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Integrative genomic study of Chinese clear cell
renal cell carcinoma reveals features associated
with thrombus
Xiang-Ming Wang1,6, Yang Lu2,6, Yi-Meng Song1,6, Jun Dong2,3,6, Ruo-Yan Li1, Guo-Liang Wang1, Xu Wang2,

Shu-Dong Zhang1, Zhou-Huan Dong2, Min Lu1,4, Shi-Yu Wang2, Li-Yuan Ge1, Guang-Da Luo2,3, Run-Zhuo Ma1,

Steve George Rozen5, Fan Bai 1*, Di Wu2* & Lu-Lin Ma1*

Clear cell renal cell carcinoma (ccRCC) is a heterogeneous disease with features that vary by

ethnicity. A systematic characterization of the genomic landscape of Chinese ccRCC is

lacking, and features of ccRCC associated with tumor thrombus (ccRCC-TT) remain poorly

understood. Here, we applied whole-exome sequencing on 110 normal-tumor pairs and 42

normal-tumor-thrombus triples, and transcriptome sequencing on 61 tumor-normal pairs and

30 primary-thrombus pairs from 152 Chinese patients with ccRCC. Our analysis reveals that a

mutational signature associated with aristolochic acid (AA) exposure is widespread in Chi-

nese ccRCC. Tumors from patients with ccRCC-TT show a higher mutational burden and

genomic instability; in addition, mutations in BAP1 and SETD2 are highly enriched in patients

with ccRCC-TT. Moreover, patients with/without TT show distinct molecular characteristics.

We reported the integrative genomic sequencing of Chinese ccRCC and identified the fea-

tures associated with tumor thrombus, which may facilitate ccRCC diagnosis, prognosis and

treatment.
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Renal cell carcinoma (RCC) is a frequently diagnosed cancer
originating from the renal epithelium, with an estimated
403,262 new incidences and 175,098 deaths globally in

2018 (ref.1). RCC encompasses a heterogeneous group of
chemotherapy-resistant cancers with >10 histological and mole-
cular subtypes, of which clear cell RCC (ccRCC) is most common
and accounts for ~75% of RCC cases2. Systematic characteriza-
tions of the genomic landscape of RCC have been mainly con-
ducted in ccRCC and in patients from Western countries3–5. In
the Caucasian population, ccRCC is featured by ubiquitous
biallelic inactivation of VHL, which can be caused by chromo-
some 3p loss, concomitant VHL mutation, or promoter methy-
lation. Other frequent genomic alterations of ccRCC include
mutations in chromatin and histone modifier genes such as
PBRM1, BAP1, and SETD2 (refs.3–5). However, little is known
regarding the genomic landscape of Chinese ccRCC and how it is
different from Western cohorts. Thus, there is an urgent need for
genome-wide molecular profiling of Chinese ccRCC to elucidate
potential differences linked to ethnicity, which may have
important consequences for prognosis and treatment.

A unique clinical aspect of ccRCC is its ability to grow into the
renal vein or inferior vena cava and form a tumor thrombus (TT).
The venous thrombus is present in ~15% of ccRCC patients6. The
prognosis for patients with a TT is poor if left untreated, with a
median survival of 5 months and a 1-year disease-specific survival
rate of only 29%7. Although advances in surgical management
have improved the 5-year survival rate of ccRCC-TT patients8,
high perioperative mortality, and postoperative complications are
significant challenges. Furthermore, genomic studies of ccRCC-
TT are very limited. Therefore, exploring the genomic features of
ccRCC-TT and portraying the evolutionary process, leading from
the primary tumor to the development of a TT are critically
important.

In the current study, we report the results of our genomic and
transcriptomic profiling of Chinese ccRCC. By comparing our
data with a ccRCC data set from Western patients (The Cancer
Genome Atlas Research Network, TCGA), we evaluate the
similarities and differences between ccRCC in Chinese and
Western patients. Of note, a mutational signature (MS) associated
with aristolochic acid (AA) exposure is widely observed in Chi-
nese patients9. Importantly, we find that inactivation of one of the
chromatin remodeling genes BAP1 and SETD2 is significantly
more common in ccRCC patients with TT. Our findings shed
light on the molecular characteristics of Chinese ccRCC and
reveal distinct genomic and transcriptomic features associated
with TT, providing valuable biological and clinical insights into
the disease.

