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How to measure the entropy of a mesoscopic
system via thermoelectric transport
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Entropy is a fundamental thermodynamic quantity indicative of the accessible degrees of

freedom in a system. While it has been suggested that the entropy of a mesoscopic system

can yield nontrivial information on emergence of exotic states, its measurement in such small

electron-number system is a daunting task. Here we propose a method to extract the entropy

of a Coulomb-blockaded mesoscopic system from transport measurements. We prove

analytically and demonstrate numerically the applicability of the method to such a meso-

scopic system of arbitrary spectrum and degeneracies. We then apply our procedure to

measurements of thermoelectric response of a single quantum dot, and demonstrate how it

can be used to deduce the entropy change across Coulomb-blockade valleys, resolving, along

the way, a long-standing puzzle of the experimentally observed finite thermoelectric response

at the apparent particle-hole symmetric point.
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The entropy of a mesoscopic system can yield non-trivial
information on emergence of exotic states, such as two-
channel Kondo impurity1, non-abelian anyons in the ν ¼

5=2 regime2,3, or Majorana modes in topological super-
conductors4. Nevertheless, the measurement of entropy in such
small electron-number systems is highly non-trivial. Previous
studies5,6 used the asymmetry of the in and out tunneling pro-
cesses in a quantum dot (QD) to determine the degeneracy of the
QD states, while recent elegant experiments7 have employed the
thermodynamic Maxwell relation between entropy evolution and
chemical potential, ð∂μ=∂TÞn ¼ �ð∂S=∂nÞT , in order to directly
measure entropy transitions in semiconductor QDs. This latter
experiment required measurements of another thermodynamic
quantity—the charge of the system as a function of gate voltage,
for different temperatures, and hence a specially designed device.
Here we propose a different approach to this problem: can one
extract information about the entropy from transport measure-
ments? Obviously, this requires a measurement of both particle
and thermal (entropy/heat) transport. This question has been
addressed in the context of bulk solids8–11, with sometimes
debated points of view. A general relation exists between the low-
temperature thermopower and specific-heat (entropy) of a free
electron gas, and this relation appears to apply in a number of
materials9,10. However, thermopower is, quite generally, a trans-
port coefficient and its relation to entropy has been shown to be
questionable in systems with strongly anisotropic transport for
instance11. In the opposite high-temperature limit, where tem-
perature is the largest energy scale in the system, general relations
between the thermopower and derivatives of the entropy can be
derived, embodied in the Heikes8,12,13 and Kelvin11,14 formulas.

Consider an arbitrary mesoscopic system in the Coulomb-
blockade regime (where only N and N þ 1-particle states are
energetically relevant), whose entropy one wishes to measure. The
method we propose here is based on a general observation, which
is also an important result of our work: if one weakly couples this
system to leads, the conductance of such an interacting system
can be put in the form of a non-interacting conductance formula,
provided one takes into account a temperature-dependent shift of
the chemical potential (gate voltage). The thermal response (TR),
in turn, can be written in a similar manner, where the
temperature-dependent shift in the chemical potential produces
an extra contribution. We show that this extra term, which can be
determined by comparing the actual thermal response of
the system to that of the related non-interacting system (which
can be estimated using a newly introduced high-temperature
version of the original Mott formula15), can be used to extract the
entropy of such a mesoscopic system even in the case of arbitrary
spectrum and degeneracies, and then demonstrate the usefulness
of the approach by applying it to several model systems. One big
advantage of our formulation is that one can apply it to any such
mesosopic system where measurements of both electrical con-
ductance and thermopower are available. This allows us to apply
our procedure to existing data of thermoelectric response of a
single QD, and demonstrate how it can be used to deduce the
entropy change and the QD’s degeneracy. In the process we
explain the long standing puzzle of the observation of a non-zero
thermopower at the apparent electron-hole symmetry point in
the Coulomb Blockade (CB) valley16,17.

