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A unified form of low-energy nodal electronic
interactions in hole-doped cuprate
superconductors
T.J. Reber1,5*, X. Zhou 1*, N.C. Plumb 1,6, S. Parham1, J.A. Waugh1, Y. Cao1, Z. Sun1,7, H. Li1, Q. Wang1,

J.S. Wen 2, Z.J. Xu2, G. Gu2, Y. Yoshida3, H. Eisaki3, G.B. Arnold1 & D.S. Dessau1,4*

Using angle resolved photoemission spectroscopy measurements of Bi2Sr2CaCu2O8+δ over a

wide range of doping levels, we present a universal form for the non-Fermi liquid electronic

interactions in the nodal direction in the exotic normal state phase. It is described by a

continuously varying power law exponent versus energy and temperature (hence named a

Power Law Liquid or PLL), which with doping varies smoothly from a quadratic Fermi Liquid in

the overdoped regime, to a linear Marginal Fermi Liquid at optimal doping, to a non-

quasiparticle non-Fermi Liquid in the underdoped regime. The coupling strength is essentially

constant across all regimes and is consistent with Planckian dissipation. Using the extracted

PLL parameters we reproduce the experimental optics and resistivity over a wide range of

doping and normal-state temperature values, including the T* pseudogap temperature scale

observed in the resistivity curves. This breaks the direct link to the pseudogapping of anti-

nodal spectral weight observed at similar temperature scales and gives an alternative

direction for searches of the microscopic mechanism.
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The non-superconducting state of the cuprates is debatably
more intriguing and unusual than the high temperature
superconducting state itself. One of the most iconic

aspects, and a key to the electronic interactions out of which the
superconducting state is borne, is the non-Fermi liquid resistivity
above Tc1,2. This non-Fermi liquid behavior, often called the
strange metal state, is characterized by a linearly increasing
resistivity with temperature, counter to the quadratic behavior
expected for electron-electron scattering in Landau’s Fermi liquid
(FL) theory (see for example ref. 3). This linear-in-T strange metal
behavior is considered so unusual that it is believed by many to
signal a new state of matter, motivating many of the most
influential and exotic theoretical ideas of the cuprate problem
including Anderson’s resonating valence bond (RVB)4, the mar-
ginal Fermi liquid (MFL)5, many ideas about quantum critical
points6,7 as well as duals of string-theory models of quantum
gravity8. Linearity in the measured resistivity has also recently
been found in numerous other compounds, with connections
to the cuprate physics sought9. Further, the strength of the cou-
pling has often been described as the maximum possible, i.e.
“Planckian”10.

The strange metal state with linear-in-T scattering occurs near
the middle of the doping phase diagram, roughly above where the
optimal or maximum Tc exists. To the far right at high doping
levels a regular (quadratic in T) Fermi liquid exists, while to the
left at low doping levels is an unusual and poorly understood
pseudogap state in which there is an incomplete suppression of
low-energy spectral weight, especially at the antinodal regime of
the Brillouin zone. And while tremendous effort has been
invested to understand the pseudogap and strange metal
states11,12, a great amount of confusion still exists - for example,
a recent optical spectroscopy study has argued that the normal
state of the underdoped samples may obey a Fermi liquid
quadratic-in-ω and quadratic-in-T scaling of the scattering rates13

—a result that would seem at odds with the general indications
from the literature that the underdoped samples are more and
more strongly correlated/less consistent with conventional Fermi
Liquid physics.

Here we utilize angle resolved photoemission spectroscopy
(ARPES) to study the electronic scattering rates or self-energies of
the Bi2Sr2CaCu2O8 family of cuprate superconductors. The
unique momentum-selectivity of ARPES allows it to measure the
scattering rates in a simple and direct manner simply by looking
at peak widths. We took advantage of the special ability of ARPES
to measure the scattering rates as a function of both energy and
temperature, whereas previous ARPES studies have relied on
either the temperature or energy dependences alone. With this,
we find a scaling in energy and temperature that we term power
law liquid or PLL scaling, with the critical power law exponent
varying smoothly with doping. The exponent is qualitatively
consistent with expectations in the overdoped and optimally
doped regimes, but diverges from the result of optics experiments
in the underdoped regime 13—something we discuss in
detail. Further, we show that the coupling strength is effectively
constant (when framed in the appropriate way) yet extremely
strong throughout the entire doping range – a strength that is
consistent with discussions of “Plankian” dissipation10.

