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Theory of correlated insulating behaviour and
spin-triplet superconductivity in twisted double
bilayer graphene
Jong Yeon Lee1,2, Eslam Khalaf1,2, Shang Liu1, Xiaomeng Liu1, Zeyu Hao1, Philip Kim1 & Ashvin Vishwanath1*

Two graphene monolayers twisted by a small magic angle exhibit nearly flat bands, leading to

correlated electronic states. Here we study a related but different system with reduced

symmetry - twisted double bilayer graphene (TDBG), consisting of two Bernal stacked bilayer

graphenes, twisted with respect to one another. Unlike the monolayer case, we show that

isolated flat bands only appear on application of a vertical displacement field. We construct a

phase diagram as a function of twist angle and displacement field, incorporating interactions

via a Hartree-Fock approximation. At half-filling, ferromagnetic insulators are stabilized with

valley Chern number Cv ¼ ± 2. Upon doping, ferromagnetic fluctuations are argued to lead to

spin-triplet superconductivity from pairing between opposite valleys. We highlight a novel

orbital effect arising from in-plane fields plays an important role in interpreting experiments.

Combined with recent experimental findings, our results establish TDBG as a tunable

platform to realize rare phases in conventional solids.
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The recent discovery of correlated insulating states and
superconductivity in twisted bilayer graphene (TBG)1–4

has opened a new window to exploring strong correlation
effects in systems whose doping can be easily tuned, enabling the
exploration of a rich range of interaction-driven phenomena.
Although the underlying reason for the correlated physics is
understood to arise from a relatively narrow electronic bandwidth
induced by the long wavelength Moiré pattern5,6, several details,
including the symmetry breaking within the insulating phase and
the nature and mechanism of pairing in the neighboring super-
conductor, remain under debate7–19. One of the difficulties in
addressing these questions arises from the complexity of the
theoretical treatment of TBG, which involves at least a pair of
narrow bands per spin per valley with a symmetry-protected
band touching, leading to eight bands in total. On top of that,
the limited tunability of the band structure makes it experimen-
tally difficult to explore the dependence of different phases on
microscopic parameters.

Motivated by recent experimental report20, we study a related
system—twisted double-bilayer graphene (TDBG)—which con-
sists of a pair of bilayer-graphene sheets, twisted with respect to
one another with AB–AB-stacking structure. Due to the absence
of C2 rotation symmetry, TDBG has a lower symmetry compared
with TBG, which simplifies the problem by removing the band
touching at the Dirac points, leading to a low energy effective
description involving one rather than two narrow bands per spin
and valley. Moreover, the band separation can be controlled by
applying a vertical displacement field enabling the exploration of
different regimes of band isolation and bandwidth within the
same device.

We identify three main ingredients necessary to explain the
emergence of insulating and superconducting behavior in TDBG.
First, we perform an accurate calculation of the single-particle
band structure to identify ranges of displacement field and twist
angle for which a single band is isolated and relatively flat. We
show that lattice relaxation, known to be important in TBG21,22,
as well as several other effects such as trigonal warping, which are
absent in TBG, significantly influence the band structure in
TDBG, in excellent agreement with experiments. Moreover, we
identify a hitherto-neglected in-plane orbital effect which is used
to explain the experimentally observed deviation of the in-plane g
factor from 220, as well as the effect of in-plane field on super-
conducting Tc.

