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Towards a fully automated algorithm driven
platform for biosystems design
Mohammad HamediRad 1,2,6, Ran Chao1,2,6, Scott Weisberg 3, Jiazhang Lian 1,7, Saurabh Sinha2,4* &

Huimin Zhao 1,2,3,5*

Large-scale data acquisition and analysis are often required in the successful implementation

of the design, build, test, and learn (DBTL) cycle in biosystems design. However, it has long

been hindered by experimental cost, variability, biases, and missed insights from traditional

analysis methods. Here, we report the application of an integrated robotic system coupled

with machine learning algorithms to fully automate the DBTL process for biosystems design.

As proof of concept, we have demonstrated its capacity by optimizing the lycopene bio-

synthetic pathway. This fully-automated robotic platform, BioAutomata, evaluates less than

1% of possible variants while outperforming random screening by 77%. A paired predictive

model and Bayesian algorithm select experiments which are performed by Illinois Biological

Foundry for Advanced Biomanufacturing (iBioFAB). BioAutomata excels with black-box

optimization problems, where experiments are expensive and noisy and the success of the

experiment is not dependent on extensive prior knowledge of biological mechanisms.
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B iological systems such as proteins, pathways and whole cells
have been increasingly explored for a wide variety of bio-
technology applications1,2. However, due to the complexity

of biological systems and their myriad components and many
unknown interactions among them, many rounds of design,
build, test and learn (DBTL) must be performed3–6. There have
been many efforts to expedite the DBTL cycle3 and automated
biofoundries such as Illinois Biological Foundry for Advanced
Biomanufacturing (iBioFAB)7 and Edinburgh Genome Foundry8

have been an undeniably important leap toward automating the
design, build and test components of the cycle3. However, other
than some specific and narrow applications9,10, there is no
example of automation and integration of the learn component to
close the DBTL cycle and enable the iteration of this cycle with
minimal human intervention.

Furthermore, the automation is not limited to build and test
elements of the cycle and given the large amount of data gener-
ated by modern biofoundries, automation of the learn component
is also crucial. Assistance from computer algorithms and using
statistical models and machine learning is of special importance
given the complexity of most biological systems of practical
importance and the high dimensionality of optimization tasks
required to quantify and manipulate such systems. Biosystems
ranging from single proteins to entire pathways can be engineered
using statistical models11,12, machine learning algorithms13–17,
reinforcement learning18 and a complete suite of biophysical
models19. However, most of the progress on automation of the
DBTL cycle has been focused on one of the elements of this cycle
where integrating all these components can result in a synergistic
effect of enabling large amount of high-dimensional data to be
acquired and analyzed by the fully automated DBTL cycle.

To overcome these limitations, we integrate the iBioFAB, a
fully automated and versatile robotic platform7 with a machine
learning algorithm. This BioAutomata platform designs experi-
ments, executes them and analyzes data to optimize a user-
specified biological process in an iterative manner. BioAutomata
trains a probabilistic model on initially generated (or available)
data and decides the best points of the optimization space to
evaluate, i.e., the points that are more likely to result in an
improved biosystem. This results in a reduction of the total
number of experiments needed to find the maximum of the
optimization space. This optimization framework is ideal for
cases where the goal is finding the optima of a black-box function
and where data acquisition is expensive and noisy, which is
intrinsically true in biosystems design. Bayesian optimization has
also been shown to be a powerful tool in other areas such as
protein engineering15,16,20,21.

As a proof of concept, we optimize the lycopene production
pathway, i.e., fine-tune the expression of genes involved in its
biosynthesis (the inputs to the function) to achieve the highest
lycopene production (output of the function). Lycopene has been
traditionally used as food additive and colorant but recently many
reports have proposed its effects as antioxidant, anticarcinogen
and for preventing cardiovascular disease22. Due to the high
commercial value of lycopene, the lycopene biosynthetic pathway
has been a target of multiple metabolic engineering pursuits23–25.
While there are other strategies such as deleting or overexpressing
endogeous genes in the organism to push the flux toward the
product of the pathway, or simply optimizing the fermentation
conditions, optimizing the expression of the biosynthetic genes is
often the first choice. By combining the Bayesian optimization
algorithm and iBioFAB automation system, we evaluate <1% of
all the possible tunable expression values of component genes
versus the production (expression–production landscape) to find
a strain that produces high lycopene titer. Each point on this
landscape denotes the production amount of the desired chemical

given the particular expression level of each gene. After the initial
design and setup of this BioAutomata, the role of the researchers
changes from being the drivers of the experiments to supervisors
of the system while the algorithm-driven optimization platform
designs and performs the experiments to maximize the objective
function defined by the researchers.