Results and discussion
Electronic interactions from ARPES. Figure 1a presents ARPES
data from an optimally doped Bi2Sr2CaCu2O8+δ sample taken in
the normal state at T= 100 K. The data were taken along the
nodal direction where the d-wave superconducting gap is zero.
We use low energy (7 eV) photons, which give enhanced energy
resolution, momentum resolution, and bulk sensitivity compared

to regular ARPES14. A slice through this spectrum at constant
energy, known as a momentum distribution curve (MDC) is
generally a Lorentzian whose width is ΔkMDC(ω), with this width
directly proportional (through the electron velocity dE/dk—see
Supplementary Note 2) to the single particle scattering rate, or
equivalently, the imaginary part of the electron self-energy Σ″(ω).
Through the Kramers–Kronig relation, its dispersion also directly
connects to the real part of the electron self-energy Σ’(ω).

Figure 1b presents a compilation of the energy and
temperature dependence of Σ″(ω) from five differently doped
samples. As a function of energy each spectrum shows an
approximately linear behavior at high energy with an upward
curvature of the scattering rates near EF that are reminiscent of
the Fermi liquid ω2 dependence, though as we will show this
should not be taken as evidence of Fermi liquid behavior. As the
temperature of any one sample is increased the curves shift up to
higher scattering rates. Such a full set of ARPES scattering rate
data as a function of energy and temperature (and doping) has
not, to our knowledge, been previously presented.

Form of electronic interactions. Taking inspiration from (a) the
success of the phenomenological Marginal Fermi Liquid form of
self-energy proposed by Varma 5, and (b) the non-integral power
laws in Anderson’s Hidden Fermi liquid15, we propose the fol-
lowing phenomenological Power Law Liquid or PLL form for the
electronic scattering rates:

Σ00
PLLðωÞ ¼ Γ0 þ λ

�hωð Þ2þ βkBTð Þ2� �α
�hωNð Þ2α�1 ¼ Γ0 þ λ

ðkBTÞ2 �hω
kBT

� �2
þβ2

� �� �α

�hωNð Þ2α�1

ð1Þ
where Σ″(ω) is the imaginary part of the self-energy directly
measured in our experiment, Γ0 is an offset parameter accounting
for impurity or disorder scattering, λ is a coupling parameter
indicating the overall strength of the scattering, ωN is a normal-
ization frequency whose exponent maintains the proper dimen-
sionality of the self-energy, parameter β governs the comparative
strengths of temperature and energy, and α is the critical PLL
variable that takes the system from a FL to a MFL, and beyond.
Note that this formalism does not directly contain any low energy
scales that would be associated with superconductivity, the
pseudogap, phonons, or other bosonic modes. The only energy
scale is ωN that is not strictly necessary, but we include to
maintain constant units for coupling parameter λ as a function of
doping. Of all the energy scales in the system the one that closest
matches our ωN is the full conduction bandwidth relative to EF.
This form exhibits ω/T scaling only—a phenomenon commonly
encountered in quantum critical types of theories.

The black dotted lines of Fig. 1b show fits of the data to the
PLL self-energy, which reproduce the data extremely well up to
the rather large scale of 0.1 eV scale that is considered here. This
large energy range does cover the scale of potential bosonic
modes (phonons, magnetic resonance), and while these have a
noticeable effect on the spectra deep in the superconducting state
they appear to only exist (magnetic resonance) or couple strongly
(phonons) at low temperatures, i.e. in the superconducting or
pairing regime. For example, both the very weak 10 meV kink16

and the clear and very strong 50 meV kink that is dominant in the
antinodal regime are only present below the onset of pairing17.
The 70 meV-scale kink is also much weaker above Tc than below
Tc 16, with more of a rounded effect compared to the sharper (in
energy and k) kink effects below Tc, though the general energy
scales of the centroids remain similar. Because of this, we believe
it is likely that there are multiple contributions to the nodal kink
—(a) the boson effect that is observed below Tc, and which might
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be due to coupling to phonons or the magnetic resonance mode,
and (b) a smooth kink-like effect observed in the normal state due
to a Kramers–Kronig transformation of the PLL scattering rate, as
is shown in the Supplementary Fig. 2.