Second, we address the key question of the nature of the
interaction-driven insulating state. The similarity between the
phase diagram of TBG to that of cuprates was invoked to argue
that Mott physics is the underlying mechanism responsible for
the correlated insulator1,7,12. On the other hand, a different route
to correlated insulators is observed in graphene quantum-Hall
systems, for instance, when the spin and valley degeneracy of the
Landau levels are spontaneously broken by interactions23. This
usually leads to ferromagnetic insulators, which are otherwise rare
in correlated solids where antiferromagnetic order is the norm.
For similar reasons, in the TDBG with nonzero valley Chern
number, ferromagnetism may be preferred24 at integer fillings.
The situation here is reminiscent of strained graphene, where a
suitably chosen strain profile leads to Landau levels arising from
the opposite strain magnetic fields applied on the two valleys25.
At partial fillings that are integers, ferromagnetic ground states
were obtained with repulsive interactions26, and we show that a
similar scenario is likely to occur here in TDBG. Indeed a related
ground state with spontaneous quantum-Hall response, although
metallic, was observed in the twisted monolayer-monolayer gra-
phene (TBG) with C2-breaking substrate potentials13,19,24,27–29.

Third, we investigate the nature of the superconducting phase
by highlighting that the valley degree of freedom, which behaves

as a pseudospin, allows for exotic pairing possibilities which are
relatively rare in other materials. In particular, we show that
spin triplet with valley-singlet pairing, which is momentum-
independent within each valley, is favored. We investigate the
consequences of such scenario and show it can be used to explain
the measured dependence of Tc on in-plane field20.

Results
Single-particle physics. We consider a system consisting of two
AB-stacked graphene bilayers twisted relative to AB–AB stacking
by a small angle θ, illustrated in Fig. 1. For a detailed discussion
on the Hamiltonian and model parameters, see the Methods
section. The bottom layer of the top BLG and the top layer of the
bottom BLG are coupled via Moiré hopping between AA and
AB sites, parametrized by ðw0;w1Þ21,22. In the original
Bistritzer–Macdonald model, w0 and w1 are taken to be equal30.
However, in a realistic twisted model, the ratio r � w0=w1 is
smaller than one due to the lattice relaxation which expands
(shrinks) AB (AA) regions. In TBG, r is taken to be ~0.75 for the
first magic angle21,22. Here, we similarly include lattice relaxa-
tions by taking r to be <1. This is crucial for the existence of a gap
between first and second conduction (valence) bands in TDBG
which is necessary to explain the band insulator at ν ¼ ± 4 filling.
In this work, we take ðw0; w1Þ ¼ ð88; 100ÞmeV corresponding to
r ¼ 0:88. For different values of ðw0; w1Þ, we obtained qualita-
tively similar features (Methods).

Unlike TBG, a realistic description of TDBG does not exhibit
magic-angle physics whose origin is the vicinity to a chiral
symmetric model with perfectly flat bands at specific angles31,32.
In the quadratic approximation of the bilayer-graphene disper-
sion, the first conduction and valence bands in TDBG become
almost perfectly flat at the angle θ � 1:0524. However, once
trigonal warping (γ3) and particle–hole asymmetry (γ4) terms are
included, the flat bands acquire a significant dispersion and
become overlapped with each other (Fig. 2a, b). Theses bands can
only be separated by applying a strong enough gate voltage
between top and bottom layers (Fig. 2c). Using numerical
simulations, we identify the parameter space of twist angle θ and
applied voltage U where the first conduction band is isolated
(Fig. 3a). On the other hand, we find that there is barely any
regime where the first valence band is isolated (Fig. 3c). Such a
particle–hole asymmetry in the band structure is originated from
γ4 and Δ terms. The results are consistent with the experimental
findings20, showing that the system at charge neutrality remains
metallic unless a rather large vertical electric field is applied.
Furthermore, a correlated insulating phase is only observed on
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Fig. 1 Twisted double BLG model (AB–AB stacking) with the gating voltage
U across the system. Throughout this work, we assume the voltage drop
across the layers is uniform, Ui � Uiþ1 ¼ U=3.
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electron-doping side, consistent with the theoretically expected
particle–hole asymmetry. Note that the bandwidth is not as flat as
that of magic-angle TBG. However, the bandwidth is still small
compared with the interaction scale which implies that strongly
correlated physics can still arise. Indeed, there is some debate
regarding the bandwidth of magic-angle TBG itself, with reported
bandwidths ranging from 10 to 40 meV33.