Results
The mutational landscape of Chinese ccRCC. The global
landscape of somatic alterations in Chinese ccRCC generated
from whole-exome sequencing (WES) data of 152 primary
tumors (Supplementary Table 1, Supplementary Data 1 and 2,
using the WES of 152 matched blood or normal tissues as
controls) is shown in Fig. 1a. A total of 12,534 somatic changes
were identified, including 12,012 single-nucleotide variants
(SNVs) and 522 insertions or deletions (InDels). Overall, we
observed comparable mutation rates between the Chinese and
the TCGA cohorts (MedianChinese= 42.5, MedianTCGA= 42,
Fig. 1b). Six significantly mutated genes (SMGs) were identified
in the Chinese cohort by MutSigCV10. In line with previous
results from the TCGA study, VHL, PBRM1, BAP1, TP53, and
KDM5C were identified as SMGs. However, TMPRSS13 was
identified as a SMG in the Chinese ccRCC cohort, but not in the
Western cohort3.

Driver genes reported in previous ccRCC studies3,4,11 and the
top 15 frequently mutated genes in our cohort are listed in Fig.
1a. Notably, VHL mutation was the most prominent variation
(58%), followed by PBRM1 (29%), CSMD3 (11%), BAP1 (11%),
SETD2 (11%), and KDM5C (11%). The mutation frequencies of
most putative ccRCC driver genes were similar in Chinese and
TCGA ccRCC patients (Fig. 1c). However, the Chinese cohort
had significantly higher mutation frequencies in CSMD3 (11% vs.
3%, Fisher’s exact test, p= 5.99e−04) and TMPRSS13 (7% vs.
0.2%, Fisher’s exact test, p= 1.25e−05) in comparison with those
of the TCGA cohort (Fig. 1c). CSMD3 is a transmembrane
receptor, and its homology member, CSMD1, is a putative
suppressor of squamous cell carcinomas12. Moreover, recent
studies showed that loss of CSMD3 could increase the prolifera-
tion of airway epithelial cells and is involved in the tumorigenesis
of lung cancer13.

To investigate somatic copy number alterations (SCNAs) in
Chinese ccRCC, GISTIC analysis14 was used to identify recurrent
SCNA regions. Consistent with the TCGA cohort, our data
showed that the most frequent arm-level events were chromosome
3p loss and 5q gain (Fig. 1a and Supplementary Fig. 1). Focal
amplifications involved some oncogenes, such as EGFR at 7q11.22,
MDM4 at 1q32.2, POLE at 12q24.32, and WNT11 at 11q14.1.
Focally deleted regions included the tumor suppressor genes ATM
at 11q23.2, CUL3 at 2q37.3, ARID1B at 6q24.3, FAT1 at 4q35.2 and
CDKN2A at 9p21.3 (Fig. 1a). Some new recurrent SCNA regions
were identified in Chinese ccRCC, including 7q11.22 gain, 11q14.1
gain, 12q24.32 gain, and 6q24.3 loss (Fig. 1a).

Enriched AA signature in Chinese ccRCC. To explore the spe-
cific etiological factors that may contribute to the mutagenesis of
Chinese ccRCC, we first compared the mutational spectra of
Chinese and Western cohorts. The T > A transversion accounted
for the largest difference between the two cohorts, especially in the
5′-GpTpCp-3′ context (Fig. 2a). Next, we adopted a non-negative
matrix factorization (NMF) algorithm15 to extract MSs from our
exome sequencing data. Three prominent signatures were detected
(Fig. 2b, c and Supplementary Fig. 2). Signatures MS2 and MS3
correspond to Catalog of Somatic Mutations in Cancer (COSMIC;
https://cancer.sanger.ac.uk/cosmic/signatures/) Signature SBS5
and SBS40, respectively. SBS5 exhibits transcriptional strand bias
for T > C substitutions in the ApTpN context, is found in most
cancers and is correlated with age. In addition, the etiology of
SBS40 is unknown, but the number of mutations attributed to
SBS40 is correlated with patient age for some types of human
cancer. Signature MS1, which corresponds to COSMIC Signature
SBS22 and has been associated with exposure to AA, was only
observed in the Chinese cohort (Fig. 2c and Supplementary Fig.
2). AA is a potential risk factor for several cancer types, including
urothelial cell carcinoma16,17 and liver cancer18. In our cohort, we
observed the AA signature in 26.3% of patients, indicating that
there exists a special mutagenic process in Chinese ccRCC.