Results
Fully automated algorithm-driven platform BioAutomata. In
biosystems design, it is typically expensive, time consuming and
error-prone to perform wet-lab experiments. Therefore, opti-
mizing a biological system is most efficient when the number of
experiments performed is minimized. Our proposed approach to
achieve this is shown in Fig. 1. Within this context, the first step
in optimization is to determine the initial design, inputs and
outputs of the system as well as the objective function. After the
initial setup, a predictive model and acquisition policy should be
chosen to estimate the landscape given the currently available
data and choose the next points to be evaluated and experiments
to be performed. After all the elements of the system (initial
design, acquisition policy, experimental setup, data acquisition
and predictive model) are chosen, the BioAutomata can com-
mence the optimization. First, the acquisition policy chooses the
points to be evaluated. Next, iBioFAB performs the experiments
that evaluate the selected points for their fitness and returns the
data to the predictive model. The model will then update its belief
about the landscape based on the newly presented data. Last, the
acquisition policy will choose the points to be evaluated next with
the guidance of the updated predictive model.

Determination of the predictive model and acquisition policy.
Since the objective is to find the maximum of a black-box func-
tion where data acquisition is expensive and noisy, we sought to
use Bayesian optimization26, which is ideal for solving such
problems. Bayesian optimization27–29 is a powerful method that
has been shown to outperform many algorithms30 in optimizing
such challenging functions31. In short, it constructs a probabilistic
model and uses this model to make decisions on where to eval-
uate next to maximize the expected progress made with each
function evaluation and therefore reduce the number of evalua-
tions, i.e., experiments required to find the maximum. The
algorithm takes the expected outcome of each evaluation as well
as the confidence on this expected outcome into account. To use
this algorithm, two main functions must be chosen, a probabil-
istic model to make assumptions about the landscape given the
available data and an acquisition policy to suggest which point to
evaluate next to maximize the expected progress toward the
optimum.

We used the Gaussian process (GP) as the predictive model to
assign an expected value and confidence level to all the
unevaluated points. The GP was chosen due to its flexibility
and broad applications15,30,32. GP assigns a mean and variance to
each point in the landscape and as more points are evaluated, the
mean and variance are updated accordingly (Supplementary
Fig. 1).

The acquisition function drives the experimental direction to
make the most expected progress toward the optimum. Given the
expected value and confidence on that value, we are faced with a
trade-off between exploration and exploitation. If the only tested
points are those with the largest expected values, we risk only
finding local maxima. Hence, we want to explore more (focus on
points where the model is uncertain about). However, if we only
evaluate points where we have little confidence on the expected
value, although we learn more about the landscape, in most cases
these expensive experiments are wasted on increasing the
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confidence level on low-performing regions rather than focusing
on finding the maximum. Hence, if we find a good point, we want
to exploit that finding to search nearby for a better solution (with
greater expectation).

Several algorithms are suggested for balancing the trade-off
between exploration and exploitation and the maximum of
acquisition function represents an automatic trade-off between
these two factors. One of the commonly used acquisition
functions is Expected Improvement (EI)26,29 where the algorithm
estimates how much improvement over the current best is
expected from each one of the points, and samples the point with
the highest expected improvement. This function elegantly finds
the balance in exploration and exploitation trade-off by using the
already trained GP and finds the point that provides the highest
expected improvement and was chosen as the acquisition
function in this work.

As described before, by design, Bayesian optimization relies on
sequential experiments. Each time one point is evaluated, the
result is given to the algorithm to update the prior GP and find
the next point to be evaluated using the acquisition function.
However, it is more efficient to perform some experiments in
parallel and in sequential batches so as to reduce the number of
rounds of the experiment and consequently the time of the entire
project. Fortunately, a variation of Bayesian optimization has
been recently developed for multi-core parallel processing
applications. This algorithm can handle multiple pending
evaluations and can get the result of any of the pending
evaluations at any given time and return the next point to be
evaluated26. In short, the algorithm considers likely outcomes for
each of the pending points and calculates the acquisition
functions based on the all possible outcomes. This method was
used to drive the direction of our experiments and one batch of
points was chosen and evaluated in each round and the result was

given to the algorithm to generate the next batch of points to be
evaluated. It is noteworthy that in the experimental setting and
when the evaluations are done using parallel experimentation, the
pending points are updated at the same time in subsequent
batches and not one by one.