All curves for one sample have been fit simultaneously to Eq. 1,
greatly constraining the parameter set that can fit the data. The
extracted parameters as a function of doping are shown in Fig. 1c.
One set of parameters α,β,λ, and Γ0 is obtained per sample, with
these four parameters fitting all the ARPES data for all energies
and all normal state temperatures. We do not include the
normalization frequency ωN here because it has been fixed at the
high energy of 0.5 eV (approximately the bottom of the band) for
all samples, which is purposely far beyond the 0.1 eV energy scale
over which the data are fit, minimizing its impact on the obtained
physics. ωN is also fully mathematically irrelevant for the case that
the parameter α= 1/2 and almost irrelevant when α is near 1/2,
as is the case for most important doping values.

Figure 1c shows that λ, and β are essentially independent of
doping level (and also energy and temperature). The β values
(3.5 ± 0.5) are close to the theoretical expectation of π for a Fermi
liquid metal (blue dashed line in Fig. 1c), with this result based
upon the conversion of the Matsubara frequencies from the
imaginary to real axes18. The main experiments that have
addressed this issue in the literature are optics experiments, and
then even for the simple Fermi liquid case, these have not
successfully found the expected scaling between T and ω (see
ref. 13,19,20). Therefore, the β values uncovered here serve as a
combination of a classic theoretical prediction, constraints on
new theories, and a confirmation of the reasonableness of the PLL
form of interactions. The offset parameter Γ0 ranges from about
8–35 meV as a function of doping, as shown by the offset lines in
panel b and discussed more extensively in Supplementary Note 5.

Parameter λ is essentially constant as a function of doping,
pegged to the value 0.5, again confirming the simplicity and

universality of the form of interactions. This value is roughly
consistent with the recent notions of Planckian dissipation that
stated that the optimally doped cuprates had the maximum
possible scattering rate, determined by Planck’s constant10. The
fact that λ is constant across the phase diagram implies that all
doping levels may have this same maximum electronic coupling,
though the form of the coupling (controlled by α) varies strongly
as a function of doping.

The data are shown in Fig. 1b is from 5 samples, 27 individual
cuts of data, each of which contains on order of 50 energy points
and 100 k points, or over 105 data points total. For each sample,
characterizing all of its data with the 5 parameters of Eq. 1 is
impressive. That four of them essentially drop out leaving just the
one linearly varying parameter α is even more so.

Figure 2 shows the imaginary self-energy (with Γ0 subtracted
off) for different doped samples vs. ζ2= {(�hω)2+(βkBT)2}. Each
plot contains many individual temperature curves that all collapse
onto single lines, indicating the nearly ideal scaling behavior of
the data as a function of temperature and frequency. On this
log–log plot a power law function is perfectly linear, with the
slope of the lines giving the Power Law Liquid exponent α, as
shown by the linear dashed lines on each of the plots, with these α
values (slopes) gradually increasing from left to right.

The doping dependence of α is shown in more detail in Fig. 1c,
indicating that it takes on a roughly linear dependence and is very
close to 1/2 at optimal doping. In this case, Eq. 1 reduces to the
hyperbolic form:

Σ00
Opt ¼ Γ0 þ λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�hωÞ2 þ βkBTð Þ2

q
ð2Þ

which is linear in both energy (for T= 0) and temperature (for
ω= 0), i.e. it is of the MFL type of interaction 5 (see the
theoretical plot of Fig. 3b) and the parameter ωN also becomes
irrelevant. If we extrapolate α to very high doping levels (HOD or
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Heavily Over Doped) such that α= 1, the PLL form becomes:

Σ00
HOD ¼ Γ0 þ λ

ð�hωÞ2 þ βkBTð Þ2
ωN

ð3Þ

and the quadratic dependence on energy and temperature of the
normal Fermi liquid is recovered (Fig. 3a). As we go to the
underdoped region the self-energy takes on an unusual S-curve
shape with energy (Fig. 3c) that has the expected sub-linear
behavior at higher energies. The behavior is a natural aspect
of the PLL self-energy and is not possible with a linear
combination of quadratic Fermi liquid and linear MFL which is
necessarily concave up, in contrast to the underdoped data that is
concave down at higher frequencies. To emphasize the S-curve
in the underdoped regime we draw in the linear extrapolation
of the deep energy dependence in Fig. 3c at a finite temperature
of 100 K.