Another crucial difference compared with TBG is the absence
of twofold rotational symmetry, which protects the Dirac points
in TBG. As a result, the physics of TDBG is controlled by a single
narrow band (per spin per valley) rather than two as in TBG. The
TDBG Hamiltonian has the following symmetries (i) threefold
rotation symmetry C3, (ii) time-reversal symmetry T , and, (iii)
mirror reflection about the x-axis My , which only exists in the
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Fig. 3 Summary of single-particle calculations of TDBG. a Isolation region for the first conduction band (colored) with the bandwith indicated by the color.
We observe two seperate isolation regions for θ smaller or larger than 1:1�. The former is not very robust, and is sensitive to fine-tuning of parameters
whereas the latter is very robust and is associated with a valley Chern number of 2 (See b). b The Chern number of the first conduction band from Kþ
valley. Note, the Chern number is defined as long as a direct bandgap is present. c A schematic plot for the insulating (black) regions and the first
conduction/valence band isolated region (red/blue) in the TDBG at θ ¼ 1:33�. The red dot is charge neutrality point (CNP). In the shaded region, strongly
correlated physics is expected near integer fillings. Asymmetry between electron and hole dopings is predicted from the theory. d–g Color plots for g-factor
associated with orbital magnetic effects gxþðkÞ, g

y
þðkÞ, gzþðkÞ, and single-particle dispersion ξþðkÞ over the Moiré Brillouin zone for the first conduction band

at ðθ;UÞ ¼ ð1:33�; 60 meVÞ, where the band is isolated. gx;y;zðkÞ are in the unit of μB, and ξðkÞ is in the unit of meV. Both gx and gy vanish at high symmetric
points Γ, K1, and K2.
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absence of vertical electric field, and (iv) SU(2) spin-rotation
symmetry. Finally, we assume that in the small angle limit, there
is valley-charge-conservation symmetry Uð1Þv, arising from the
decoupling of Moiré and atomic lattice-scale physics.

In addition, the conduction band within each valley carries a
nonzero Chern number. In ordinary condensed matter systems,
T -symmetry forbids the existence of Chern bands. However, in
Moiré systems, Chern bands carrying opposite Chern numbers for
opposite valleys can arise due to the valley decoupling. The overall
system still satisfies T -symmetry, which exchanges the two valleys.
Therefore, spontaneous valley polarization would lead to a Chern
band without explicitly breaking T -symmetry13,24,26,29. At U ¼ 0,
the reflection symmetry My enforces C ¼ 0 for both valleys. At
U ≠ 0, the conduction band develops a nonvanishing Chern
number computed numerically in Fig. 3c which is equal to ± 2 for
the parameter region corresponding to band isolation. The
evolution of Chern number as a function of U is further
confirmed using symmetry indicator (Methods). This can be also
understood from the well-known behavior of a AB-stacked bilayer
graphene under an electric field. Under the electric field, the
bilayer graphene becomes gapped and accumulates opposite Berry
curvatures at Kþ and K� valleys, which amounts to a Chern
number Cv ¼ ± 2 for each valley.34–37.

Finally, we discuss the effect of applied magnetic field which
influences the single-particle physics in two distinct ways. First, it
couples to the electron spin via Zeeman effect leading to the
splitting of bands with opposite spin by 2μBB. Second, it couples
to the electron orbital motion leading to modifications in the
band structure. For out-of-plane field, the orbital effect arises
from the magnetic field coupling to the planar motion of the
electron38,39. It leads to an energy correction of μBg

z
τðkÞBz , with a

k-dependent g-factor gzτðkÞ satisfying gz�τð�kÞ ¼ �gzτðkÞ due to
time-reversal symmetry (τ is a valley index). As shown in Fig. 3f,
gzτðkÞ can be much larger than the Zeeman effect. For in-plane
field, the orbital effect arises from coupling to the interlayer
motion of electrons. For an in-plane field B, we can choose the
gauge AðzÞ ¼ �z ´B which does not depend on x or y, thus
preserving the Moiré translation symmetry. The resulting
change in the hopping parameters is obtained by the Peierl’s
substitution, effectively providing an additional momentum shift
of � e