If there was no error in the experiments, which is the case for
evaluation of mathematical functions, the confidence level around
the points that are already evaluated would be very high.
However, since the result of all experiments contain some error
and is far from perfect mathematical calculations, the confidence
in the results was adjusted so the program expects an error in the
evaluations and adjusts the mean and variance for all the points
accordingly. The other aspects of this optimization algorithm
including the covariance functions and hyperparameters of the
GP are explained in details by Sneok and coworkers26.

Evaluation of the Bayesian optimization algorithm. To illus-
trate Bayesian optimization with GP, we defined a single variable
function and tried to find the maximum value by sequential
sampling (Fig. 2). The function was deliberately chosen to have
multiple peaks and local optima (dashed curve in Fig. 2) to test
whether the optimization algorithm can indeed find the global
maximum. The algorithm was able to find the maximum and the
exploration and exploitation trade-off is illustrated by the sam-
pling order depicted in the figure. The more points evaluated by
the algorithm, the closer the algorithm became to the maximum
as shown in Fig. 2b.

We next sought to illustrate the optimization method with a
similar 3-variable function with three inputs and one output to
simulate a similar multi-dimensional optimization problem. It is
noteworthy that Bayesian optimization has been used in
numerous applications33–37 and the purpose of this simulation
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is testing the algorithm on a simple but similar setting. The search
perimeter was set to be 1–24 for each of the inputs and
the maximum of the function was set to be 9 (y= f(x1, x2, x3) | xi
ɛ {1, 2,…, 24}, fmax= 9). The Bayesian optimization algorithm
was able to find the maximum value of this function by only
evaluating 12 points out of all possible 243= 13,824 points. These

12 evaluations were the result of 12 iterations of learning and
testing, with each evaluation being followed by a learn step that
produced the next point to evaluate. We then sought to compare
this optimization strategy with baseline approach where
randomly sampled points are evaluated and all of these points
are used to train an Exterior Derivative Estimation (EDE)-based
regression model described in previous publications14,38. We
found that although the EDE approach shows impressive
predictive capability, especially given that all the data have been
acquired at once and not through iterative sampling, even after
sampling 192 random points, the maximum could not be found
(Supplementary Table 1).

We then tested the Bayesian optimization method by running
multiple simulations with different conditions. First, to see if the
algorithm can find the maximum of other functions than the one
tested in the previous section, we generated 100 random Gaussian
mixture models and found the maximum for all of them using
this algorithm. On average, it took the algorithm 9.82 and 7.93
evaluations to find the maximum and 95% of the maximum,
respectively. To test the effect of error on the algorithm, we
randomly picked one of these 100 Gaussian mixture models and
attempted to find the maximum while adding 0%, 10% and 20%
error rate, the upper bound of most analytical methods, to the
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Table 1 Effect of error on the optimization

Points
Before Max

Points
Before 95%

Percentage
Max Found

Percentage
95% of
Max Found

Error

7.67 6.48 100% 100% 0%
57.23 22.66 100% 100% 10%
137.41 57.03 82% 100% 20%

Note: Higher error in evaluation of the objective function significantly impacts the performance
of the maximization algorithm. Points Before Max represents the number of evaluations before
maximum is reached, on average across 100 simulations, and Points Before 95% represents the
average number of evaluations needed before reaching a point that is at least 95% of the
maximum. Percentage Max Found and Percentage 95% of Max Found indicate how often,
across the 100 simulations, the optimizer found the global maximum or a point that is at least
95% of the maximum. Finding the absolute maximum becomes increasingly difficult as the
difference between points gets increasingly less distinguishable with higher error rate. Source
data are provided as a Source Data file
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output value of the function evaluation to better simulate the real
experimental setup. We observed that the algorithm is still able to
find the maximum of the function in most runs, but the number
of evaluations in each run was significantly increased and in the
case with 20% error, it could not find the maximum for 18% of
the cases even after 400 evaluations. However, the algorithm
could find 95% of the maximum in all cases (Table 1). This shows
that, as expected, error makes the optimization more difficult, but
Bayesian optimization algorithm can adjust for it and still find the
maximum for most cases. It is noteworthy that finding the
maximum gets increasingly difficult with higher error rate. Other
than the fact that low-quality data, as expected, reduce the
predictive power of the model, with higher error rate, the
difference between points closest to the maximum becomes
indistinguishable.

Lastly, we set to optimize the number of points evaluated in
each round, with a trade-off between the experimental cost and
time: as the size of each batch increases, the cost of experiment
increases as well, however, the number of total rounds of
experiment, hence the time spent on the entire project decreases.
The batch sizes are also constrained by experimental conditions
especially given the standard 96-well format for high-throughput
biological experiments. A few batch sizes were simulated on the
test model described above while including 10% error. It was
found that batch sizes larger than 46 did not significantly decrease
the number of rounds in the given 4-D optimization scheme
(Supplementary Table 2) and 46 was chosen as the batch size for
pathway optimization experiments in this work.