All curves in Fig. 3 are plotted at T= 100 K, and in all cases we
show that the low energy behavior of the self-energies can be
approximated by a parabolic curve (blue dashed lines), which
would often be interpreted as indicative of the Fermi liquid ω2

scaling. It is therefore important that in the present case only
Fig. 1a is an actual Fermi liquid, while Fig. 1c is a very special
situation that (as we show later) even has zero quasiparticle
residue at T= 0, i.e. it has zero overlap with Fermi liquid physics.
Surprisingly, this form still has a quadratic-like behavior at low
energies as shown in Fig. 3c, reminiscent of (but different than) a
Fermi liquid.

Temperature dependence and comparison to resistivity.
Figure 4a shows the calculated normal state temperature depen-
dence of the ω= 0 self-energy, using α values according to the
linear fit (red dashed line) of Fig. 1c. We also fixed λ to 0.5 and β
to π, and ignored the impurity scattering term Γ0 because, as
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discussed in Supplementary Note 5, this term is mostly from
forward scattering contributions and/or chemical potential
inhomogeneity that have minimal effects on the measured
resistivity. Therefore there is essentially only one parameter α that
created the entire set of curves shown in Fig. 4a. These curves
have a roughly linear form at higher temperatures, with a
deviation from linearity at lower temperature. The approximate
temperature at which this deviation occurs is indicated by the
arrows (see Supplementary Note 7), although this is not a sharply
defined temperature scale.

With this information about the self-energy it is possible,
within a few simple models, to calculate the temperature-
dependent electrical resistivity. We do this in two standard but
simplistic ways, shown for the Boltzmann transport model in
Fig. 4b and the Drude model in Fig. 4c. The difference in these
models comes largely from the way variations in the properties
around the Fermi surface are considered, as discussed in
Supplementary Note 6.

Figure 4d presents the measured resistivity of similar
samples21. The overall scale and shape of the measured resistivity
is surprisingly similar to that calculated from the self-energies
(Figs. 4b, c). To our knowledge this is the closest agreement yet
between the results of a transport measurement and a high-
energy spectroscopy such as ARPES, also putting strong
constraints on the origin of the strange metal resistive fluctua-
tions. This agreement indicates that the electrical resistivity of the

cuprates can be closely connected to the single-particle electronic
relaxation rates, with these relaxation channels dominated by
large-angle scattering (since forward scattering contributes very
weakly to the resistivity—see Supplementary Note 5). This would
appear to make it difficult for theories with dominant coupling to
q ~ 0 fluctuations 22–24 to connect to our data.

Conventionally, the temperature scale at which the resistivity
deviates from the high temperature linear regime has been noted
as T* and has been one of the major tools used to determine the
onset of the pseudogap phase. Using the same methods to extract
this scale as used in transport, (Supplementary Note 7) a similar
temperature scale vs. doping can be extracted from the PLL self-
energies, as shown in Fig. 4a and summarized in Fig. 4e, but
called T’ here for clarity. Note here that we have followed these
temperature scales through the superconducting dome as if the
superconductivity didn’t disrupt the PLL phenomenology. Also
plotted in Fig. 4e is an extracted temperature T” in the overdoped
regime, where the curvature turns upwards at low temperatures
and hence also deviates from linearity. While the experimental
transport data of Fig. 4d don’t go far enough into the overdoped
regime for the T” scale to become visible, overdoped data from
other families of the cuprates clearly show this power law
behavior25,26.

