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Weak functional group interactions revealed
through metal-free active template
rotaxane synthesis
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Modest functional group interactions can play important roles in molecular recognition,

catalysis and self-assembly. However, weakly associated binding motifs are often difficult to

characterize. Here, we report on the metal-free active template synthesis of [2]rotaxanes in

one step, up to 95% yield and >100:1 rotaxane:axle selectivity, from primary amines, crown

ethers and a range of C=O, C=S, S(=O)2 and P=O electrophiles. In addition to being a

simple and effective route to a broad range of rotaxanes, the strategy enables 1:1 interactions

of crown ethers with various functional groups to be characterized in solution and the solid

state, several of which are too weak— or are disfavored compared to other binding modes—

to be observed in typical host–guest complexes. The approach may be broadly applicable to

the kinetic stabilization and characterization of other weak functional group interactions.
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The bulky axle end-groups of rotaxanes mechanically lock
rings onto threads, preventing the dissociation of the
components even if the interactions between them are not

strong and attractive1–3. In principle the enforced high local
concentration of convergent functional groups brought about by
such mechanical bonding can stabilize weak non-covalent inter-
actions4. In practice such outcomes are rarely observed4–8

because most rotaxane syntheses rely upon strong attractive
interactions between the building blocks2,3,9–13 to promote the
rotaxane assembly process. Strong binding modes generally ‘live
on’ in the interlocked product, an outcome useful for the design
of artificial molecular machinery2,3,14–16, whether intended to
operate in solution17 or when organized on surfaces18,19 or within
metal-organic frameworks20,21, but one that tends to override
alternative weaker binding modes that could occur between the
components. It is sometimes possible to remove strong template
interactions by post-assembly modification, for example by
deprotonation of an ammonium unit22,23, but this is often not
straightforward and can require forcing conditions23.

Active template synthesis24–35, in which a macrocycle accel-
erates a strand-forming reaction through the ring cavity, does not
require strong pre-association of the starting materials. Although
most active template syntheses have been developed from transi-
tion metal catalyzed reactions24–35, a metal-free active template
system was recently discovered36,37 in which the addition of pri-
mary amines to electrophiles can be significantly accelerated
through crown ethers37 and related macrocycles36 by stabilization
of the reaction transition state38–43. The reaction of a primary
amine and an electrophile in the presence of a crown ether was
found37 to form [2]rotaxanes by metal-free active template N-
alkylation, aza-Michael addition or N-acylation. In these reactions
the crown ether stabilizes developing partial charges in the tran-
sition state causing initial rate accelerations of up to 26× through
the macrocycle compared with the reaction exo- to the cavity that
forms the non-interlocked axle. The N-acylation reaction is parti-
cularly effective: simply mixing together 1.0 equivalents of each of
24-crown-8 1, amine 2, and activated ester 3 in toluene at room
temperature spontaneously assembles amide-axle [2]rotaxane 4 in
56% yield, without the need for any other reagents or excess
building blocks (Fig. 1). This potentially offers access to kinetically
locked systems with unusual combinations of functional groups on
the different components forced into close proximity and a
1:1 stoichiometry. The interaction of the groups on different
components might further be enhanced by the tendency of inter-
locked architectures to have poorly solvated inner surfaces.

To explore the scope of this unexpected method of rotaxane
synthesis, here we carry out a study of the reaction with a series of
related electrophiles. After developing an optimized set of reac-
tion conditions, rotaxanes were accessed by crown ether-
stabilized formation of (thio)urea, carbamate, sulfonamide, and
phosphoramidate/phosphinamide-containing axles. The stabili-
zation of SNAr reactions between primary amines and electron-
deficient aryl halides led to rotaxanes with aniline threads. Single-
crystal X-ray diffraction of the rotaxanes enabled weak interac-
tions between the crown ether and the newly formed functional
groups in the axles to be studied.