Previous reports suggest that ccRCC is a cancer with modest
mutation load compared to other cancers19. However, in some of
our patients, we observed a hyper-mutation phenotype. We divided
our patients into two groups (AA and non-AA) based on whether
the AA signature was obvious (weights >13%). The mutational
burden of the AA group was higher than that of the non-AA group
(median value: 101 vs. 52, Wilcoxon rank-sum test, p= 5.086e−08,
Fig. 2d), and the mutation load increased with the AA weight (two-
tailed t test, p= 5.072e−12, Fig. 2e). Moreover, our detection of the
AA signature was cross-validated by mSigAct18 (Supplementary
Fig. 3). It is worth noting that AA patients had significantly higher
mutation frequencies in CSMD3 (22.5% vs. 6.25%, Fisher’s exact
test, p= 0.01273, Fig. 2f).
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Diverse mutation patterns between Chinese ccRCC and
ccRCC-TT. We investigated the genomic differences between two
Chinese cohorts with the goal of revealing genomic features
associated with the presence of a TT. We divided 152 patients
into two cohorts according to whether the patient had a TT: a

ccRCC cohort (n= 110) and a ccRCC-TT cohort (n= 42). In
general, the primary tumors of ccRCC-TT patients showed a
higher mutational burden compared with those of ccRCC
patients (MedianccRCC-TT= 80.5, MedianccRCC= 52.5, Wilcoxon
rank-sum test, p < 0.001, Fig. 3a). Moreover, we observed that
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Fig. 1 Landscape of mutations and copy number alterations of Chinese ccRCC. a Alteration landscape of 152 Chinese ccRCC primary tumors. Top
histogram, the number of silent and non-slient mutations in each sample. Upper heat map, gender, thrombus, and tumor stage information. Middle heat
map, distribution of ccRCC-associated cancer genes and top 15 genes across samples, with genes ranked by mutation frequency. Bottom heat map, copy
number gains (red) and losses (blue), with potential driver genes encompassed by the cytobands shown on the left. SMG genes are marked by a red
asterisk. b The nonsynonymous mutational burdens of the Chinese and TCGA cohorts were compared. The box plot displays the first and third quartiles
(top and bottom of the boxes), the median (band inside the boxes), and the lowest and highest point within 1.5 times the interquartile range of the lower
and higher quartile (whiskers). Wilcoxon rank-sum test, *p < 0.05, ** p < 0.01, ***p < 0.001. c The mutation frequencies of genes in the Chinese cohort and
TCGA cohort. The gene list is derived from a. Genes with significantly different mutation rates between two cohorts are marked by black asterisks. Fisher’s
exact test, *p < 0.05, **p < 0.01, ***p < 0.001. The source data underlying Fig. 1a–c are provided as a Source Data file.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-14601-9 ARTICLE

NATURE COMMUNICATIONS |          (2020) 11:739 | https://doi.org/10.1038/s41467-020-14601-9 | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


a

3%

2%

1%

0%

4%

3%

2%

1%

0%

4%

C>A C>GC>T T>AT>C T>G
b

1 2 3 4 5 6 7 8 9 10
0.4

0.5

0.6

0.7

0.8

0.85

0.9

0.95

1

S
ig

na
tu

re
 s

ta
bi

lit
y

0

1000

2000

A
ve

ra
ge

 fr
ob

en
iu

s 
re

co
ns

tr
uc

tio
n 

er
ro

r

c

0.0

0.1

0.2

0.0

0.1

0.0

0.1

C>A C>G C>T T>A T>C T>G

MS1

MS2

MS3

d e

T2

T3T1

Stage

T4

Male

Female

Gender

Yes

No

AA MS

MS2

MS1

MS3

0.00

0.25

0.50

0.75

1.00

f

200

400

600

0 25 50 75 100

N
um

be
r 

of
  m

ut
ai

on
s

r = 0.52
p = 5.07e–12

AA sig contribution

200

400

600

0

N
um

be
r 

of
  m

ut
ai

on
s

AAnon_AA

***

Gender

Stage

AA

VHL
PBRM1

BAP1
CSMD3
KDM5C
SETD2
PCLO

TMPRSS13
MTOR
PTEN
TP53

Group
non_AA
AA

Chinese TCGA

Fig. 2 Inferred mutational signatures and their contributions in Chinese ccRCC patients. a ‘Lego’ plots display the frequency of 96 subtypes of base
substitutions in Chinese ccRCC (left) and TCGA ccRCC (right). b Identifying the number of processes operating in a set of 152 ccRCC samples based on
the reproducibility of their signatures and average Frobenius reconstruction error. c Three mutational signatures deciphered from the base substitutions
identified in 152 ccRCC genomes. d The mutational burden was associated with the AA signature, and patients in the AA signature group had a heavier
mutation load. The box plot displays the first and third quartiles (top and bottom of the boxes), the median (band inside the boxes), and the lowest and
highest point within 1.5 times the interquartile range of the lower and higher quartile (whiskers). Wilcoxon rank-sum test, *p < 0.05, **p < 0.01, ***p <
0.001. e The somatic mutation load was positively associated with the contribution of the AA signature (Pearson’s correlation coefficient, two-tailed t test).
f Contributions of each mutational signature per sample. The upper heat map shows sample gender information, tumor stage, mSigAct results, and the
mutation landscape of 11 genes. The source data underlying Figs. 2c–f are provided as a Source Data file.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-14601-9

