites design and characterization. Spider silk
(S-silk), hailed as a “super fiber” (Supplementary Fig. 1 and
Supplementary Movie 1), is one of the toughest natural materials
in the world, outperforming the best synthetic high-performance
fibers available today25–30. For instance, the toughness of Nephila
pilipes spider dragline silk is ~160MJ/m3, while that of Kevlar
(Dupont Advanced Fiber Systems), the material used in bullet-
proof body armor, is ~50MJ/m3 31. Given its toughness, S-silk is
an attractive candidate for fabricating electro-tendons for use in
humanoid robotic hands. To make S-silk with high conductivity,
a layer of PEDOT:PSS was coated, due to their high mechanical
flexibility, good dispersibility, and excellent electrical conductivity
with 3000 S/cm after annealing32–34. Because of hydrophilic PSS,
PEDOT:PSS has good adhesion with the processed S-silk to form
a conformal conducting layer (Fig. 1b, c and Supplementary Fig. 2
for detailed fabrication procedure)32. On the other hands, we
have introduced SWCNT into the silk to improve the toughness.
SWCNT is a fascinating material that is a one atom thick layer of
graphite rolled into a cylinder with a 1 nm diameter. It has
exceptional mechanical modulus of 1 TPa and tensile strength of
100 GPa. Thus, SWCNT are often used for mechanical
enhancement in many material systems34–38. More importantly,
SWCNT in this work can further improve the conductivity of S-
silk through electronic density transfer from PEDOT to
SWCNT39,40. Supplementary Fig. 3 shows the optical image of
modified spider silk. As compared to raw spider silk, the color of
the S-silk composite changed into black. Then, we confirmed the
presence of SWCNT in the silk through G band in the Raman
spectrum of the sample’s cross-section (Fig. 1d, Supplementary
Fig. 4). The outer layer of conducitng layer is epoxy resin which
was used to bury the spider silk for good corss-section SEM
images. As the weight percent of SWCNT increased (0–12.5 wt%),
the intensity of the G band increased but the stress–strain curve
remained nearly unchanged until 12.5 wt% due to poor
dispersion of SWCNT in water (Supplementary Fig. 5). Because
there were no differences in mechanical properties between the
composite with 12.5 and 10 wt% SWCNT, we used silk compo-
sites containing 10 wt% SWCNT for the robotic finger
experiments.

The conductivity of the S-silk composites enhanced with
increasing SWCNT content, achieving 1077 S/cm with 7.5 wt%
SWCNT (Fig. 1f). Moreover, the toughness of S-silk (determined
from the area under the strain–stress curve) increased 2–3 times to
420MJ/m3 upon addition of 10 wt% SWCNT (Fig. 1g). Other
mechanical parameters such as Young’s modulus and strength
were also improved with increasing SWCNT content. And, the
maximum strain (~60%) was nearly unchanged along with
the content of SWCNT (Supplementrary Fig. 6). To enable stable
electrical signal transmission under strain, we made the conduct-
ing layer wrinkled by exploiting the intrinsic shrinkage of S-silk in
aqueous solution (Fig. 1d and Supplementary Fig. 2ii)41,42. The
wrinkled structure, which flattened upon stretching, prevented any
changes in the conductive path, allowing the conductivity of the
S-silk composites to remain nearly unchanged even after >36,5000
cycles of stretching and compression between 0% and 15% strain

(the maximum strain of the human tendon is ~15%) (Supple-
mentary Figs. 7 and 8). From Supplementary Fig. 5b, when
applied larger strain ~60%, the conductivity changed about 5%.
Thus, before rupture, the S-silk composite can stably transmit the
electrical signals.

Dissipative particle dynamic (DPD) simulation. To understand
how SWCNT improve the mechanical properties of S-silk at the
microscopic scale, DPD simulation was performed. Here we
adopted a coarse-grained description43,44 of silk proteins and
SWCNT to investigate the structural evolution of amorphous (31-
helix and β-turn) and crystalline (β-sheet nanocrystal) structures
of silk in the presence of SWCNT under different strains. Every 9
water molecules are represented by one hydrophilic “w” bead, as
shown in Supplementary Fig. 9a. Silk peptides are described as
multiblock copolymer chains composed of hydrophobic “a” and
hydrophilic “b” beads, with each bead representing three amino
acids in the β-sheet crystalline and amorphous
domains, respectively, as shown in Supplementary Fig. 9b. The
CG single silk peptide is represented by the sequence
[b]16−[a]5−[b]7−[a]5−[b]7 in this study. The CG beads
are connected by harmonic potentials43. To include SWCNT into
the DPD simulations, each SWCNT is also described as CG beads
connected by harmonic potential, as shown in Supplementary
Fig. 9c.