Automated optimization of the lycopene biosynthetic pathway.
After finalizing the predictive model and acquisition policy, we
chose optimization of the lycopene biosynthetic pathway as a
model system. One of the reasons for the low productivity and
yield of a biosynthetic pathway is flux imbalance39–41 where
suboptimal reactions rates result in accumulation or depletion of
the intermediates molecules in the reaction. This is especially
important in pathways with multiple reactions where the intricate
balance of each step of the pathway can be difficult to find. Fine-
tuning the flux of each step in a pathway and its optimization has
been shown to be a very effective strategy for increasing the total
flux in a variety of different cases42–45. The abstraction of this
problem can be represented by an expression–production land-
scape where the maximum flux is achieved by a certain expres-
sion level of each of the genes in the pathway. We should then
design an experimental setup where we can tune the expression of
the genes in the pathway (inputs of the function) and define the
output that we want to maximize. We should then try different

expression levels as inputs and get lycopene production as output
and find the input that corresponds to the highest output.

To perform the expression tuning for pathway optimization
and generating the inputs, a set of regulatory elements must be
developed to control the expression level of the enzymes in the
pathway of interest. Relying on previously published work, we
mutated a region in T7 promoter that has been attributed to its
strength46,47 to construct 12 promoters with distinct expression
levels. We then designed and tested two Ribosome Binding Sites
(RBS) using the RBS library calculator40,45 with vastly different
strengths. The resulting T7p-RBS combination resulted in 24
distinct expression levels (Supplementary Fig. 2) with ~1000-fold
dynamic range. To investigate whether the expression level trend
measured using eGFP translates to the trend with the crtE, crtB,
and crtI genes downstream of the RBS, these genes were fused to
eGFP and for each of the genes, four promoter/RBS combinations
from four distinct combinations of weak/strong promoter/RBS,
each randomly picked from one quartile or expression level
strength, were compared and the same general expression trend
was observed (Supplementary Fig. 3).

The pathway optimization workflow was implemented using
iBioFAB7 which has been used for high-throughput TALEN
synthesis48 and automated yeast genome engineering49. By
harnessing the power of iBioFAB as well as Bayesian optimiza-
tion, all aspects of the DBTL cycle were automated. In each
round, the Bayesian optimization algorithm chose 46 points to be
evaluated (the number being chosen based on tests reported
above) and gave them to the iBioFAB scheduling software. As a
control and accounting for any variations between different
batches, one of the chosen points was always the middle point
(12, 12, 12). The software then pipetted the correct parts to be
assembled from the parts library and assembled the plasmids
using Golden Gate assembly. The lycopene production for the
points was then measured in four biological replicates and the
mean values of the results were given back to the algorithm to
calculate the next points to be evaluated. The Bayesian
optimization algorithm starts by uniformly exploring the entire
landscape (Fig. 3a) and gets less uniform in the later rounds
(Fig. 3b, c) where more information is available about the
landscape, prompting exploration of specific regions. In round 2,
there is still some exploration while the points in the third round
have almost converged to one specific region which is believed to
yield the highest lycopene production.

The distributions of lycopene production among points
evaluated in each round are compared to each other in Fig. 4,
and it is observed that the later rounds of pathway optimization
have higher average lycopene production and higher maximum
production which shows the effectiveness of the Bayesian
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optimization algorithm in finding better points (i.e., mutants) in
each subsequent round. To better compare the Bayesian
optimization algorithm with traditional random library screening,
a random library was constructed and 46 (same number as the
number of points in each round) and 136 (same number as the
number of points in all three rounds) points were randomly
picked and lycopene production was measured, and the
production distributions of these two collections are also shown
in Fig. 4. The average and maximum of lycopene titer found by
random screening are 1.43 and 1.93 times less than those found
from the third round of pathway optimization. Even by
evaluating 136 random points, the maximum of lycopene titer
found was 1.77 times lower than the maximum from the third
round.