Results
General formulation. Consider a general mesoscopic system with

many-body eigenstates ΨðNÞ
i , where N is the number of electrons

in that state, with energies EðNÞ
i (with gðNÞ

i the degeneracy of the

energy EðNÞ
i ), whose entropy one wishes to measure. In order to

perturb the system as little as possible, we weakly couple the

mesoscopic system to two reservoirs (with coupling Vi for each
state i). In this weak-coupling limit Γij ¼ 2πViVjρ, the char-
acteristic level broadening, with ρ the density of states in the
reservoirs, obeys Γij � T , where T is the temperature. In this
limit the conductance G through the mesoscopic system can be
written as the sum of individual transitions from state i with N
electrons to state j with N þ 1 electrons18

Gðμ;TÞ ¼
X

ij

Gijðμ;TÞ ¼
X

ij

T ð0Þ
ij ´ PðNþ1Þ

i ðμ;TÞ þ PðNÞ
j ðμ;TÞ

�h i

´
df ðEðNþ1Þ

i � EðNÞ
j � μ;TÞ

dμ

ð1Þ

where T ð0Þ
ij is equal to Γij times the overlap of the N þ 1-particle

many-body wavefunction ΨðNþ1Þ
j with the N-particle wavefunc-

tion ΨðNÞ
i , with the addition of the electron tunneling in from the

leads (or the reverse process) (see Supplementary Information,
Eq. (1)). In the above f ðE;TÞ is the equilibrium Fermi function, μ

the chemical potential, and PðNÞ
i ðμ;TÞ ¼ e�ðEðNÞ

i �μNÞ=T=Z is the
equilibrium probability of the system to be in the N-particle
many-body state i, with Z the partition function (except for the
experimental part, we use kB ¼ 1 throughout the paper, where kB
is the Boltzman coefficient, so that temperature has units of
energy and entropy is dimensionless). A similar expression can be
written for the TR, defined as dI=dT , the change in the linear-
response current due to temperature difference between the leads,
in analogy to conductance, with df=dμ being replaced by df=dT .
We assume that the Coulomb energy is significantly larger than T
and Γ so that for a given chemical potential, G involves transitions
between states with only N or N þ 1 particles. A crucial step in
our formulation is the demonstration that the above general
expressions for the conductance and the thermal response for an
arbitrary interacting system can be accurately written, in the
vicinity of each N ! N þ 1 transition, as those for a non-
interacting system, but with a temperature-dependent effective
chemical potential (see Supplementary Note 1):

Gijðμ;TÞ ¼ CðTÞGNI
ij ðμþ ΔijðTÞ;TÞ ð2Þ

where GNI
ij is the conductance for a non-interacting system with

same spectrum and couplings, and CðTÞ is some temperature-
dependent prefactor, that will drop out when the relation between
G and TR is derived. This temperature-dependent shift in the
chemical potential is given by

ΔijðTÞ ¼
EðNþ1Þ
j � EðNÞ

i

2
þ T

2
log

P
j g

ðNþ1Þ
j e�EðNþ1Þ

j =T

P
i g

ðNÞ
i e�EðNÞ

i =T

2
4

3
5 ð3Þ

In the simple case of a transition from an empty state into a single
level, with degeneracy g, this shift reduces to 1

2T log g, which has
been noticed before3,19, and has been measured experimentally5.
In that case this shift was attributed to the fact the chemical
potential has to shift in order to compensate for the fact there are
g ways for an electron to tunnel into the QD, while having a
single channel for tunneling out, an asymmetry that has been
verified experimentally5,20. In contrast, our expression indicates
that in the case of many levels, which has not been discussed
before, the temperature-dependent part of the shift does not
depend on which level the electron tunnels through, and what its
degeneracy is. This part of the shift is identical for all transitions,
and is equal one half of the difference of the canonical free
energies between the CB valleys corresponding to N and N þ 1
electrons.
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The explicit dependence of Δij on T allows us to write, in a
similar manner to Eq. (2), an explicit expression for the TR of a
general interacting system in terms of its conductance and the TR
of the related non-interacting system,

TRijðμ;TÞ ¼ CðTÞTRNI
ij ðμþ ΔijðTÞ;TÞ þ Gijðμ;TÞΔijðTÞ=T

ð4Þ

In order to derive an equation for TRNI , the thermal response of a
non-interacting system with same spectrum and couplings, we
generalize the Mott formula15, valid for T � Γ, to the regime
T � Γ (see Eq. (5) in the Methods section and Supplementary
Note 2 for derivation). Thus, the deviation of the TR from TRNI

(calculated from the conductance) allows us to estimate Δi;jðTÞ,
and consequently the entropy difference between the consecutive
CB valleys: ΔSN!Nþ1 ¼ 2dΔijðTÞ=dT .