Figure 2a, b show a snapshot of the coarse-grained S-silk
composite. At the beginning of applying strain, the amorphous
regions in natural S-silk gradually unfolded28. The hydrogen
bond in the amorphous structure was broken with strain
increasing. In the case of the S-silk composite, the interactions
between SWCNT and silk proteins induced higher strength than
that without SWCNT. With strain further increasing, the
composite experiences higher normalized stress due to the bridge
effect between SWCNT and the silk proteins (Fig. 2c–f,
Supplementary Fig. 10a, b and movies 2 and 3). The S-silk
composite fractured more difficult than S-silk at a lower critical
strain, showing the composite has much tougher and better
mechanical properties. In the simulation, we defined fracture as
the number of bridges crossing any cross section to be <1. DPD
simulation of toughness, Young’s modulus, and strength as a
function of SWCNT wt% agreed well with experimental data
(Fig. 2g–i), suggesting the importance of SWCNT for improving
the mechanical properties of spider silk.

Endurability of spider silk composite-based tendon. As proof-
of-concept, we used the S-silk composite containing 10 wt%
SWCNT as an electro-tendon to assemble a robotic hand that can
perform basic functions of human hands. The robotic finger,
made from polylactic acid (PLA), was 3D-printed to the same size
of a human finger bone. The electro-tendon was attached to the
inner side of the robotic finger and held in place using a silicone-
based extensor (Fig. 3a, Supplementary Fig. 11). We measured the
changes in the angle of the robotic finger relative to the vertical
axis and the change in length of the tendon when the index finger
experiences full bending. The initial angle of the index finger at
resting state was about 8° (Fig. 3b). When the finger was bent to
its final state pulled by the tendon from 0 to 5.2 cm, the angle
changed to 73° (Fig. 3c). And, this whole process took ~1.5 s,
according with the human bending process (Fig. 3d).

To confirm the durability of the S-silk composite-based
tendon, we conducted cyclic bending tests and compared the
results with other tendon materials (i.e. natural S-silk, nylon fiber,
carbon fiber, steel fiber, and PDMS fiber) (Fig. 3e). Materials with
higher toughness were clearly more durable as shown by the
ability to withstand greater number of bending cycles. The finger
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based on S-silk composite with toughness of 420MJ/m3 sustained
40,000 cycles of the full bending process (Fig. 3f), nearly double
that of natural S-silk with toughness of ~190MJ/m3. For nylon
and carbon fibers with lower toughness, the endurance of these
robotic hands was considerably lower. In the case of steel fiber
and PDMS fiber, the finger failed to perform a full bending action
due to poor toughness (Supplementary Fig. 12).

We further tested the ability of the fingers to lift a weight;
diameter of all fibers was kept at 0.3 mm. The finger with the S-
silk composite fiber can lift a weight of 7.6 kg (Fig. 3g) (1051.1 N/
mm2), which was comparable to the finger with steel fiber
(1292.5 N/mm2) but much higher than fingers with nylon fiber
(766.3 N/mm2), commercial carbon fiber (604.7 N/mm2), natural
S-silk (537.1 kg/mm2) and PDMS fiber (4.3 N/mm2) (Fig. 3h).
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Feedback and grasping process of robotic hand based on
electro-tendon. Besides endurance, electro-tendons also need to
stably transfer signals from the feedback system during move-
ment of the robotic hand. To achieve this, we designed a pressure
feedback system (Fig. 4a and Supplementary Fig. 13) to enable the
hand to feel the pressure of the finger when grasping objects. The
pressure sensor, which is based on the pyramidal structure we
reported previously45, has a sensitivity of about 24.8 kPa−1. This
sensor can detect pressures from 0 to 1 kPa in <4 ms, which is
enough for our grasping experiments. We assembled the pressure
sensor on the tip of the index finger and connected it to the

electro-tendon with a reference resistor of 100 kΩ as shown in
Fig. 4b. When the finger was bent, the electrical resistance of
the electro-tendon remained nearly unchanged (Fig. 4c). When
we touched the sensor with pressures of 0, 113, 327, and 749 kPa,
the finger bent by 0°, 19°, 32° and 43°, respectively. Higher forces
resulted in greater bending angles (Supplementary Fig. 14 and
Supplementary Movie 4).