To better compare random sampling with Bayesian optimiza-
tion and to more reliably represent the maximum found by
random sampling, a distribution model was constructed based on
the 136 randomly tested points. First, the average and standard
deviation for the experimental data were calculated and used to
generate a normal distribution. A total of 136 points were
randomly selected from this distribution and the maximum was
recorded. This was repeated 1000 times and the distribution
among maxima is shown in Supplementary Fig. 4. The average
and standard deviation of the 1000 maxima dataset was found to
be 4.81 and 0.43, respectively, therefore the expected outcome of
the best mutant from 136-point random sampling is 4.81 ± 0.43.
This simulation is far from perfect because a normal distribution
is not necessarily the best representation of the landscape, and
because metabolic burden may have reduced the average
production amount of randomly selected mutants. Nevertheless,
it provides a useful baseline for comparison. The maximum of the
136 points tested in our experiment was 5.12, within the expected
outcome calculated. This range is well below 9.07, the best mutant
found using the Bayesian optimization method.

The best lycopene producers of each round were also isolated
and characterized in test tubes, and lycopene production was
quantified using the traditional acetone extraction method50. The
pathway with the medium-level expression for all genes was also
chosen as the control, and the lycopene production levels for all
these four samples were analyzed in one batch with four

biological replicates and compared to the control (Supplementary
Fig. 5). It was observed that the best combination in each round
has increased significantly and the best overall lycopene
producing strain is eight times better than the control.

Discussion
In this work, we presented a fully automated algorithm-driven
optimization platform for biosystems design where the machine
performs all the steps in the optimization process. iBioFAB was
integrated with the machine learning algorithm where after the
initial design and setup, the algorithm decides what experiments
to perform, the robot performs the experiments and returns the
data to the algorithm and it will then decide the next point to be
evaluated. Machine learning enables exploration of large dimen-
sional optimization problems whereas our intuition is mostly
limited to three dimensions. Particularly, machine learning
enables faster and more targeted optimization by only focusing
on areas of high interest and uncertainty, deals with the experi-
mental data by keeping the uncertainty of experiments into
account and actively tries to reduce the number of experiments
and the cost. BioAutomata is less biased, can process high-
dimensional data, makes fewer mistakes and can find the opti-
mum with very few evaluations.

To demonstrate one of BioAutomata’s applications and as a
proof of concept, we set to optimize the flux of the lycopene
biosynthetic pathway. We were able to tune the gene expression
of this 3-gene pathway to find the optimum expression for the
most lycopene production by evaluating <1% of all 13,824 pos-
sibilities. We also compared this optimization scheme with
another previously reported regression model as well as random
sampling and found it to be superior to both in performance. The
best mutant found using the BioAutomata produced 1.77-fold
higher lycopene titer than the best mutant found using random
sampling and simulation showed that the number of evaluations
was at least eight times less than the regression-based optimiza-
tion scheme. The optimization performed here was focused on
the intrinsic parameters of the pathway. Through optimization of
extrinsic parameters, such as flux control by deleting genes that
draw from the pathway or overexpressing genes that feed into the
pathway, engineering of the central metabolism, strain optimi-
zation or fermentation optimization, higher titers of lycopene
expression have been reported in the literature23.

The lycopene biosynthetic pathway was specifically chosen in
this experiment due to its straightforward methods of extraction
and quantification that facilitated high-throughput execution
using the automated biofoundry at the time. Potential challenges
of a universal application of BioAutomata for pathway optimi-
zation include extraction methods that are difficult to perform on
an automated platform, or analytical/quantification methods that
require equipment more complex than a plate reader, such as Gas
Chromatography-Mass Spectrometry (GC-MS) or Liquid
Chromatography-Mass Spectrometry (LC-MS) instruments.
These challenges can be overcome, but a larger-scale and
sophisticated biofoundry must be constructed to integrate these
instruments. It is also noteworthy that the promoter character-
ization in this work was performed with a green fluorescent
protein (GFP) gene and not the lycopene biosynthetic genes, and
although this assay is a widely used method for promoter/RBS
characterization14,44,45,47,51, we did not measure the protein
expression level of the crtE, crtB and crtI genes in the lycopene
biosynthetic pathway which would have resulted in a more
accurate mapping of the promoter/RBS sequence and expression
level.

Although the algorithm is especially powerful when used in
combination with a fully automated system like iBioFAB, it can
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Fig. 4 Lycopene production in different rounds of pathway optimization and
random screening. The average and maximum points have increased after
each round of pathway optimization. Moreover, although the average and
maximum of evaluating 46 and 136 random points are a little more than the
uniform distribution in round 1, they are significantly lower than the points
picked by the algorithm in the subsequent rounds. The boxes of the plots
contain data within the interquartile range (IQR), while whiskers spread
from the boxes to 1.5 times IQR. The center line in the boxes is the median
of the data and points above the whiskers are values which are higher than
1.5 times IQR above the third quartile. n= 46, 45, 45, 46 and 136 for each
plot, respectively. Source data are provided as a Source Data file
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be easily adopted for use in semi-automated or manual settings
where reducing the number of evaluations is even more impor-
tant due to the higher experimental cost. Moreover, other models
and optimization algorithms are available and GP was chosen
mainly due to its successful implementation in biological
systems15,16. An area of possible improvement is the initial guess
of the landscape for optimization. Here, we did not make any
initial assumptions about the landscape, however, using the
trained model for one system as the starting point for a similar
system has been shown to be a powerful method and this edu-
cated guess can potentially result in reducing the number of
evaluations to find the maximum52. For instance, the trained
posterior on a 3-gene pathway can be used as the starting point
for optimizing the same pathway with additional genes to
optimize.