So, given the experimentally or numerically obtained Gðμ;TÞ
and TRðμ;TÞ, the procedure we propose for finding the entropy
difference between consecutive CB valleys is the following: (1)
Given Gðμ;TÞ, one can use our variant of the Mott formula
(Eq. (5) in the Methods section) to evaluate the first term on the
right-hand side (RHS) of Eq. (4). (2) For a given temperature, the
difference between this term and the actual TR, which is a
function of the chemical potential, is proportional to Gðμ;TÞ. We
denote this proportionality constant A(T) (note that AðTÞ is
the only fitting number required, for a given temperature, to map
the two functions on top of each other). (3) Given the obtained
AðTÞ, the difference in entropy between the valleys is then given
by ΔSN!Nþ1 ¼ 2d T ´AðTÞ½ �=dT . (A step by step description of
the fitting process is detailed in Supplementary Note 3).

In the following we demonstrate the usefulness of this
formalism in model systems, where one can compare the entropy
obtained using the above relation to that calculated directly from
thermodynamic considerations, and finally we apply our
formalism to available experimental data.

Comparison to numerical calculations. Let us start with a simple
example where in each N-electron subspace there are gðNÞ

degenerate N-particle states of energy EðNÞ, and all other states
can be ignored (i.e., the level spacing is much higher than tem-
perature). In this case the entropy SN in each valley is equal to
log gðNÞ, and is temperature independent. Correspondingly, one
indeed finds that the proportionality constant is temperature
independent, AðTÞ ¼ log ðgðNþ1Þ=gðNÞÞ=2. Figure 1b illustrates
the correspondence between the TR obtained directly, using Eq.
(1), and that obtained by the RHS of Eq. (4) (red circles), for a
four-fold degenerate interacting QD, relevant, for example, to a
carbon nanotube QD (see also experimental section below). The
conductance used in evaluating both terms in the RHS of Eq. (4)
was also obtained via Eq. (1) (and is shown in Fig. 1a). In this case
there are 4 CB peaks, separating valleys with degeneracies gðNÞ ¼
1; 4; 6; 4 and 1 for N ¼ 0; 1; 2; 3 and 4. In order to construct the
estimate for the TR in Fig. 1b we have used the above fitting
procedure separately for each peak, as the entropy difference
between consecutive valleys is different for each peak. The figure
displays an almost perfect agreement between the direct calcu-
lation of the TR and that obtained by our Ansatz.

In this case, as the entropy change ΔS between the valleys is
temperature independent, the estimate of A at a single temperature
is directly proportional to the entropy change through ΔS ¼ 2A. In
particular, the entropy change across the first CB peak is a direct
measure of the degeneracy of the QD (4 in the above example). We
have repeated the procedure for QDs of arbitrary degeneracy.
Figure 1c depicts the entropy change deduced using our procedure
(red circles), compared to the expected change in

entropy (log gðNþ1Þ). We see a perfect agreement even up to large
degeneracies. As mentioned above, some aspects of this simple case
of a single degenerate level have been addressed before, and it has
been suggested that the thermopower through a single-level QD
can be used, e.g., to deduce the nature of the neutral modes in the
fractional quantum Hall regime3.

The advantage of our procedure lies in its application to a
multi-level mesoscopic system, such as a multi-level QD, or to a
multi-dot system, where the entropy is temperature-dependent. As
an example, let us consider the case of two singly degenerate levels,
with level spacing Δϵ (describing, for example, a single-level QD in
a magnetic field). One expects that when T � Δϵ the entropy of
the single-electron system will be equal to zero, while for higher
temperature, larger than Δϵ, it will increase to log2. As the entropy
is temperature-dependent, one has to perform the procedure for
all T in order to extract AðTÞ, its derivative, and consequently the
entropy. For simplicity, we assume that the transition through one
of the levels dominates the transport, so Eq. (4), which
corresponds to a transition between specific states, will also reflect
the full transport coefficient of the system. As we will demonstrate,
even though a single transition dominates the transport, the
resulting procedure yields the full entropy change in the system.