4 NATURE COMMUNICATIONS |          (2020) 11:739 | https://doi.org/10.1038/s41467-020-14601-9 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


BAP1, CSMD3, TP53, SETD2, PTEN, PCLO, PIK3CA, and VHL
were mutated at a higher frequency in ccRCC-TT patients (Fig.
3b). Specifically, mutations in BAP1, an important gene that is
involved in chromatin dynamics, is associated with a high risk for
metastasis in uveal melanoma20 and is known as a tumor sup-
pressor in ccRCC21, occurred more frequently in ccRCC-TT
patients in comparison with ccRCC patients (24% vs. 5%, Fisher’s

exact test, p= 0.002186, Fig. 3b). In addition, Chinese ccRCC-TT
patients had a higher mutation frequency of SETD2 (19% vs. 7%,
Fisher’s exact test, p= 0.04278, Fig. 3b), a H3K36 methyl-
transferase whose inactivation promoted renal cancer branched
evolution22 and whose overexpression in gastric cancer cell lines
significantly inhibited cell proliferation, migration, and inva-
sion23. To exclude the possibility that the difference was caused
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by tumor staging, we selectively analyzed late-stage ccRCC
patients (stage > T3). Consistently, BAP1 and/or SETD2 muta-
tions were highly enriched in ccRCC-TT patients (40% vs. 8%,
Fisher’s exact test, p= 0.04379), which was in agreement with a
previous study24 (Supplementary Fig. 4). Permutation tests
showed that BAP1 mutations were mutually exclusive with
SETD2 mutations (Fig. 3c). We also observed mutual exclusivity
between BAP1 mutation and SETD2 mutation in the TCGA data,
and survival analysis of BAP1/SETD2 status showed different
outcomes for the two types of events, with cases with BAP1 or
SETD2 mutation exhibiting worse overall survival (OS) in com-
parison with wild-type individuals (median OS 31.2 vs.
37.9 months, p= 0.0016, log-rank test, Supplementary Fig. 5). In
addition, DNA replication and base excision repair pathways
were highly enriched in tumors with BAP1 or SETD2 mutations
in comparison with tumors lacking these mutations (Supple-
mentary Fig. 6). These findings suggested that BAP1 and SETD2
might be functionally redundant, which is consistent with
knowledge regarding their roles in chromatin remodeling. These
results highlighted that ccRCC patients with BAP1 or SETD2
mutations in the primary tumor are more prone to develop a
thrombus.

In addition, we compared changes in typical cancer-related
pathways between Chinese ccRCC and ccRCC-TT patients (Fig.
3d). Overall, ccRCC-TT had more alterations in all selected
pathways/modules. In particular, the level of alterations in the
chromatin modification pathway was significantly higher in
ccRCC-TT in comparison with ccRCC (59.5% vs. 32.7%, Fisher’s
exact test, p= 0.003186). Taken together, these results suggested
that dysfunction of the chromatin remodeling pathway is critical
for the occurrence of a thrombus in ccRCC patients.

Genomic comparison between the thrombus and primary
tumor. Next, we explored the clonal relationship between pri-
mary tumors and thrombi in our ccRCC-TT cohort. We first
analyzed the regional distribution of nonsynonymous mutations.
Mutations were classified as shared mutations if they occurred in
both the primary tumor and thrombus, and specific if they were
only detected in either sample. The percentage of specific muta-
tions in each ccRCC-TT case ranged from 3.9% to 100%, with an
average of 43.44%, demonstrating a variable extent of genomic
heterogeneity between the primary tumor and thrombus (Fig.
4b). In addition, the mutational spectra of the two cohorts were
similar (Fig. 4c). Although some primary tumors and thrombi
displayed ongoing evolution leading to specific mutations, most
putative driver mutations, such as those in VHL, BAP1, and
SETD2, were shared by two regions (Fig. 4d and Supplementary
Fig. 7). Interestingly, there was no shared mutation between the
primary tumor and thrombus in patients C032 and C042, which
was indicative of multi-clonal origin. One possible explanation for
this finding was that the thrombus stemmed from another
clonally independent primary tumor.

Next, we compared the transcriptomes of primary ccRCC
tumors and normal kidney tissue. We identified 2334 upregulated

genes and 2176 downregulated genes in our tumor samples
(Supplementary Fig. 8a). To investigate potentially altered
pathways in the tumor samples, Gene Set Enrichment Analysis
(GSEA)25 was implemented to compare the normal and tumor
groups. We observed the activation of the immune response and
many cancer-associated pathways, such as the cell cycle,
mismatch repair, and TP53-signaling pathways (Supplementary
Fig. 8b, c).