This approach and the BioAutomata can be used for other
black-box optimization problems where the evaluations are noisy
and expensive and are not limited to pathway optimization. One
conceivable example can be protein engineering where different
changes to the protein sequence can be made using approaches
described by Romero and co-workers15,16 or using CRISPR-based
in vivo point mutation and modification tools53 and the optimal
change is found using a similar approach. This optimization
workflow can also be used in other areas from buffer and media
optimization to genome engineering in search for desired phe-
notypes. Given the highly efficient nature of a 4-piece Golden
Gate assembly, it was assumed that all the reactions worked,
which may not be a valid assumption in more complex assemblies
or optimization systems and an in-line quality control step and an
outlier detection method should be added for such complex and
error prone systems. We also assumed a uniform noise model in
our Bayesian optimization approach for the sake of simplicity.
Although this noise model does not match the model used in
typical GP regression, we demonstrated that this GP-based
Bayesian optimization method was able to operate effectively even
with some modest model mismatch. Future applications where
variability of measurement noise across experiments is antici-
pated to be a major concern may find it useful to use hetero-
skedastic noise models54.

The prospect of autonomous algorithm-driven robotic systems
for engineering biology has many promises and challenges. On
one hand, human supervision is crucial to maintain ethical issues
surrounding the autonomous engineering of life and keeping a
check on the extent of what the machine does and achieves. On
the other hand, an autonomous algorithm-driven robotic system,
which is connected to the web of knowledge, can learn from the
published information in real-time and publish the results of its
experiments in real-time as well. Other than the obvious advan-
tages of reducing the cost and increasing the accuracy of research,
the connected web of BioAutomata can significantly reduce the
time from performing experiments to publishing the data and
using it by others. BioAutomata will greatly benefit from stan-
dardization of data and following standards set by databases like
Braunschweig Enzyme Database (BRENDA), Kyoto Encyclopedia
of Genes and Genomes (KEGG), Protein Data Bank (PDB) and
Synthetic Biology Open Language (SBOL)55–57.

Methods
Strains cultivation. DH5α and BL21(DE3) Escherichia coli (New England Biolabs,
Ipswich, MA) cells were used for making chemically competent cells using Mix &
Go E. coli Transformation Kit (Zymo Research, Irvine, CA) for plasmid amplifi-
cation and lycopene production, respectively. E. coli cells were grown in Luria Broth
(LB) medium (Fisher Scientific, Pittsburgh, PA) supplemented with 50 μg/mL
spectinomycin (Spec) or 25 μg/mL kanamycin (Kan) to maintain the plasmid or
0.5mM isopropyl-β-D-thiogalactoside (IPTG) for induction as appropriate. Anti-
biotics and IPTG were purchased from Gold Biotechnology (St. Louis, MO). DH5α
E. coli cells and BL21(DE3) starter cell cultures were grown at 37 °C, but BL21(DE3)

cell cultures for lycopene production were grown at 28 °C, the optimum growth
temperature for lycopene production22,58. The dry cell weight (DCW) was calcu-
lated from the OD600 using dcw/OD of 0.36 as the conversion rate59.