Results
Optimization of metal-free active template rotaxane synthesis
by N-acylation. Complete consumption of crown ether 1 does
not occur with the experimental protocol originally used for the
active template N-acylation rotaxane-forming reaction (Fig. 1),
even with a fivefold excess of amine 2. Proton nuclear magnetic
resonance (1H NMR) showed that rotaxane 4 is initially formed
rapidly, but over time its rate of formation slows relative to the
background reaction of amine and ester, resulting in increasing
amounts of non-interlocked axle. The color change that occurs
during the early stages of that reaction suggested that liberation of
the yellow 4-nitrophenolate anion44 might be inhibiting the for-
mation of rotaxane 4. We reasoned that 4-nitrophenol, formally
the other product of the N-acylation reaction, would be depro-
tonated by 2 and the resulting primary ammonium cation (2H+)
would bind strongly to the crown ether preventing it from par-
ticipating in the active template reaction. Accordingly, we
investigated whether the yield of 4 could be improved by the
addition of tertiary amines, which when protonated bind more
weakly to crown ethers than primary ammonium salts45 (Sup-
plementary Table 1). Pleasingly, addition of 10 equivalents
(equiv.) of triethylamine (Et3N) led to the formation of rotaxane 4
in 68% yield after 1 h and 92% yield after 24 h. Under these
conditions the ratio of rotaxane 4 to non-interlocked axle
improved from 8:1 to 17:1 after 24 h, indicating that Et3N does
not promote aminolysis of the building blocks in the absence of
the crown ether. In contrast, the use of a stronger base, 1,8-
diazabicyclo[5.4.0]undec-7-ene (DBU), significantly reduced the
formation of 4 (10% yield after 1 h) while increasing the amount
of non-interlocked axle formed, suggesting that DBU accelerates
the reaction of 2 and 3 at the expense of the active template
reaction46–48.
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Fig. 1 N-Acylation active template rotaxane synthesis. The yield of rotaxane is increased by addition of Et3N to neutralize the acidic phenolic byproduct of
the reaction or the use of less nucleophilic primary amine 5.
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We next investigated the efficacy of rotaxane formation with
less nucleophilic benzylic amines (Supplementary Table 2).
Commercially available amine 5, bearing two CF3 substituents,
proved the most effective amine tested, with [2]rotaxane 6 formed
in 84% yield after 24 h without the need for Et3N (Fig. 1), with a
rotaxane:non-interlocked axle ratio >100:1 (determined by 1H
NMR). This remarkable selectivity for acylation through the
cavity appears to be a consequence of the background acylation
reaction (to form the non-interlocked axle) having an activation
energy in the ‘sweet spot’ for active template synthesis: too high
for acylation to occur quickly with the less nucleophilic amine (5)
but low enough that a few kcal mol−1 stabilization of the
transition state by the crown ether brings about a very significant
rate enhancement.

It also proved possible to use more reactive electrophiles with
amine 5 (Supplementary Table 3). Rotaxane 6 was obtained in
54% yield from the corresponding acid chloride and in 40% yield
when using the 1-hydroxybenzotriazole ester as the electrophile.

C=O/C=S/SO2/P=O electrophile scope. With improved con-
ditions for active template ester aminolysis in hand we investi-
gated whether the type of rotaxanes accessible could be expanded
upon using electrophiles based on different, but structurally
related, chemical functionality (7–14, Table 1). The aminolysis
of carbamates49 follows a similar mechanistic pathway to
ester aminolysis: nucleophilic attack at the carbonyl forms a tet-
rahedral intermediate followed by loss of the leaving group to
form urea50–52. Accordingly we tested whether carbamate 7 was a
suitable electrophile for the metal-free active template reaction.
Reaction of 7, amine 5 and 24-crown-8 1 in a 1:1:1 ratio, under
the standard reaction conditions (without Et3N), afforded urea
[2]rotaxane 15 in 73% yield (Table 1, entry 1). Urea rotaxane
formation was also possible without generating a leaving group
byproduct through the use of isocyanate 8, which gave rotaxane
16 in 55% yield (Table 1, entry 2). The reaction between 5 and 8
proceeded extremely quickly; full conversion of 5 was achieved
within 1 min. The corresponding thiourea rotaxane 17 was pre-
pared in an analogous manner from isothiocyanate 9 in 54% yield
(Table 1, entry 3).

Carbamate rotaxanes were accessible using common commer-
cially available electrophiles. Activated carbonate 10, used to form
carbamates that can be readily decomposed with fluoride53, gave
18 in 83% yield (Table 1, entry 4), while chloroformate 11 (Fmoc-
Cl) generated 19 in 70% yield with Et3N added to neutralize the
HCl product (Table 1, entry 5)54. The ability to release the
macrocycle from these types of rotaxanes in response to a specific
chemical stimulus (stoichiometric fluoride for 18; catalytic base
for 19) may prove useful for future applications.