Comparison of the gene expression profiles of the primary
tumors and thrombi revealed that 25 genes were significantly
upregulated in the thrombi, including MMP9, SBSN, XPNPEP2,
and IL13RA2 (Fig. 4e). These genes were mostly associated with
cell migration and invasion. MMP9 is a member of the matrix
metalloproteinase family, which has a role in degradation of the
extracellular matrix and promotes tumor invasion and metas-
tasis26. XPNPEP2 (also known as aminopeptidase P) was reported
to facilitate cervical cancer cell invasion and migration by
mediating the EMT)27. GSEA25 showed that 15 pathways were
significantly enriched in thrombi, most of which were related to
the immune response, such as the lymphocyte proliferation,
lysosome, and inflammatory response pathway. This finding
might be explained by the venous microenvironment of the
thrombus, which allows more immune cells to infiltrate the
tumor (Fig. 4f).

Characterization of gene expression subtypes in Chinese
ccRCC. Using an unsupervised clustering method, we identified
four gene expression clusters in the Chinese cohort. Interestingly,
samples were clustered by TT status instead of tumor stage or AA
signature, suggesting that patients with TT had distinct tran-
scriptomic profiles (Fig. 5a). Clusters m1 and m2 were two TT
subtypes. The m1 cluster showed upregulation of the autophagy
pathway and higher frequencies of CSMD3 mutations (42.9% in
m1 vs. 8.3% in others, Fisher’s exact test, p= 0.003); this cluster
also harbored a greater number of ARID1A mutations (14.3% vs.
1.2%, Fisher’s exact test, p= 0.053) and PIK3CA mutations
(14.3% vs. 2.4%, Fisher’s exact test, p= 0.097). Some genes
associated with DNA repair were upregulated in cluster m2, and
BAP1 mutations were more frequent in this cluster (31.3% vs.
7.3%, Fisher’s exact test, p= 0.016); however, this group also
harbored more SETD2 mutations (19% vs 12%, Fisher’s exact test,
p= 0.24). Clusters m1 and m2 were both characterized by gene
sets associated with angiogenesis and the epithelial–mesenchymal
transition (EMT) process (Fig. 5b). Deletion of CDKN2A (50% vs
20.3%, Fisher’s exact test, p= 0.008) and amplification of MDM4
(54.1% vs. 23.0%, Fisher’s exact test, p= 0.009) were more fre-
quent in Cluster m3 (Fig. 5a). We also applied supervised clus-
tering to investigate the similarities and differences between our
mRNA subtypes and the TCGA expression subtypes3. We found
that samples in the two TT clusters (cluster m1 and m2) were
separated from all cases without TT (Supplementary Fig. 9).
Significant concordance was observed between our cluster m3
and the TCGA T3 subtype, and both two subtypes were char-
acterized by a higher frequency of CDKN2A deletion (Fig. 5a and

Fig. 3 Diverse mutation patterns between Chinese ccRCC and ccRCC-TT cohorts. a The mutation load was compared between Chinese ccRCC and
ccRCC-TT cohorts. The box plot displays the first and third quartiles (top and bottom of the boxes), the median (band inside the boxes), and the lowest and
highest point within 1.5 times the interquartile range of the lower and higher quartile (whiskers). Wilcoxon rank-sum test, *p < 0.05, **p < 0.01, ***p <
0.001. b Nine significantly different mutated genes between the ccRCC and ccRCC-TT cohorts. Fisher’s exact test, *p < 0.05, **p < 0.01, ***p < 0.001.
c Distribution of BAP1 and SETD2 mutations in ccRCC samples, ccRCC samples in the late stage and ccRCC-TT samples. BAP1 and SETD2 mutations were
enriched in patients with TT. d Somatic mutations in signaling pathways across three cohorts. Non-silent mutations and indels were counted. The table
shows the fraction of samples with alterations in each of the selected signaling pathways. In the pathway chart, the edges show pairwise molecular
interactions, whereas boxes outlined in red denote alterations leading to pathway activation, whereas boxes outlined in blue indicate inactivation. The
source data underlying Fig. 3a–c are provided as a Source Data file.
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Supplementary Table 2). Our Cluster m4 showed similarity to the
TCGA T1 subtype, but PBRM1 mutations, which are common in
the TCGA T1 subtypes were not enriched in cluster m4 (Sup-
plementary Table 2).

Next, based on cell-type-specific expression markers, we
inferred the composition of the tumor microenvironment from

transcriptome data28. We found that clusters m1 and m2
exhibited higher abundance of CAFs but fewer T cells and B
cells (Fig. 5b). We also performed CIBERSORT29 analysis on our
data, which revealed that there were fewer T cells and B cells in
the tumor microenvironments of clusters m1 and m2 (Supple-
mentary Fig. 10).
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Discussion
In this work, we present an integrative genomic study of Chinese
ccRCC and reveal features specific to the Chinese population.
Compared with the TCGA cohort, we found a higher prevalence
of CSMD3 (11%) and TMPRSS13 (7%) mutations in Chinese
patients. We also observed more copy number (CN) aberrations
in the Chinese cohort.