The extracted temperatures shown in Fig. 4e produce a v-shaped
structure, with the crossover between the two branches (where there
is perfect linearity) reaching T= 0 near optimal doping. This

0.08

0.06

0.04

0.02

0.00

300250200150100

Temperature (K)

p∼0.10

p∼0.12

p∼0.16

p∼0.14

p∼0.18

p∼0.20

T ′PLL

T″PLL

1000

800

600

400

200

0

300250200150100
Temperature (K)

300 0.00 0.05 0.10

Doping

0.15 0.20 0.25250200150100
Temperature (K)

a b

c d e

1000

800

600

400

200

0

R
es

is
iti

vi
ty

 (
μΩ

cm
)

R
es

is
iti

vi
ty

 (
μΩ

cm
)

1000
Watanabe, fujii & matsuda
PRL 79 (1997)

T*

T*

T*

300

250

200

150

100

50

0

800

600

400

200

0

R
es

is
iti

vi
ty

 (
μΩ

cm
)

300250200150100

Temperature (K)

�
″(

eV
)

p∼0.10

p∼0.19

T*gaps
p∼0.10

T
em

pe
ra

tu
re

 (
K

)

Fig. 4 Scattering rates, resistivity, and apparent temperature scales. a Calculated doping and temperature dependence of the nodal Σ”(ω) (solid line) in the
ω= 0 limit using the linear relation between α and doping level p. Low temperature extrapolations from linear fits between [250 K, 300 K] are extrapolated
as dashed lines. Additionally, Γ0= 0, β= π, and λ= 0.5 for all curves. b, c Resistivity as a function of temperature and doping calculated using two different
methods (solid lines, see text for details). Linear extrapolations from [250 K, 300 K] are shown as dashed lines. The temperature dependence is dominated
by the temperature dependence of Σ”. d Resistivity measurements fromWatanabe et al. as well as the “pseudogap” temperature scale T* 22. e Compilation
of the “break” temperatures from panel a: T’ and T” are temperatures where there is an apparent break in Σ” from the more linear form that is observed at
high temperatures (up to 300 K).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13497-4 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:5737 | https://doi.org/10.1038/s41467-019-13497-4 |www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


v-shaped fan extending to zero temperature is reminiscent of the
quantum critical behavior that has been extensively discussed in the
cuprates 6, though the entire PLL phenomenology should perhaps
better described as a quantum critical phase—that is, there is a very
wide range of non-Fermi liquid phenomenology at zero tempera-
tures, rather than only one doping level having this type of behavior.
Despite that, the T’ and T” values as a function of doping look like
the T* from other spectroscopies (Supplementary Fig. 1b). However,
in contrast to the nodal scattering rate measurements discussed
here, measurements of the spectral weight pseudogap from the
gapping of energy spectra in the antinodal regime (also from ARPES
on Bi2Sr2CaCu2O8) find a T* that asymptotically approaches the
superconducting dome, such as shown in Supplementary Fig. 1a 12.
While the two different views of the phase diagram could previously
have been justified as coming from different samples or types of
spectroscopies, we now see that ARPES on BSCCO can give both
types of phase diagrams, and that they, therefore, are both correct
but are just measuring different phenomena. This, therefore, breaks
the link between the temperature scales observed in transport (via
scattering rates) and the temperature onset of a spectral weight
pseudogap in underdoped samples (both of which have historically
been called T*).

Quasiparticle residue and comparison to optics. With the
normal state nodal spectral function as written down in the PLL
form we can determine many properties in addition to resistivity,
with two of them described here. The quasiparticle residue Z is a
concept from Landau’s Fermi liquid theory telling the quasi-
particle weight, which in a true Fermi liquid must be finite but
potentially very small (like in a heavy fermion). Again assuming
we can kill the superconductivity so as to stay in the PLL phase all
the way to zero temperature, we calculate Z (Supplementary
Note 8) with results shown in Fig. 5a. The PLL Z is finite for all
overdoped samples and exactly at T= 0 and ω= 0 it is identically
zero (a true non-Fermi liquid) for all underdoped samples. The
transition between them occurs at α= 1/2 (i.e., the marginal
Fermi liquid case) and T= 0 and could be considered a quantum
critical point, possibly connecting to the v-shaped form of Fig. 4e
that is also reminiscent of quantum criticality.