Electrophiles containing a heteroatom at the site of nucleophilic
attack also proved effective for rotaxane formation. Sulfonyl
chloride 12, a bulky analog of tosyl chloride, reacted with 5 and
1 to give sulfonamide rotaxane 20 in 95% yield (Table 1, entry 6).
Diphenyl phosphoryl chloride 13 produced phosphoramidate
rotaxane 21 in 90% yield (Table 1, entry 7), while the more
reactive diphenyl phosphinic chloride 14 resulted in the formation
of phosphinamide rotaxane 22 in a more modest 29% yield
(Table 1, entry 8). As the sulfur and phosphorus electrophiles
feature chloride leaving groups, in each case Et3N was added to
neutralize the HCl formally released by the active template reaction.

Metal-free active template synthesis by N-arylation. To further
expand on the general applicability of active template rotaxane
synthesis with crown ethers, we explored other potential reaction
modes. Prompted by a recent report55 of crown ether catalysis of

Table 1 Synthesis of [2]rotaxanes from 24-crown-8, amine 5
and C=O/C=S/SO2/P=O electrophiles 7–14a

Entry Electrophile Rotaxane Yield
(%)b

1 73

2 55c

3 54

4 83

5 70d

95d

90d

29d

6

7

8

aReaction conditions: 1 equiv. each of crown ether 1, amine 5 and electrophile 7–14, toluene
[0.14M], rt.
bYield of isolated product.
c1.5 equiv. of electrophile.
d2 equiv. of Et3N added.
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Fig. 2 N-Arylation active template rotaxane synthesis. Rotaxanes containing aniline axles could be obtained by the SNAr reaction between primary amine
5 and a aryl fluoride 23 or b aryl chloride 25.
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Fig. 3 X-ray crystal structures of crown ether–amide-axle rotaxanes. a Rotaxane 4. Hydrogen bond lengths [Å]: O1—H47C, 2.47; O2—H1N, 2.12.
Hydrogen bond angles (deg): O1—H47C, 166.3; O2—H1N, 173.1. b Rotaxane 6. Hydrogen bond lengths [Å]: O1—H38C, 2.48; O1—H40C, 2.55; O3—H1N,
2.20. Hydrogen bond angles (deg): O1—H38C, 129.5; O1—H40C, 161.0; O3—H1N, 163.0. NH···O and CH···O hydrogen bonds shown in dark green. Solvate
molecules and other hydrogen atoms omitted for clarity.
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SNAr reactions between aryl halides and primary amines, we
investigated rotaxane formation by N-arylation. This proved
effective using different electrophiles: combining amine 5 and 24-
crown-8 1 with aryl fluoride 23 in the presence of Et3N produced
aniline rotaxane 24 in 85% yield (Fig. 2a), while combining 5 and
1 with aryl chloride 25 formed aniline rotaxane 26 in 75% yield
(Fig. 2b). Both rotaxanes were isolated as neutral amines rather
than as the corresponding ammonium salts. As the pKa values of
protonated anilines are readily modulated by changing the aro-
matic substitution56, rotaxanes such as 24 and 26 have the
potential to be used as tunable pH-sensitive molecular switches of
basicity lower than that of commonly used dibenzylammonium-
crown ether systems3.

Crown ether-functional group interactions. Complexes between
crown ethers and neutral molecules were first reported by Ped-
ersen nearly 50 years ago57, with the majority of examples
described to date involving relatively small macrocycles such as
18-crown-6 (refs. 58–61). Neutral molecules cannot be fully
encapsulated within such small cavities and so the complexes
tend to be of a ‘perch’ type. With such binding modes the crown
ethers often bind to more than one guest to maximize favorable
host–guest interactions and to balance the dipole moments of

polar guests. In the solid state discrete 1:1 crown ether–neutral
molecule complexes are rare and a range of different binding
modes and ratios can sometimes be observed with only minor
variations in structure arising from different crystallization con-
ditions59–61.

In contrast to such host–guest complexes, the interlocked
components of rotaxanes have a strictly defined stoichiometry
(usually 1:1), are held in close proximity, and possess limited co-
conformational62 degrees of freedom63–71. In the absence of strong
binding between the components weak interactions that are seldom
observable in supramolecular complexes can form and significantly
influence co-conformation4,5. Rotaxanes 4, 6, 15, 17, and 19–22
provide architectures in which functional groups in the axle are
mechanically locked through the crown ether ring in a 1:1 stoichio-
metry, enabling normally weak interactions to be characterized
experimentally. Slow evaporation of CH2Cl2/hexane solutions of 4,
17, 21, and 22, and of diethyl ether/hexane solutions of 6, 15, 19,
and 20 afforded single crystals suitable for X-ray diffraction of
rotaxanes containing each of the axle functionalities formed
through metal-free active template synthesis.