DNA manipulation and plasmid construction. To generate the T7 promoter
(T7p) variants with different expression levels, the region attributed to its
strength46 was mutated by using T7p-mut-3N and T7p-mut-6N primers when
amplifying eGFP gene with T7 terminator (T7t) primers. The resulting T7p-mut-
eGFP-T7t DNA fragment was cloned into the pET26 (b) backbone using restric-
tion digestion ligation. The resulting library was then transformed into BL21(DE3)
competent cells and 192 colonies were randomly picked and grown overnight at 37 °C.
The next day, 900 μL of LB+ Kan was inoculated with 10 μL of the seed culture
and was incubated at 37 °C and 250 rpm. After 3 h, 100 μL of LB+ Kan with 5 mM
IPTG was added to the cell culture and it was incubated at 28 °C. After 4 h, eGFP
fluorescence (488 nm excitation/509 nm emission), as well as OD600, were mea-
sured and 24 different promoters were chosen for further characterization. Two
RBS sequences were designed using RBS library calculator45 for translation reg-
ulation and were combined with the identified promoters to evaluate their strength.
These promoters were then used to clone the T7-mut-RBS-eGFP-T7t expression
cassette. Twelve of these promoters that exhibited a wide range of strengths were
chosen as a promoter library for transcription regulation. To test the expression
level of the lycopene genes, the crtE, crtB and crtI genes were PCR amplified and
fused to eGFP gene and different promoter/RBS combinations using Gibson
Assembly. Fusion expression of crt genes and eGFP was performed with a flexible
linker (GGATCCGCTGGCTCCGCTGCTGGTTCTGGCGAATTC) that was
optimized for GFP fusion expression in E. coli60. The T7_mut_RBS(weak/strong)
_Crt(E/B/I)_eGFP expression cassettes were then expressed in four biological
replicates following the same protocol as above and the fluorescence was measured.

QIAGEN Plasmid Mini Kit (QIAGEN, Valencia, CA) was used to isolate
plasmids from E. coli cells and Zymoclean Gel DNA Recovery Kit (Zymo Research,
Irvine, CA) was used for gel purification. All restriction enzymes, Q5 polymerase,
Gibson Assembly master mix components and the E. coli shuttle vectors were
purchased from New England Biolabs (Ipswich, MA) and all chemicals were
purchased from Sigma-Aldrich (St. Louis, MO) unless otherwise specified. All the
primers and plasmids used in this study are listed in Supplementary Data 1 and 2,
respectively. The GenBank files with the annotated map of DNA parts as well as the
final constructs are included in the Supplementary Information. The strains and
plasmids are available through the standard material transfer agreement from the
University of Illinois.

Golden Gate assembly. Golden Gate assembly method was used to assemble the
lycopene pathway with different expression level of each gene. First, the pSPE
plasmid was digested with AFIII and XbaI restriction enzymes. After digestion, two
complementary oligos containing optimized Golden Gate overhangs48,61, as well as
a T7 promoter, terminator and EcoRV recognition site were annealed, phos-
phorylated and cloned between the cut sites. Phosphorylation was performed using
T4 Polynucleotide Kinase (New England Biolabs, Ipswich, MA), following manu-
facturer’s instructions. The plasmid was then amplified, digested with EcoRV and
each of the crtE, crtB and crtI genes with different RBS/T7 promoter strengths were
cloned using Gibson assembly method62 with T7 promoter and terminator as the
homology arms by commercial NEBuilder HiFi DNA Assembly Cloning Kit (New
England BioLabs, Ipswich, MA) as shown in Supplementary Data 15–18. To create
the insert for cloning in the helper plasmids, RBS was added to each of the crtE,
crtB and crtI genes using PCR amplification and T7 promoter was added in another
step of PCR reaction. The 72 assembled plasmids were then amplified in E. coli and
the inserts were confirmed by PCR amplification. The pET26b plasmid was
obtained from EMD Millipore (Billerica, MA) and used as the receiver for the
lycopene biosynthetic pathway. The Golden Gate linkers as well as the BsaI sites
were placed on two complementary oligonucleotides resulting a short DNA frag-
ment with sticky end after annealing and phosporylation. pET26b plasmid was
digested with XhoI and SphI restriction enzymes and ligated to the DNA fragment
containing overhangs to construct the backbone for the lycopene production
pathway.

The 73 assembled parts (72 inserts and 1 backbone) were amplified in E. coli
and purified. The concentration of the backbone was set to 30 ng/μL and the
concentration of the rest of the parts was adjusted to the same molar concentration.
Each 20 μL Golden Gate reaction consists of 100 ng of the backbone, equimolar
amounts of crtE, crtB and crtI, 10 units of BsaI restriction enzyme, 100 units of T4
DNA ligase, 2 μL of CutSmart buffer and 0.75 μL of adenosine triphosphate (ATP)
(25 mM). After the Golden Gate reaction, 5 μL of nuclease master mix consisting of
2.5 units of BsaI, 2.5 units of plasmid safe nuclease (Illumina, San Diego, CA),
0.5 μL of CutSmart buffer and 1 μL of ATP (25 mM)) was added to the reaction to
linearize any undigested backbone and digest all the linear parts from the mixture.
The above Golden Gate and plasmid safe master mix protocol have been adopted
from our previous work48 with some modifications but the thermocycling protocol
has remained unchanged. To ensure high-efficiency assemblies, optimized Golden
Gate linkers for this experiment were chosen from a highly efficient set of linkers63.
To test the efficiency and fidelity of Golden Gate assembly, 24 reactions using each
of the 72 parts at least once were performed and four colonies from transformants
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of each reaction were selected and all the assemblies were confirmed to be correct.
A sample of these assembly products is shown in Supplementary Data 15.