AA is a natural product of plants of the genus Aristolochia,
which are widely used in herbal remedies and health supple-
ments. As a class 1 carcinogen, AA can bind DNA and form DNA
adducts that have been implicated in carcinogenesis of urothelial
cell carcinoma16,17,30 and liver cancer18. Notably, we found that
the AA signature was detected in 26.3% of patients in the Chinese
ccRCC cohort, but it was not detected in any patient in the TCGA
cohort. We also observed a positive correlation between the AA
signature and the mutational load of Chinese ccRCC. In parti-
cular, patients with a hypermutator phenotype were mainly
characterized by the AA signature (Supplementary Fig. 11).

Intravascular tumor growth is a feature of ccRCC, and TT
formation generally indicates a poor prognosis8. In the current
study, we found that patients with TT harbored significantly
higher frequencies of mutations in BAP1 or SETD2. Interestingly,
BAP1 and SETD2 mutations were mutually exclusive in our
cohort, possibly because these two genes are functionally similar;
both genes are involved in the chromatin remodeling pathway. In
a recent study, Turajlic et al.24 described a multiple clonal drivers-
subtype that sometimes involves BAP1 and SETD2 mutations in
the same patient, but they also claimed that they generally
observed mutual exclusivity between BAP1 and SETD2 mutations
at the clonal level. Moreover, BAP1 and SETD2 mutations were
uniformly observed as shared mutations in both primary tumors
and thrombi, indicating that mutations in these two genes occur
relatively early during tumorigenesis. This finding suggests that
the thrombosis process is a predetermined event that may be
associated with BAP1 or SETD2 mutations in primary tumors.
Previous studies reported that mutations in BAP1 or SETD2 were
associated with worse survival for ccRCC patients31. However, the
mechanism underlying this effect was unclear. Our results reveal
that mutations in BAP1 or SETD2 were highly enriched in
patients with TT, which may indicate that the poor prognosis
associated with BAP1 or SETD2 mutations is owing to the for-
mation of a TT. Meanwhile, tumors from ccRCC-TT patients
represent distinct molecular subtypes and microenvironment
compositions, which may have implications for ccRCC diagnosis,
prognosis, and treatment.

Methods
Sample selection. This study was approved by local ethics committees (Peking
University Third Hospital and Chinese PLA General Hospital), and written
informed consent was obtained from all patients. Patients were included if they had
histologically confirmed ccRCC and received no treatment before surgery. Tumors
and matched blood or normal tissues were obtained from 152 nephrectomy
patients. Sample collection was performed according to strict standard operating
procedures in all cases and was documented by photography. The specimens were
collected immediately following nephrectomy and flash frozen in liquid nitrogen.
Patient characteristics and clinical information are shown in Supplementary

Table 1 and Supplementary Data 1, but the survival data associated with our
patient cohort are currently unavailable. Sequencing depth and coverage infor-
mation is summarized in Supplementary Data 2.

Library construction and sequencing. DNA was extracted using the Qiagen
AllPrep kit following the manufacturer’s instructions. DNA degradation and sus-
pected RNA/protein contamination were verified by electrophoresis on 1% agarose
gels. The concentration and purity of DNA samples were quantified precisely by
the Qubit dsDNA hs assay kit in a Qubit3.0 Fluorometer (Life Technologies, CA,
USA). A total amount of 0.4 μg DNA per sample was required for library pre-
paration for exome sequencing. RNA degradation and contamination were mon-
itored on 1% agarose gels. The exome sequences were enriched from 0.4 μg
genomic DNA using NimbleGen’s SeqCap EZ and Agilent liquid capture system
(Agilent SureSelect Human All Exon V6) according to the manufacturer’s protocol.
The libraries were sequenced on an Illumina Hiseq X Ten platform and 150 bp
paired-end reads were generated.

RNA from 30 TT paired samples was extracted using the Qiagen AllPrep kit
following the manufacturer’s instructions. RNA from 61 normal-tumor paired
samples and 7 tumor samples was isolated using the Ribo-ZeroTM Gold Kit. RNA
purity was checked using a NanoPhotometer spectrophotometer (IMPLEN, CA,
USA). RNA concentrations were measured using the Qubit® RNA Assay Kit in a
Qubit2.0 Fluorometer (Life Technologies, CA, USA). RNA integrity was assessed
using the RNA Nano 6000 Assay Kit with a Bioanalyzer 2100 system (Agilent
Technologies, CA, USA). A total amount of 3 µg RNA per sample was used as the
input material for RNA sample preparation. Sequencing libraries were generated
using the NEBNext UltraTM RNA Library Prep Kit for Illumina (NEB, USA)
following the manufacturer’s recommendations, and index codes were added to the
attribute sequences of each sample. Clustering of the index-coded samples was
performed on a cBot Cluster Generation System using the TruSeq PE Cluster Kit
v3-cBot-HS (Illumina) according to the manufacturer’s instructions. After cluster
generation, the library preparations were sequenced on an Illumina Hiseq X Ten
platform, and 150 bp paired-end reads were generated.