We used the humanoid robotic hand assembled with the S-silk
composite electro-tendon and pressure sensor to grasp a green
balloon without deforming its shape. A tendon based on nylon, a
common non-conductive material for robotic tendon, was used

Fig. 3 Performance of humanoid robotic hands assembled with S-silk composite as electro-tendon. a Photograph of a 3D-printed robotic finger with an
S-silk composite@10% SWCNT electro-tendon held in place by a silicone-based extensor. b Photograph showing the index finger at resting state has an
angle of about 8°. c Photograph of the finger bent to the maximum position, pulled by the tendon. d Graphs show the bending angle (red curve) of the
robotic finger correlates with the change in length (black curve) of the electro-tendon. The angle at maximum bending is 73° (peak of the red curve). This
whole process has taken ~1.5 s. e Cyclic bending tests of robotic fingers assembled using different materials as the tendon show tougher materials were
more durable. Our S-silk@10% SWCNT could withstand ~40,000 cycles of the full bending process, nearly double that of fingers using natural S-silk and
nylon fiber. Because of low toughness, fingers using steel fiber and PDMS fiber failed to complete a full bending process. The error bars of e show standard
deviations based on 10 independent samples. f Graph shows the endurance of the finger using S-silk composite @10% SWCNT. g, h Lifting weight of
humanoid robotic finger using different types of fibers (diameter of all fiber is 0.3 mm). S-silk composite@10%SWCNT loaded about 7.6 kg, which was
comparable to steel fiber. The error bars of h show standard deviations based on 10 independent samples.
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for comparison. After placing the balloon in the hand, the
actuating system was activated to bend the fingers until the index
finger touched the balloon and recorded a pressure value that
fulfills the criterion of the programmed stop pressure (in this case,
the stop pressure was ≥170 Pa, determined through trial and
error). When the stop pressure criterion is met, the fingers stop
bending, allowing the green balloon to remain in place between
the three fingers (Fig. 4d and Supplementary Movie 5). For this
balloon, which has a diameter of 4.8 cm, the pressure sensor on
the index finger recorded a pressure of 178 Pa. In the case of the
robotic hand with the non-conductive nylon, the hand continued
to bend forward and failed to grasp the balloon because no signal
was transmitted from the pressure feedback system to halt the
hand. (Fig. 4e and Supplementary Movie 5). The humanoid hand
assembled with S-silk composite electro-tendons could also grasp
other objects such as a needle and a puff (Supplementary Fig. 15).
In the case of the needle, the hand stopped moving when the
force detected by the pressure sensor was over 0.012 N (in this
case, the force recorded was 0.015 N). Because the touch area
between the needle and the sensor cannot be defined, here, we
used the force detected by the sensor when the hand grasped the
needle as reference. In the case of the puff, the hand was
programmed to stop moving when the pressure was above 400 Pa
(in the experiment, the pressure recorded was 430 Pa). This
robotic hand based on the electro-tendon is clearly dexterous
enough to perform basic grasping functions that are useful for
day-to-day activities.

Discussion
In conclusion, we report the fabrication of a high toughness
electro-tendon that enabled a humanoid robotic hand to perform
basic grasping functions. The electro-tendon is a flexible and
conductive composite material made from spider silk, coated with
a conductive PEDOT:PSS layer and toughened with SWCNT. It is
tough and durable, able to withstand up to 40,000 cycles of
bending and stretching without any change in conductivity.
When attached to a pressure sensor and mounted on a humanoid
robotic finger, the robotic hand could grasp various objects such
as a balloon, needle and a puff without crushing and damaging
the objects. The electro-tendon, which can transmit force from
the servo motor of the actuation system and electrical signals
from the pressure sensor of the feedback system, simplifies the
setup of a humanoid robotic finger because both actuation and
sensing signals can now be transmitted through a single fiber.
This material, which imparts improved dexterity and durability to
the robotic hand, is expected to have many applications, parti-
cularly in the building of robots that could help with household
chores such as picking up and putting away clutter. Besides
robotics, this super tough conductor could also serve as an elec-
trode for interconnector for highly tough flexible electronic cir-
cuits, anti-static durable woven and tough cables.