X-ray crystal structures of [2]rotaxanes 4 and 6. In structures in
the Cambridge Crystallographic Data Centre (CCDC) database,
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Fig. 4 X-ray crystal structures of crown ether urea and thiourea axle rotaxanes. a Rotaxane 15. Hydrogen bond lengths [Å]: O1—H25C, 2.66; O1-H27C,
2.71; O8—H1N, 2.12; O9—H2N, 2.65. Hydrogen bond angles (deg): O1—H25C, 145.4; O1-H27C, 165.0; O8—H1N, 169.7; O9—H2N, 143.2. b Rotaxane 17.
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crown ether–amide host–guest binding typically occurs with a
1:2 stoichiometry, with the crown ether oxygen atoms accepting
hydrogen bonds from the amide guest57–60. In the amide-axle
rotaxanes 4 and 6 (Fig. 3) a 1:1 crown ether:amide interaction
stoichiometry occurs and in each structure a crown ether oxygen
hydrogen bonds to the amide hydrogen atom while CH….O
hydrogen bonds stabilize the electron density on the amide
oxygen atom72,73. The O….H–N hydrogen bond in 4 is shorter
than in 6 (O….H distances: 2.12 Å (4); 2.20 Å (6)), despite the
electron-withdrawing CF3 groups in 6. In 4 the oxygen interacts
with a single C–H group (O….H distance: 2.47 Å), while in 6
three-centered bifurcated hydrogen bonding occurs between the
carbonyl oxygen and two C–H groups (O….H distances: 2.48 and
2.55 Å)74. Such CH….O hydrogen bonding is reminiscent of
interactions within peptide chains that stabilize protein secondary
structure75.

X-ray crystal structures of [2]rotaxanes 15, 17, and 19. Crown
ethers and (thio)ureas tend to form complex extended networks in
the solid state, with the ratio of host-to-guest varying significantly
and unpredictably57. In contrast rotaxanes 15, 17, and 19 form
discrete structures with 1:1 crown ether:urea/thiourea association.
Rotaxanes 15 and 17 (Fig. 4) each contain two different types of
N–H groups: one nitrogen atom conjugated to an aromatic ring, the
other benzylic. In both solid state structures the crown ether forms
shorter hydrogen bonds with the benzylic N–H group. In 15 the
interaction occurs with a single crown ether oxygen (O….H

distance: 2.12Å), while a bifurcated hydrogen bond occurs with two
oxygen atoms in 17 (O….H distances: 2.32 and 2.41 Å). An addi-
tional long hydrogen bond from an ether oxygen to the other NH
group is present in both rotaxanes (O….H distances: 2.65 and
2.74 Å for 15 and 17, respectively). A bifurcated hydrogen bond
between two crown ether oxygens and the N–H moiety of the
carbamate group (O….H distances: 2.27 and 2.65 Å) occurs in 19.
The slightly longer O….HN bond lengths in 19 (Fig. 5) versus 15 are
consistent with the weaker hydrogen bond-donating ability of a
carbamate group compared with urea76,77. Similar to an amide
group, the carbonyl oxygens act as hydrogen bond acceptors from
C–H groups of the crown ether in 15 and 19, with bifurcated
hydrogen bonds formed in both cases (O….H distances: 2.66 and
2.71 Å for 15; 2.53 and 2.88 Å for 19). The sulfur atom in 17 does
not engage in a similar interaction reflecting the more modest
hydrogen bond basicity of thioureas78.

X-ray crystal structures of [2]rotaxanes 20–22. In the solid state
rotaxanes 20, 21, and 22 all have rather similar intercomponent
interactions to each other. In supramolecular complexes, sulfo-
namides usually bind to crown ethers through hydrogen bonds
donated by the N–H group79. In the X-ray crystal structure of 20
the N–H forms a bifurcated hydrogen bond with two crown ether
oxygens (O….H distances: 2.31 and 2.61 Å; Fig. 5). Another
bifurcated hydrogen bond is formed between two C–H groups of
the crown ether and a single sulfonamide oxygen (O….H dis-
tances: 2.50 and 2.64 Å). The crown ether does not adopt a
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Fig. 5 X-ray crystal structures of crown ether carbamate and sulfonamide axle rotaxanes. a Rotaxane 19. Hydrogen bond lengths [Å]: O2—H26C, 2.53;
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conformation that enables simultaneous interactions with both
sulfonamide oxygens80.