_
ðlþmÞd

2 ez ´B to the hopping connecting layers from l to m,
where d is the interlayer separation (see the Methods section).
This leads to an energy correction of the form μBðgxτðkÞBx þ
gyτðkÞByÞ to the leading order in B with gx;y�τð�kÞ ¼ �gx;yτ ðkÞ. The
orbital effect due to in-plane field amounts to a very small relative
momentum shift � eda

_ � 10�5. However, it cannot be neglected
since it is of the same order of magnitude as the Zeeman
effect, evFd

μB
� 1 (see Fig. 3d, e). In general, the in-plane orbital

contribution changes the band dispersion due to its k-depen-
dence, whereas the Zeeman effect shifts the entire band
uniformly. Moreover, it acts oppositely for different valleys.
These properties can be crucial in understanding the effect of in-
plane field on the insulating gap and the superconducting
temperature (see the Methods section and Supplementary
Note 6).

Correlated insulating states. In the band isolation regime, the
first conduction band carries a nonzero Chern number as shown
in Fig. 3a, b which prevents the existence of exponentially loca-
lized Wannier functions40. As a result, one cannot construct a
Hubbard model for the band unless valley symmetry is broken,
or the model is enlarged to include more bands so that the
net Chern number is zero. Instead of seeking a complicated real-
space description, we discuss the interaction effects in the

momentum space, as in the case of quantum-Hall ferromagnet-
ism. One major consequence of the absence of localized Wannier
orbitals is the inadequacy of the Mott picture, where the insu-
lating phase is driven by strong repulsion between localized
orbitals. Thus, we will use the terminology, correlated insulator to
refer to the interaction-driven insulating phase for the following
physics.

In order to uncover the nature of the possible correlated
insulating states at half and quarter-filling20, we perform a self-
consistent Hartree–Fock mean-field theory similar to the one
employed in ref. 8,24. Below, we sketch the derivation from the
microscopic theory, relegating most details to Supplementary
Notes 2 and 3. The interacting Hamiltonian in momentum space
is given by

Hint ¼
1

2 Vol

X
q

ρ̂ðqÞVðqÞρ̂ð�qÞ; ð1Þ

where VðqÞ is the Fourier-transformed screened Coulomb
interaction41,42. Since the screening coming from the distance
between the system and the gate is comparable with the Moiré
length scale, the screening length can be important for the
interaction effects. The density ρ̂ðqÞ consists of an intravalley part
ρþ � cy± c± and an intervalley part ρ� � cy± c�, where cy± is the
electron creation operator for K± valley. The latter contribution
arises from the small coupling between opposite valleys and gives
rise to an intervalley Hund’s coupling term.

The resulting Hamiltonian consists of two parts,
Hint ¼ H0 þHJ , where H0 contains the coupling between
intravalley densities ρþρþ, whereas HJ contains the coupling
between intervalley densities ρ�ρ�. Rough estimation for the
relative energy scales for H0 and HJ gives V0 � 35 meV and
J � 0:6 meV for the experimentally relevant regime. Although HJ
is significantly smaller than H0, it breaks the symmetry of the
model down from two independent SU(2) spin-rotation symme-
tries for each valley to a single SU(2). Thus, it can lift the
degeneracy between some symmetry breaking states which are
degenerate on the level of the H0. Indeed, we found that HJ favors
the spin alignment between opposite valleys and can be written in
the form of intervalley Hund’s coupling as in ref. 24.