Methods
Feeding the spider and collection of the spider silk. The spider was kept in an
80 × 60 × 40 cm vivarium, consisting of wood panels and artificial plants (shown in
Supplementary Fig. 1 and Supplementary Movie 1). The spider was kept at a
humidity above 65% and a temperature about 25 °C. The spider was fed live locusts
and flies three times a week. We collected the spider silk every 2 weeks using a
scalpel for transfer within a rigid frame. Herein, we used a classic spider silk,
dragline, as an example. The diameter was 3–4 μm (Supplementary Fig. 1b and c),
and the surface was smooth.

Fabrication of the spider silk composite. All processing solvents and chemicals,
such as ethanol, silver nitrate (AgNO3), 7,7,8,8-Tetracyanoquinodimethane
(TCNQ), and poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:
PSS) were analytic grade reagents and purchased from Sigma-Aldrich. The
SWCNTs were purchased from Nanjing XFNANO Materials Tech Co, Ltd.

1. Preparation of nano-island structure on the spider silk. Firstly, the collected
raw spider silk was rinsed by ethanol (Absolute, 99.9%) three times and dried at
80 °C about 12 h. Then, the spider silk was hydrophilization by the plasma under
O2 atmosphere for 10 min, forming hydrophilic groups, such as hydroxyl groups
on the surface of spider silk (Supplementary Fig. 2a). Secondly, the modified spider
silk was immersed in 0.1 mol/L AgNO3 of ethanol for 5 min. The hydrophilic group
−OH was changed into −OAg as the seeds for nano-island structure growth
(Supplementary Fig. 2b). Thirdly, the spider silk-OAg was immersed in 0.01 mol/L
tetracyanoquinodimethane (TCNQ) of ethanol through the method of drop
flowing and annealed (5 min, 100 °C) to form a layer of the nano-island structure.
Detailly, the spider silk-OAg was laid along with the beaker. The 0.01 mol/L TCNQ
dropped from the funnel and flowed past the spider silk-OAg. And the flow rate
was about 1 drop per 1 s. The whole process was about 10 min. After that, the
modified spider silk-OAg was annealed for 5 min at 100 °C. At last, a nano-island
structure formed on the surface of spider silk (Supplementary Fig. 2c).

2. Preparation of conductive spider silk composite. We prepared PEDOT:PSS
solution with 2.5%, 5%, 7.5%, 10%, and 12.5% SWNCT. And then, the spider silk of
(1) was immersed in the PEDOT:PSS solution also via the method of drop flowing.
The rate was 1 drop per 5 s. After annealing at 80 °C for 5 min, the diameter
changed from 3–4 to 6–7 μm and a conducting wrinkle structure was formed on
the surface of spider silk which was very helpful for unchanged conductivity during
stretching/compression. The reason for the wrinkle structure was the intrinsic
shrinkage of spider silk induced by the solution of water in PEDOT:PSS (Sup-
plementary Fig. 2d).

3. Characterization of morphology, mechanical and electrical properties of
spider silk composite. We used field emission scanning electron microscope
(SEM) to characterize the morphology, cross-section of the spider silk composite
and microstructural evolution of the spider silk under different strain. SEM images
shown in Supplementary Fig. 4 were obtained on a Zeiss SUPRA55 SEM using an
acceleration voltage of 5 kV in situ at the same area from strain at 0% to breakage
using the same magnifications. Cross-section images (Fig. 1d and Supplementary
Fig. 1c) were obtained by cutting the encapsulation epoxy resins with spider silk
along the silk direction using a sharp blade, after freezing the fiber in liquid
nitrogen. More detailly, the spider silk composite was embedded in a drop of
encapsulation epoxy resin which was solidified under UV-light for 30 min. Then,
we used a sharp blade to cut the resin along the silk direction for SEM under liquid
nitrogen. The mechanical properties of spider silk and its composite were obtained
using an Instron mechanical tester (MTS criterion Model 42) with 50 N load cell
and 100 N Bionix vice grips. Stress–strain curves for non-coating and coating
spider silk were shown in Supplementary Fig. 4. The Young’s modulus of silk was
calculated by linear curve fitting for strain below 15%. The toughness was an area
of the stress–strain before breakage. The electrical properties of the samples
obtained by two-probe resistance measurements using Keithley 4200-SCS semi-
conductor characterization system. Stretch/compress was applied along the axial
direction of the spider silk using a homemade fixture. The resistance of the spider
silk composite nearly unchanged until the strain at 60%. This reason was the
conductive path unchanged when the wrinkle structure of the conductive layer
PEDOT:PSS@SWCNT gradually flattened with increasing of the strain shown in
the blue area in Supplementary Fig. 6. And, we could see clearly there was no creak
even at the strain at 50%. But the sample was breakage during the strain increased
to 60%.