Figure 1d and e depict, respectively, the calculated conductance
and TR, again using Eq. (1), for a specific temperature, T ¼ Δϵ.
Figure 1e also shows the TR derived from our procedure—the
fitting leads to AðT ¼ ΔϵÞ for this temperature. Repeating the same
procedure for many temperatures, one is able to produce the whole
curve AðTÞ, and then the entropy change, ΔS ¼ 2d TAðTÞ½ �=dT .
The resulting estimate for the entropy change is plotted in Fig. 1f
along with the thermodynamic calculation of the entropy change:
ΔSN!Nþ1 ¼ �∂ FNþ1ðT; μÞ � FNðT; μÞ

� �
=∂T with FNðT; μÞ the

free energy of the N-electron system. Again we observe excellent
agreement between the entropy deduced in our procedure and the
direct calculation. In Supplementary Note 4 we discuss our
procedure for the case when several transitions are relevant to the
total transport.

Interestingly, while this formalism was derived for the weak-
coupling (Γ � T) regime, empirically its validity extends outside
this strict regime. Since Eq. (1) does not apply to the regime Γ≳T ,
we have employed here the numerical-renormalization-group
(NRG) method (see Methods), which is accurate down to zero
temperature. Figure 2 demonstrates the validity of our formalism
and shows that the estimates of the entropy, using our procedure
for the cases of a two-fold (SUð2Þ) and four-fold (SUð4Þ)
degenerate single-level QD, agree with expected values (log2 and
log4, respectively), down to T ’ 0:1Γ. The fitting procedure that
corresponds to Eq. (4) remains accurate throughout the presented
region of temperatures with coefficient of determination (R2)
values of close to unity (crosses in Fig. 2c, d). Thus, at least for
these two models, our approach extends to couplings to the leads
Γ, which are of the order or even larger than temperature.

Application to experiments. One of the main advantages of our
approach, compared, e.g. to that of ref. 7, is that it can be readily
applied to any previous transport experiment in a mesoscopic
system, for which conductance and TR data are available. As an
example of the usefulness of the suggested procedure, we have
analyzed recent thermoelectric measurement results21 through a
QD device, formed in a two dimensional electron system of a
GaAs/AlGaAs heterostructure using split-gate technology. This
technology allows for a high degree of control over system
parameters such as QD energy and tunnel coupling Γ between the
QD and the reservoirs, by adjusting the voltages applied to the
split gates. The sample is shown in the inset to Fig. 3b. Gates B1,
B2, and B3 are used to form the QD (yellow dot). The tunnel
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coupling between the QD and the reservoirs H and C can be
controlled symmetrically adjusting the gate voltage applied to gate
B1. Gate P, the so-called plunger gate, is used to continuously
tune the electrochemical potential of the QD, and consequently
the number of electrons on the QD. Gate G is not used in these
experiments and is kept at ground at all times.

The sample is cooled down in a dilution refrigerator, with an
electron base temperature of �230 mK, in the presence of a small
perpendicular magnetic field (B= 0.6 T)22. In order to establish a
temperature difference ΔT across the QD, a small heating current
was applied to reservoir H (see Methods section and Supple-
mentary Note 5), thereby mainly enhancing the electron

temperature in that reservoir. The thermovoltage Vth is then
obtained by recording the voltage drop across the QD as a
response to the temperature increase in reservoir H under open
circuit conditions (see methods section and Supplementary Note 5
for further details), thus V th ¼ TR ´ΔT=G.

Figure 3a, b depict the experimental data for G and V th,
respectively, for a pair of CB peaks. Interestingly, the data show
that at points of apparent particle-hole symmetry in the
conductance (e.g., arrow in Fig. 3b and crossing point in Fig. 4b),
V th does not vanish as would be expected from the usual, spin-
degenerate QD, described by the standard single-impurity
Anderson model23. This experimental observation (see also

0.03a

d e f

0.025

0.02

0.015

0.01

0.005

C
on

du
ct

an
ce

 [2
e

2 /h
]

C
on

du
ct

an
ce

 [2
e

2 /h
]

0

0

1

–2

0

0.2

0.4

0.6

0.8

0

4

4

2

3

–5

×10–5 ×10–5

0 5 10

Chemical potential [T]

4-degenerate level

Two levels, Δ� = T

N-degenerate level

15 20

0.02

b c

0

–0.02

T
he

rm
al

 r
es

po
ns

e 
[2

e/
h

]
T

he
rm

al
 r

es
po

ns
e 

[2
e/

h
]

–0.04
–5 0

Direct calculation

Our procedure

Direct calculation

Our procedure

Direct calculation

Direct calculation

2A(T )

Our procedure

5 10

Chemical potential [T]