Processing of exome sequencing data. Paired-end read sequences were aligned
to human genome hg19 (UCSC) using the Burrows-Wheeler Aligner (BWA) with
default parameters32, after which they were sorted and merged by SAMtools 0.1.19
(ref.33). Picard (v1.76) was applied to fix mate pairs and mark and discard
duplicates (http://Picard.Sourceforge.net). Next, realignment of all insertions and
deletions (INDELs) and base quality recalibration were carried out using the
Genome Analysis Toolkit (GATK 2.1–8)34.

Somatic substitutions (SNV) were called using the MuTect module in GATK
with normal kidney tissue or blood samples from the same patient as the control
group. InDels were detected by the GATK Unified Genotyper. In order to
accurately detect reliable SNVs and InDels, we used a set of strict filtration criteria:
(1) the number of reads covering the mutated sites should not be fewer than 10,
with at least three reads harboring the mutations; (2) at least 10× coverage for
normal samples was required, with at most one read harboring the mutations; (3)
the minimum value of the maximum mapping quality score for mutated alleles was
set to 20; (4) the mutation allele frequency was at least 8%; (5) mutations listed in
dbSNP 135 were removed unless they were documented by the Catalog of Somatic
Mutations in Cancer (COSMIC); (6) mutations reported by the National Heart,
Lung, and Blood Institute Exome Sequencing Project were filtered out. All InDels
were manually checked to ensure fidelity. Snpeff 3.0 (ref.35) was used to annotate
all SNVs and InDels. To reduce the risk of false negative calls, we also lowered the
requirement of mutation allele frequency to 5% and coverage to at least 5×, similar
to the criteria used in the TCGA study3, which generated similar mutation calling
results.

CN analysis. To portray CN states across the whole genome based on WES data,
Sequenza R v.2.1.1 (ref.36) was applied to model CNs to integers with consideration
of both ploidy and cellularity. Standard BAM files of samples with their matched
normal controls were used as input to calculate the depth ratio and normalized
ratio with consideration of both GC content and data quality. To estimate purity
and ploidy, the following parameters were used: breaks.method= full, gamma=
40, kmin= 5, gamma.pcf= 200, and kmin.pcf= 200. In addition, the processed
segmented CN data from Sequenza were used as input for GISTIC2 (ref.14) to

Fig. 4 Genomic differences between primary tumors and thrombi. a Anatomical diagram of patients with thrombus. b The top bar plots display the
numbers of shared or specific non-silent mutations between primary tumors and thrombi from 42 ccRCC-TT patients. The inset plot shows the distribution
of heterogeneity between the primary tumors and thrombi. The bottom bar plots show the proportions of shared or specific mutations. c The contributions
of six substitution patterns in primary tumors and thrombi. d The top 15 mutated genes in primary tumors and thrombi. The box plot displays the first and
third quartiles (top and bottom of the boxes), the median (band inside the boxes), and the lowest and highest point within 1.5 times the interquartile range
of the lower and higher quartile (whiskers). e Volcano plot of differentially expressed genes between primary tumors and thrombi with a threshold fold-
change of 2 and p < 0.01. f The GSEA results revealed that the set of genes expressed in the thrombi were enriched in the cell cycle pathway,
immunological pathway, and change of extracellular matrix and structure pathway. The source data underlying Fig. 4b–d are provided as a Source Data file.
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identify significantly amplified/deleted regions with the default parameters. A
default q value threshold (0.25) was used to define highly amplified/deleted regions.

MS analysis. We investigated the mutational spectrum of 96 subtypes of three-
base context of mutations, considering six substitution patterns (C > A, C > G, C >
T, T > A, T > C, and T > G) and 5′- and 3′-flanking nucleotides for all WES

mutation data. To extract the underlying MSs from the mutational spectrum, we
adopted a NMF-based method, sigProfiler15. Moreover, we used the cosine simi-
larity distance to measure the similarity between our identified signatures and
COSMIC v3 MSs (https://cancer.sanger.ac.uk/cosmic/signatures). The sigana-
zyler37 method was used to cross-validate our results with three deciphered MSs.
To accurately assess whether the observed AA MS was present in each sample, we
carried out a signature presence test using mSigAct18. The patient was considered
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to have the AA signature if both the mSigAct presence test and NMF method
indicated AA exposure (Supplementary Fig. 7). The same analysis was applied to
mutations called from the TCGA WES data set.