Dissipative particle dynamic (DPD) simulation models and method. DPD is a
mesoscopic particle-based coarse-graining (CG) simulation method46,47. Com-
paring with the all-atom simulation method, DPD is advantageous to treat a much
larger spatial scale and time scale in simulations. For example, the DPD method is
well used to simulate the interaction of carbon materials with cellular mem-
brane48,49, the deformation of carbon nanotubes50, the morphology and dynamics
of carbon nanotube in polycarbonate carbon nanotube composite51 and etc. In this
study, we adopted the similar DPD model developed by Lin et al. for the spider silk
protein, which is well applied to study the assembly and deformation of silk
protein43. In the DPD simulations, interaction forces between beads include FijC,
FijD, and FijR, denoting the conservative force, the dissipative force, and the ran-
dom force, respectively. The total force on bead i is given by

Fi ¼
X

i≠j

FCij þ FDij þ FRij

� �
ð1Þ

where

FCij ¼ aijωðrijÞr̂ij
FDij ¼ � γω2ðrijÞðvij � r̂ijÞr̂ij
FRij ¼ σωðrijÞξijΔt�1=2 r̂ij

ð2Þ

In Eq. (2), rij is the distance, rîj is the unit vector, and vij is the relative velocity
between beads i and j. γ and σ are the parameters with the relation as σ2= 2γkBT,
where kB is the Boltzmann’s constant and T is the temperature. σ= 3.0 and γ= 4.5
are used as the previous study43,44. ξij is a normal distribution number with zero
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mean and unit variance. ω(rij) is the normalized distribution function. The
hydrophilic and hydrophobic properties of the CG beads are defined by the
parameter aij in Eq. (2)52.

The DPD potential parameters for the CG beads of water molecules and silk
peptides were taken from Lin et al.’s work43. To represent the hydrophobicity
of SWCNT, the DPD potential parameter for bead “c” in SWCNT is taken as
the same as bead “a”, according to previous study53. All aij values are listed in
Table 143,53.

The DPD simulations were carried out by LAMMPS package54. For the starting
structure, the silk peptide chains were randomly generated in a rectangular
simulation box with a dimension of 60 × 40 × 40 rc3. The simulation box is under
periodic boundary condition. To simulate varied weight fraction of SWCNT, the
proper number of SWCNT were put into the simulation box in random position
and direction. After building up the initial structure, equilibration simulation was
performed until a steady state is achieved. Then the entire simulation box
containing silk peptides, SWCNT and solvent are stretched in the x-axis at a
constant engineering strain rate of 5 × 10−5τ−1, while the y and z dimensions are
adjusted simultaneously (with their aspect ratio fixed) to maintain the constant
volume of the simulation box43. All DPD simulations run under the NVE
ensemble.

The Young’s modulus of the nanocomposite in the x-axis, Ex, can be obtained
from the three-dimensional system by the equation: Ex= [σx − υ(σy+ σz)]/εx,
where σx, σy, and σz are the normal stress tensor value along the corresponding axis,
and the Poisson’s ratio υ= 0.5 for the constant volume constraint43. The effective
stress can be then defined as σeff = σx − υ(σy+ σz) and the region (e.g. ε ≤ 25%) of
the stress–strain curve as linear-elastic and used to determine Ex43. Supplementary
Fig. 8b shows a typical mechanical test of the silk–SWCNT nanocomposite in DPD
simulation. Each structure was repeated five times to determine its mechanical
properties.

It should be noted that as discussed by Lin et al. 43, due to the coarse-grained
nature of the DPD model, the absolute stress values are approximate; and in
addition to the presence of solvents in simulations, would also lead to simulated
ultimate strains much higher than that of common silk fibers. In the DPD
simulations, we will focus on the relative values in a qualitative way and the
mechanism of how SWCNT enhance the mechanical properties of the silk fibers.

Data availability
The authors declare that the main data supporting the findings of this study are available
within the article and its Supplementary Information files. Extra data are available from
the corresponding author upon request.
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