15 20

4

0 10 20

Degeneracy g (N+1)

30 40 50

–15 –10 –5 0 5

Chemical potential [T]

10 15 –15 –10 –5 0 5

Chemical potential [T]

10 15 0 1

Temperature [Δ�]

2 3

3

2

E
nt

ro
py

 c
ha

ng
e

E
nt

ro
py

 c
ha

ng
e

1

0

d
dT

Our procedure      (2T A(T ))

Fig. 1 Demonstration of the fitting procedure. a, b Transport coefficients through a four-fold degenerate quantum dot, calculated via Eq. (1):
a Conductance, b TR (solid blue line) with comparison to the derived expression [Eq. (4)] (red circles). The degeneracies for n ¼ 0; 1; 2; 3;4-electron
many-body states are gðNÞ ¼ 1;4;6;4; 1, respectively (Each peak was separately fitted). c Entropy change between two valleys with first valley degeneracy
gðNÞ ¼ 1, as a function of second valley degeneracy gðNþ1Þ, calculated using the proposed procedure (red circles) compared to the exact result
loggðNþ1Þ(solid blue line). d–f Transport through a U ! 1 QD with 2 single-particle non-degenerate interacting levels, separated by Δϵ ¼ T, calculated via
Eq. (1): d Conductance, e TR (solid blue line) with comparison to the derived expression [Eq. (4)] (red circles). f Entropy change between the two valleys
as a function of temperature. Direct thermodynamic calculation of entropy change (solid blue line) is compared to our procedure (d2T ´AðTÞ=dT) (red
circles). AðTÞ is shown as yellow crosses.

0.3

a b c

d

0.2

0.1

T
he

rm
al

 r
es

po
ns

e 
[2

e/
h

]

T
he

rm
al

 r
es

po
ns

e 
[2

e/
h

]

0

–0.1 –0.1

0

0.1

0.2

0.3

0.4

0.5

–0.2

SU(2)

SU(4)

SU(4)

SU(2)

–0.1 0

� — � [D ]

0.1 0.2 –0.2 –0.1 0

� — � [D ]

0.1 0.2
0
10–1 100 101

Temperature/�

10–1 100 101

Temperature/�

0log
(2

)
1

2

1log
(4

)
2

3

E
nt

ro
py

 c
ha

ng
e

E
nt

ro
py

 c
ha

ng
e

T/� = 0.25
T/� = 0.85
T/� = 2.92
T/� = 10

T/� = 0.25 ΔS0→1

R
2

ΔS0→1

R
2

T/� = 0.85
T/� = 2.92
T/� = 10

Fig. 2 Extension of the procedure to low temperatures. Fitting of the TR obtained directly from NRG (solid line) with TR obtained from Eq. (4) (circles), for
the a two-fold, and b four-fold degenerate quantum dot, in the vicinity of the first CB peak, for various temperatures. c, d Calculation of the entropy change
across the first CB peak for a wide range of temperatures for a c two-fold, and d four-fold degenerate quantum dot, where the expected entropy changes
are log2 and log4, respectively. The closeness of the R2 estimate of the fitting procedure (crosses) to unity indicates the excellent agreement between the
two curves of TR, as shown in a, b. The x-axis in a, b is in units of D, half the bandwidth in the leads, and Γ ¼ 0:01D and U ¼ D in all three panels.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13630-3

4 NATURE COMMUNICATIONS |         (2019) 10:5801 | https://doi.org/10.1038/s41467-019-13630-3 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


B1 P

B3

G

B2

C

H
QD

1.2a b c

1

0.8

C
on

du
ct

an
ce

 [e
2 /h

]

0.6

0.4

0.2

0

1.5

1

0.5

T
he

rm
al

 r
es

po
ns

e 
[2

e/
h]

0

–0.5

–1–2

–1

0

1

2

3

–0.05 0

VP [V ]

V
th
 [�

V
]

0.05 –0.05 0

VP [V ]

0.05 –0.05 0

VP [V ]

0.05

Experiment

Fit ΔS1 = 1.42

Fit ΔS2 = –0.68

Fig. 3 Fitting of the experimental data. a, b Experimental measurements of a conductance and b thermovoltage through the QD device, depicted in false
color in the inset to (b). The horizontal axis corresponds to the QD energy, obtained from multiplying the plunger gate voltage VP with gate lever arm α
(see methods), and shifting the point of zero energy to the center of the Coulomb-blockade valley. The thermovoltage has a non-zero value in the middle of
the valleys around the apparent particle-hole symmetry point (arrow). c Fitting procedure [Eq. (4)], performed directly on the experimental data where
each peak was fitted separately.