Lycopene extraction and quantification. Lycopene can be extracted by organic
solvents and quantified calorimetrically by measuring the absorbance at around
470 nm64. This assay is highly sensitive and has been reported to quantify the
lycopene amount with sub-milligram accuracy65,66. The most common lycopene
extraction and quantification method involves resuspension of the cells in acetone
followed by incubation in acetone50,67,68. Since acetone is extremely volatile and
dissolves the glue seals and some of the other consumables, it is not ideal for use in
the automation system. Therefore, four other organic solvents, some of them were
reported in previous publications22,69, were tested for efficacy in lycopene extrac-
tion. The most effective extraction solvent that is compatible with high-throughput
systems was found to be dimethyl sulfoxide (DMSO). E. coli cells were spun down
and the supernatant was removed. The cells were then resuspended in 300 μL of
DMSO and were incubated for 30 min at 37 °C at 250 rpm. After the incubation,
the cell–DMSO mixture was spun down at 3000 rpm for 10 min and 200 μL of the
supernatant was removed and the absorbance at 472 nm was measured and cor-
related to lycopene production.

Full automation of workflow. iBioFAB7 was used to automate the assembly of
DNA parts for the lycopene pathway, transformation, cell cultivation and lycopene
extraction. The overall workflow of the experiments is shown in Fig. 5. First, the
parts to be assembled are generated by the machine learning algorithm and given to
the previously described48 script generator to generate the pipetting routs for the
Tecan liquid handler. The DNA mixture plates were then spun down, mixed with
Golden Gate master mix and moved to thermocycler for the Golden Gate reaction.
After 30 cycles of digestion and ligation in Golden Gate assembly, Plasmid Safe
master mix was added to the mix followed by 30 min of digestion with BsaI and
plasmid safe nuclease. The plasmid-safe-treated Golden Gate assembly product was
then transformed in BL21(DE3) E. coli competent cells and plated on LB agar
plates and moved off the deck for incubation. The plates were incubated at 37 °C
overnight and four single colonies were picked from each of the plates using
Pickolo colony-picker (SciRobotics, Israel) and inoculated in 1 mL of LB+ Kan
media. The seed culture was grown overnight and 50 μL of the culture was added to
800 μL of fresh LB+ Kan media and incubated at 37 °C. After 2 h, 200 μL of LB+
Kan+ 2.5 mM IPTG was added to the culture and the induced cells were incubated
at 28 °C for 24 h for maximal production22. OD600 was measured and the cells were
then pelleted and resuspended in DMSO and incubated at 37 °C for 30 min for
lycopene quantification. To minimize the possible variations between the different
round of optimization, the point with the median expression level of all three genes
(12, 12, 12) was repeated in the second and third rounds of optimization. Two
other controls for OD (no inoculation and growth) and lycopene production
(empty plasmid) in four replicates were included in all three rounds. Therefore, the
total number of new points in the first, second and third rounds were 46, 45
and 45, respectively, and each round consisted of two full 96-well plates. To test
the efficiency of the assembly, 24 of the assembled combinations were picked at

random and were verified with restriction enzyme digestion and all 24 proved to
be correct as shown in Supplementary Fig. 6. Three of these 24 plasmids were also
sequenced, and the result matched the expected sequence (Supplementary Data 3–14).

Reporting Summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Data supporting the findings of this work are available within the paper and its
Supplementary Information files. A reporting summary for this article is available as a
Supplementary Information file. The datasets generated and analyzed during the current
study are available from the corresponding author upon request. The source data
underlying Figs. 3 and 4, Supplementary Figs. 2–5, Table 1, as well as Supplementary
Tables 1 and 2 are provided as a Source Data file.

Code availability
The source code for Bayesian Optimization was obtained from https://github.com/
JasperSnoek/spearmint. The code for Exterior Derivative Estimation was obtained from
Aswani and coworkers38. The pipetting worklist was generated using the program
previously described by Chao and coworkers48, while the code for running the iBioFAB
platform was compiled on the iScheduler scheduling software48. All the abovementioned
codes and the codes interacting with the Spearmint library are included in the Github:
https://github.com/hamedir2/BayesianOptimization. All these pieces of code are
provided under the MIT License.
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