Despite the unusual power laws in the scattering rates, the PLL
spectral weight shows a regular (non-power-law) metallic Fermi
edge in all cases consistent with the ARPES data. This is different
from other models in which power law scattering rates have been
proposed, such as the Projected Fermi Liquid of Anderson27 and

the famous Luttinger Liquid that is known to exist in one
dimension28. Despite the zero quasiparticle residue at T= 0,
when observed at finite temperatures a quadratic ω2 dependence
to the scattering rate can still be found at low frequency near EF
on the underdoped side (Fig. 3c). Taken together, this
phenomenology warns us that the traditional view of quasipar-
ticle vs non-quasiparticle (looking for well-defined Fermi edge, ω2

dependence, etc.) might be too simplistic.
Using PLL self-energies, we can also simulate the optical

conductivity (Supplementary Note 9) as a function of doping, as
shown in Fig. 5b for a simulation temperature T= 300 K,
compared to measured optical data (Fig. 5c) at the same
temperature/dopings29. The overall agreement is highly satisfac-
tory, including both the magnitude of the conductivity and the
width of the low energy peaks. In general, there has been a great
deal of debate about the nature of the low energy spectral peaks,
especially whether these should be considered Drude peaks
representative of a quasiparticle-based Fermi liquid. Here we see
that even though in the strictest sense there are no quasiparticle
peaks for α<0.5 (i.e. the zero temperature quasiparticle residues
vanish), there are zero-frequency upturns in the optical simula-
tions and data that look something like a Drude peak.

Possible origins of PLL phenomenology. Just as the origin of the
MFL phenomenology is still not known, we expect the origin of
the PLL phenomenology will take time to sort out. However, we
hope that the extra constraints of this phenomenology compared
to that of the MFL phenomenology will give a boost to our
theoretical understanding of these materials.

Strange as it is, the power law form of self-energy is not
unprecedented but perhaps under-explored. Fractional power law
forms of self-energy have been identified in iron-chalcogenide
and ruthenate superconductors, and have been attributed to
orbital and spin fluctuations30. The case of α= 0.5 might have
been observed in scattering rates of pnictides in a magnetic field
with μBB in place of ω, possibly related to the proximity of a
quantum critical point31. The power law form has also been
proposed as an outcome of the extended Hubbard model in
infinite dimensions32, or as the result of un-particles in the
anti–de-Sitter/conformal field theory (AdS/CFT) correspon-
dence33. It also is present in the SYK (Sachdev-Ye-Kitaev) model
of fully incoherent electrons34,35, which nominally would
correspond to our exponent α= 1/4, and that has recently been
shown to be able to support coherent Cooper pairing36. Ref. 36
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also shows that changing the ratio m of the number of boson and
fermion flavors allows the power law exponent to change
continuously over a ratio of 2, which could have connections to
the running exponent we observe in our data. Whether the
universal power law form in cuprates and the similar forms in
other materials can be unified under a single theoretical
framework is an intriguing question calling upon further
theoretical and experimental explorations.

A widely discussed explanation for the linear MFL behavior
near optimal doping is based upon fluctuations above a
quantum critical point, in which two phases meet at zero
temperature from opposite sides of the phase diagram 6. The v-
shaped quantum-critical-like behavior shown in Fig. 4e as well
as in Supplementary Fig. 1b seems to support this possibility,
though here we note that our results are inconsistent with the
underdoped regime being Fermi-liquid-like. Rather, our results
indicate that huge doping regimes are Z= 0 non-Fermi-liquids
and so we may be better off discussing these materials in the
context of a set of quantum critical phases37 rather than as a
single quantum critical point.

Outlook. While the PLL ansatz is not necessarily a unique
choice for a self-energy, it has a remarkable simplicity that with
one smoothly varying parameter as a function of doping (the
power law exponent α), we can understand the salient normal-
state features of the strange-metal ARPES, transport, and optics
data. Understanding the origin of this power law behavior
therefore holds great promise for understanding the cuprates—
not just for the strange metal normal state behavior but also for
the superconducting state since it is born out of this power-law
strange-metal state.

Data availability
The datasets used in the current study are available from the corresponding author on
reasonable request.
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