1.8
a b

c d

6

5

4

3

2

1

0

–1

–2

–3

5

4

3

2

1

0

–1

g = 4
g = 2

VP

–2

–3

–4

–5

1.6

1.4

1.2

1

0.8

C
on

du
ct

an
ce

 [e
2 /h

]

V
th
 [�

V
]

VP [V ]

� — � [D ] � — � [D ]

NRG calculation NRG calculation

VP [V ]

Experiment Experiment

V
th
 [�

V
]

C
on

du
ct

an
ce

 [e
2 /h

]

0.6

0.4

0.2

0
–0.1 –0.08 –0.06 –0.04

–0.1 0 0.1 0.2 0.3 0.4 –0.1 0 0.1 0.2 0.3 0.4

–0.02 0 0.02 0.04

� = 130 �eV

� = 180 �eV

� = 280 �eV

� = 550 �eV

� = 0.005 D

� = 0.007 D

� = 0.01 D

� = 0.016 D

0.06 0.08 –0.1 –0.08 –0.06 –0.04 –0.02 0 0.02 0.04 0.06 0.08

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

Fig. 4 Correspondence between numerical and experimental data for different couplings. Experimental measurements of a conductance and b
thermovoltage through the same device as in Fig. 3, for several values of tunneling widths Γ. The anomalous nonzero value of the crossing point of the TR
curves is denoted by an arrow (due to experimental ambiguity of reference chemical potential, the different curves were aligned so that the apparent
particle-hole symmetry point is shifted to VP ¼ 0). Theoretical NRG calculations of c conductance and d thermopower through a QD with two spin-
degenerate levels, with linearly varying level spacing, depicted in the inset to (d). The numerical plots were shifted horizontally so that the minima inside
the valley for all plots coincided for alignment as in the experimental plots. The results also indicate a non-zero crossing point (arrow). The x-axes in c and
d as well as Γ are in units of D, half the bandwidth in the leads, and we used U ¼ 0:3D.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13630-3 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:5801 | https://doi.org/10.1038/s41467-019-13630-3 |www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


refs. 16,17) is to this day an unresolved puzzle in the field (see
ref. 24 for an attempt to resolve this puzzle).

In the following we detail our analysis of these CB peaks. It has
been noted before17 that under the condition of heating one
reservoir, the actual temperature of the QD can differ greatly from
the fridge’s temperature. Since in the present case where
T < Γ ’ 550 μeV , the actual temperature cannot be deduced from
the width of the CB peaks, we use the temperature as an additional
fitting parameter. In addition, since the x-axis relation between the
conductance measurement (Fig. 3a) and the thermovoltage
measurements (Fig. 3b) were not experimentally established,
another fitting parameter is introduced: the x-axis shift in the
measured conductance relative to the measured thermovoltage.
The results of fitting the TR to Eq. (4) are depicted in Fig. 3c. As
can be seen in the figure, there is a good agreement between the fit
and the observed TR in the vicinity of each peak, again using only
a few fitting parameters to fit the whole curve (see Supplementary
Note 3 for a detailed step-by-step of the analysis of the
experimental data using our procedure), illustrating the experi-
mental validity of our approach. Due to the limited availability of
the data we used Gðμ;TÞ instead of Gðμ; γ2TÞ to estimate TRNI .
However, this should make a little difference when T < Γ.

In applying our method to the experiment, one needs to
translate the measured V th to the thermoelectric response TR by
dividing by ΔT . This value, however, is not easily and accurately
determined in an experiment and thus leads to uncertainties in
the absolute values of the entropy changes across the peaks. On the
other hand, the ratio of these entropy changes across consecutive
peaks is independent of ΔT , and is found to be �2:07 ± 0:13 for
the two peaks depicted in Fig. 3 (the errors estimate is due to
variation in possible fitting region around the peaks, see
Supplementary Note 3). The simplest scenario giving rise to such
a ratio, is that the entropy change across the first peak is log4 while
the second is �log2. This means that the first peak signals a
transition into a four-fold degenerate state, while the second peak
may either correspond to a transition from a four-fold degenerate
to a two-fold degenerate state, or from a two-fold degenerate state
to a non-degenerate state. This suggests a deviation from the naive
picture of consecutive filling of a four-fold degenerate state.
Including this scenario into our fit, ΔT is found to be �20 mK ,
which is close to the experimental estimate of being of the order of
30 mK (see methods and Supplementary Note 5).