Identification of driver mutations and comparison analysis. MutSigCV10 was
used to identify SMGs. MutSigCV considers the overall mutation situation of the
genome, the mutation frequency of genes near the mutation site, whether the site is
located in a region where the chromosome is easy to open, and other parameters to
find genes with a mutation rate higher than the calculated background mutation
rate. Multiple testing correction (Benjamin–Hochberg false discovery rate) was
performed, and genes with a q value < 0.05 were reported. Furthermore, we defined
potential driver mutations if one of the following conditions was met: (1) muta-
tions were documented by the COSMIC database (ccRCC-associated or related to
another type of cancer; (2) mutations in the gene were identified by recent large-
cohort ccRCC sequencing studies; (3) mutations in the gene were present in the
KEGG (Kyoto Encyclopedia of Genes and Genomes) cancer pathways. Somatic
mutations from the TCGA WES data of 417 ccRCC patients and clinical infor-
mation were downloaded from the TCGA Data Portal (http://tcga-data.nci.nih.
gov/docs/publincations/kirc_2013/) to allow us to compare the mutation rates of
ccRCC genes. In addition, we evaluated somatic mutations at the gene level within
the context of five well-studied ccRCC-associated signaling pathways: the TP53/cell
cycle pathway, PI3K-mTOR pathway, SWI/SNF pathway, histone/chromatin
modification pathway, and HIF−1 signaling pathway.

RNA sequencing to assess gene expression. RNA reads were aligned to the hg19
genome assembly using HISAT2 (ref.38) and quantified with HTseq39. Cuffquant
and cuffnorm40 were used to quantify the gene expression abundance and calculate
the standardized gene expression (represented as FPKM) of each sample. The raw
read counts were normalized with DESeq2 (ref.41) to estimate gene expression
levels and identify differential gene expression. Differential gene expression was
identified using a p value threshold of <0.05 and a fold-change threshold of at
least 2.

Unsupervised mRNA expression clustering. For unsupervised clustering analy-
sis, the gene expression data for N= 98 samples were pre-processed to determine
the most highly expressed and variable 1500 genes across the samples. We removed
genes with NA values of >70% of all samples and then selected the top 1500 genes
with the greatest variation by calculating the maximum absolute deviation of gene
expression across the samples. The data were transformed into a non-negative
matrix and clustered using non-negative matrix factorization42. The number of
subtypes was selected by cophenetic coefficient and consensus clustering matrices.
The gene normalization and selection methods used for supervised clustering were
the same as those used in the TCGA study3. Scaled data were used as the input for
a principal component analysis based on variable genes. The concordance of the
derived expression subtypes was examined in comparison with subtypes published
in the TCGA paper3 by the chi-squared test. The gene transcription signature score
for the cell cycle was defined by the average relative expression of cell cycle-
associated gene sets. The same metric was applied for gene sets associated with
angiogenesis, EMT, cancer-associated fibroblast (CAF) infiltration, T-cell infiltra-
tion, and B-cell infiltration28.

Survival analysis. To examine the correlations between BAP1 and SETD2 muta-
tions and survival for the TCGA data3, 417 patient samples were separated into
gene-mutated and wild-type subsets. Patient death was the endpoint, with follow-
up time defined using the months_to_last_followup field if the patient was alive
and the months_to_death field if the patient was deceased. Kaplan–Meier analysis
was performed to compare survival for specific genes status, and the log-rank test
was used to evaluate significant differences.

GSEA. GSEA was performed to determine whether an a priori defined set of genes
showed statistically significant, consistent differences between two biological states.
The clusterProfiler43 was applied to the gene expression data to perform GSEA
based on MSigDB (www.broadinstitute.org/gsea/msigdb) collections C2 and C5.

Statistical analysis. All statistical analysis was conducted using R v3.5.3 (Foun-
dation for Statistical Computing). The Wilcoxon rank-sum test and Fisher exact
test were used to analyze genomic differences between the Chinese ccRCC and
TCGA ccRCC cohorts, as well as between the Chinese ccRCC and Chinese ccRCC-
TT cohorts, with regard to mutation rates and the fraction of the genome affected
by CNAs. Unsupervised clustering was performed to identify gene expression
subtypes.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The whole-exome and transcriptome-sequencing data have been deposited in the
database of NCBI Sequence Read Archive (SRA) under accession code PRJNA596359
and PRJNA596338. The source data underlying Figs. 1a–c, 2c–f, 3a–c, 4b–d, and 5a, as
well as Supplementary Figs. 4 and 10 are provided as a Source Data file.
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