Phosphorous analogs of amides often form intermolecular
P–O….H–N hydrogen bonds in the solid state, driven by the
particularly strong hydrogen bond accepting ability of P=O76,81.
However, as with the other rotaxanes described in this series,
intermolecular interactions between axles is inhibited in 21 and 22
by encapsulation of the phosphoramidate and phosphinate units
by the crown ether82,83. The N–H hydrogen atom in 21 (Fig. 6) is
disordered over two positions, while the sp2-hybridized oxygen
forms a bifurcated hydrogen bond with two crown ether C–H
groups (O….H distances: 2.52 and 2.60 Å). The sp3-hybridized
oxygen atoms bound to phosphorous each form relatively long
hydrogen bonds with a single C–H group of the crown ether (O….

H distances: 2.75 and 3.14 Å). Two conformations of 22 co-
crystallize, both with a single ether oxygen forming a hydrogen
bond with the N–H group (average O….H distance 2.39 Å) and a

single hydrogen bond between the phosphinyl oxygen atom and a
C–H group of the crown ether (average O….H distance 2.38 Å).

Discussion
Metal-free active template synthesis is a simple and versatile
method through which to access crown ether rotaxanes with a
discrete but diverse set of functionalities in the axle. The rotaxane
assembly procedure is exceptionally simple, requiring only mixing
of a crown ether, amine, and electrophile in toluene. All of the
building blocks used in this paper are either currently commercially
available or, in the case of amine 2, ester 3, carbamate 7, iso-
thiocyanate 9, and sulfonyl chloride 12, accessible in a single syn-
thetic step. The rotaxane-forming reactions can be performed using
a 1:1:1 stoichiometry of the three building blocks, in some cases
generating rotaxanes in yields as high as 95% with >100:1 rotaxane:
axle selectivity. In addition to being a simple and effective route to a
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(deg): O1—H61C, 171.5; O14—H1N, 174.3. f Hydrogen bond lengths [Å]: O2—H51C, 2.37; O9—H2N, 2.41. Hydrogen bond angles (deg): O2—H51C, 172.5;
O9—H2N, 175.1. NH···O and CH···O hydrogen bonds shown in dark green. Solvate molecules and other hydrogen atoms omitted for clarity.
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wide range of rotaxanes the strategy enables 1:1 interactions of
crown ethers with various functional group types to be character-
ized, several of which are too weak—or are disfavored compared
with other binding modes—to be observed in conventional
host–guest complexes. As of 23 September 2019 the CCDC con-
tained >2000 X-ray crystal structures featuring crown ethers. The
structures reported in this paper include the first few examples of
crown ether–alkylsulfonamide, crown ether–phosphoramidate,
crown ether–phosphonate, and crown ether–carbamate interac-
tions, and only the second examples of crown ether–primary amide,
crown ether-substituted urea, and crown ether-substituted thiourea
interactions. Active template synthesis, essentially the use of cata-
lysis to form and kinetically trap an unstable assembly, should
prove to be a generally applicable tool for revealing weak functional
group interactions. The difficulties in characterizing weak interac-
tions was recently highlighted by Colizzi et al.84: “…intramolecular
hydrogen bonds are widespread in biological molecules and are
crucial in the design of new drugs and materials, including supra-
molecular machines… Unfortunately, the characterization of
intramolecular H-bonds (and their utilization) is still limited, most
likely as a consequence of the complexities that hamper the inter-
pretation of experimental data obtained for large and flexible
entities.” The ability to kinetically stabilize modest strength
hydrogen bonding modes is another noteworthy consequence of the
mechanical bond3.

Methods
Synthesis of rotaxanes. The synthesis and characterization of the rotaxanes and
building blocks are provided in the Supplementary Methods. Representative
synthesis of rotaxane 15: To a stirring solution of 1 (49 mg, 0.14 mmol, 1.0 equiv.)
and 5 (34 mg, 0.14 mmol, 1.0 equiv.) in toluene (1.0 mL) was added 7 (52 mg, 0.14
mmol, 1.0 equiv.). The mixture was stirred for 1 h and then concentrated under
reduced pressure. Flash chromatography of the residue (SiO2, EtOAc/petroleum
ether 1:5 then CH2Cl2/MeOH 50:1) afforded rotaxane 15 as a colorless solid (85
mg, 0.10 mmol, 73%).

Data availability
The authors declare that the main data supporting the findings of this study are available
within the article and its Supplementary Information files. Extra data are available from
the corresponding author upon request. The X-ray crystallographic coordinates for
structures reported in this study have been deposited at the CCDC, under deposition
numbers CCDCs 1907190-1907197. This data can be obtained free of charge from The
Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif).
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