While the degeneracy of these two levels seems fortuitous, such
a model, in fact, has been claimed to be generic for transport
through QDs25–27, and has been invoked to explain the repeating
phase jumps in the transmission phase through such a dot28,29. In
these works this is caused by two overlapping levels with different
tunneling widths. At each conductance valley the narrow level is
filled by an additional electron, shifting the energies of the narrow
and the wide level differently, thus leading naturally, due to the
degeneracy, to the entropy change of log4 across the first peak. In
this scenario, after the second conductance peak the narrow level
is doubly occupied, and does not play an additional role in
transport, while the wide level is shifted up to overlap with another
narrow level, and the process repeats itself. This explained the
repeated phase change across consecutive conductance peaks28,29,
and is, in fact, consistent with the observation that the upshift of
the TR from zero at the apparent particle-hole symmetric point
happens in consecutive pairs of conductance peaks16.

Experimentally, one can easily change the tunneling rates Γ
between the QD and the leads through the split-gate technique.
These data, depicted in Fig. 4a, b, can then be used to differentiate
between these possible scenarios. We found that the model that
best reproduces the experimental findings, is that of a QD with
two spinful states with an energy difference Δϵ that depends on

gate voltage (in the model we used the same Γ for both levels to
avoid additional parameters). Similar evolution of the degeneracy
as a function of chemical potential has already been observed in
quantum nano-tubes30.

In this model, around the gate voltage corresponding to the first
peak (QD energy ϵ � �0:75 meV), the two levels are almost
degenerate yielding a net four-fold degeneracy(gN ¼ 0; gNþ1 ¼ 4),
which is lifted as the gate voltage is tuned toward the second peak,
around QD energy ϵ � 0:75 meV (gN ¼ 2; gNþ1 ¼ 1) (as
illustrated in the inset of Fig. 4d). This interpretation leads to
the observed values of entropy change.

Figure 4c, d depicts NRG calculation of a specific model for
various values of Γ, where the energy difference between the levels
changes linearly with chemical potential, Δϵ ¼ aþ bðμ� ϵÞ, with
a ¼ �0:01D; b ¼ 0:13 (D the bandwidth of the leads). The model
reproduces the essential experimental features and those captured
by varying Γ. Some features in the experimental data, such as
small side peaks in the lower two values of Γ, attributed to excited
states31, are not captured within the current simple model.
Interestingly, this model naturally reproduces the non-zero value
of the TR at the seemingly particle-hole symmetric point, which is
also visible in the experimental data (crossing point in Fig. 4b,
marked by an arrow). This anomalous increase of the TR around
the middle of the valley is attributed to a non-trivial degeneracy,
thus providing a natural explanation that this value of gate
voltage does not correspond, in fact, to a particle-hole symmetric
point. (An alternative explanation, based on non-linear effects,
was suggested in recent work24).

Discussion
In this work, we have derived a theoretical connection between
the entropy and transport coefficients in mesoscopic junctions.
This connection relates the TR of a Coulomb-blockaded meso-
scopic system with arbitrary many-body levels to the conductance
and the entropy change between adjacent CB valleys. While the
derivation was introduced for weak-coupling Γ between the sys-
tem and the leads (in comparison with temperature), we have
demonstrated numerically that, for the case of 2-fold and 4-fold
degenerate QD, the method is accurate also for temperatures well
below Γ. This allowed us to apply the method to experimental
data in that regime, which yielded non-trivial, and in fact unex-
pected information about the entropy in each CB valley. The
deduced theoretical model, which described the experimental
QD, reproduced the measured thermopower and resolved the
long-standing puzzle of a finite TR in the apparent particle-hole
symmetric point.

The success of this procedure suggests possible venues to
extend this analysis especially towards the study of entropy of
exotic states. One direction would be to extend the method to low
temperatures, thus enabling the determination the degeneracy of
the ground state of the full system. This, for example, is parti-
cularly relevant to exotic phases, such as the two-channel Kondo
system, where the zero temperature entropy is non zero. If the TR
of this system can be utilized to deduce the entropy of the ground
state, this can be a smoking gun for the observation of the two-
channel Kondo ground state32 or other such non Fermi liquid
ground states. Such an extension has also been suggested in
parallel by Sela et al.33 to measure the fractional entropy of
Majorana zero modes.

Methods
High-temperature Mott relation. In relating the non-interacting conductance and
TR we use a high-temperature adaptation of the Mott relation15.

TRNIðμ;TÞ ¼ γ1T
dGNIðμ; γ2TÞ

dμ
; ð5Þ
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where the superscript NI denotes a non-interacting system, and γ2 ¼ 2=
ffiffiffi
3

p
; γ1 ¼

2γ32 are universal values related to properties of the Fermi function (for derivation
see Supplementary Note 2).

Numerical-renormalization group. For the density-matrix numerical-renormali-
zation group (DM-NRG) results we used the open-access Budapest Flexible DM-
NRG code34,35. The expectation values and the transmission spectral function,
required for the evaluation of the conductance through the double dot device18,
were calculated, assuming, for simplicity, equal couplings to the left and right leads,
Γ ¼ πρV2, and equal and constant density of states ρ ¼ 1=2D in the two leads, with
a symmetric band of bandwidth 2D, around the Fermi energy. The NRG simula-
tion is able to output the many-body discrete energy states that the system can
occupy and their respective spectral weight, ϵi;wi . Transport coefficient are then
calculated using Gðμ;TÞ ¼ Γπ

P
widf ðϵi � μ;TÞ=dμ and

TRðμ;TÞ ¼ Γπ
P

widf ðϵi � μ;TÞ=dT .

Experiment. Our sample is designed similar to the one used by Scheibner et al.16.
The electron reservoir H, which serves as a hot lead for the quantum dot in our
thermopower experiments is shaped into a channel of width w ¼ 2 μm and length
l ¼ 20 μm (see Supplementary Fig. 5). The QD is situated on one side of the
channel, delimited by gates B1 and B2,while the opposite side of the channel is
delimited by the two gates Q1 and Q2, forming a quantum point contact (QPC),
which is positioned exactly opposite to the quantum dot. The QPC is adjusted to
the conductance plateau at G= 10 e2=h. It separates the heating channel H from
the reservoir REF, which is kept at ground potential. At the two ends of the heating
channel (separated by the distance l ¼ 20 μm) the 2DES opens up quickly into
large reservoirs. The channel can be contacted electrically through two Ohmic
contacts I1 and I2. We apply a heating current Ih ¼ 70 nA to the channel, which is
modulated at a low frequency ω ¼ 13 Hz. Because at low-temperature electron-
electron scattering is the dominant scattering mechanism on length scales up to
several 10 μm in our system, the power Ph introduced through Ih is dissipated
inside the channel only into the electron gas while in the larger reservoirs outside
the channel, Ph is dissipated into the lattice through electron-lattice interaction.
From here the heat gets removed efficiently by the dilution refrigerator. In this
manner we establish a locally enhanced electronic temperature in the channel while
the rest of the 2DES remains approximately at base temperature. Using the ther-
mopower of the QPC as a thermometer36 we estimate that for the given Ih , Tel in
the channel increases by ΔT � 30 mK. We note that because Ih gets modulated
with ω, the temperature in the heating channel oscillates with 2ω since the dis-
sipated power Ph / I2h / sin2ðωtÞ / cosð2ωtÞ. This provides all temperature-
driven effects with a clear signature of an oscillation frequency of 2ω. The ther-
movoltage Vth of the QD is obtained by measuring the potential difference between
the contacts of the two cold reservoirs V ref and VC using a Lock-In amplifier
operating at 2ω ¼ 26 Hz. Since the QPC is adjusted to a conductance plateau, its
contribution to the Vth is zero. Hence the measured signal can be attributed fully to
the QD. In order to suppress any potential fluctuations at ω in close vicinity to the
QD structure, which may occur due to unwanted capacitive coupling inside the
sample, we let the excitation voltage for the heating current at both contacts of the
heating channel oscillate symmetrically with respect to ground. Since reservoir REF
is kept grounded, this suppresses oscillations of the electrical potential at ω around
the QD structure.

Data availability
The datasets generated and analysed in the study are available upon request from the
corresponding authors.
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