Within the self-consistent Hartree–Fock mean-field theory, we
consider the order parameter defined as

hcyσ;τðkÞcσ 0;τ0 ðk0Þi ¼ Mστ;σ 0τ0 ðkÞδk;k0 : ð2Þ
For a gapped phase, matrix MðkÞ must be a projector, i.e.,
MðkÞ2 ¼ MðkÞ satisfying tr MðkÞ ¼ ν for all k. Given that there
are four flavors of fermions due to spin (σ) and valley (τ)
degeneracies, any possible order parameter M can be expanded in
terms of the generators of SU(4) σ i � τj, which can be grouped
based on their symmetry breaking into five categories: (i) fσ0τzg
only breaks T and corresponds to a valley-polarized (VP) state,
(ii) fσx;y;zτ0g breaks spin-rotation symmetry and correspond to a
spin-polarized (SP) state. (iii) fσx;y;zτzg breaks both spin rotation
and time-reversal (but preserve some combination of the two)
and corresponds to a spin-valley locked (SVL) state, (iv) fσ0τx;yg
breaks Uð1Þ valley-charge conservation and corresponds to an
intervalley coherent (IVC) state, and (v) fσx;y;zτx;yg breaks both
spin rotation and U(1)v valley-charge conservation, corresponds
to spin-IVC locked (SIVCL) state (see Table 1). We note that any
of these orders may break or preserve C3 symmetry depending on
its k dependence.

The results of the self-consistent Hartree–Fock calculation are
summarized in the following (Supplementary Note 3). Restricting
ourselves to translation-symmetric gapped states, we find there
are five options: SP, VP, SVL, IVC, and SIVCL at half-filling
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ν ¼ 2 and three options: spin-valley-polarized (SVP), spin-
polarized-IVC (SPIVC), and spin-valley-locked-IVC (SVLIVC)
at quarter-filling ν ¼ 1; 3, as in Table 1. By solving the
Hartree–Fock self-consistency condition, the ground-state energy
E and the correlation gap Δ are computed for different states
(Fig. 4a). Let us first consider what happens in the absence of
intervalley Hund’s coupling. In this case, we find that the SP and
SVL states at half-filling and similarly the SPIVC and SVLIVC
states at quarter-filling are exactly degenerate since they are
related by a spin rotation in one of the valleys. Similarly, due to
the enlarged symmetry of the mean-field Hamiltonian, the SP and
VP states and the IVC and SIVCL states have the same energy.
Thus, we only need to numerically investigate the competition
between SP and IVC at half-filling and SVP and SPIVC at
quarter-filling. The result of such numerical investigation is
shown in Fig. 4a, where we clearly see that SP has a lower energy
than that of the IVC in most of the parameter regime. Similar
results apply for the competition between SVP and SPIVC at
quarter-filling. The correlation-induced gap Δ for the SP state
in the band isolation region ranges between 4 and 8 meV
(see Fig. 4b).

To understand the reason why IVC order is energetically
unfavorable, we can employ the argument of ref. 29 as follows.
IVC order between two valleys with opposite Chern number C is
equivalent after a particle–hole transformation in one of the
valleys to superconducting pairing between bands with the same
Chern number i.e., a superconductor in a background magnetic
field. This means that the order parameter necessarily includes
jCj vortices within the Brillouin zone leading to increased energy.
A more detailed analytic treatment of the energy competition
between SP and IVC is provided in the Supplementary Note 4.

The inclusion of the effect of intervalley Hund’s coupling alters
the competition between the phases as follows. First, since the
term is ferromagnetic, it lowers the energy of the SP state,
favoring the SP state over the VP-state, which is in turn favored
over the SVL-state. Second, it lowers the energy of the filled bands
for the SP state at half-filling, thus increasing ΔSP. On the other
hand, it reduces the energy of some of the empty bands for the
VP-state, reducing ΔVP (see Fig. 4c, e). The Hund’s coupling term
similarly reduces ΔSVP at quarter-filling by lowering the energy of

one of the excited states (see Fig. 4d). We note here that the
reduction of the correlated gap at quarter-filling relative to that at
half-filling may explain why the former is more difficult to
observe experimentally compared with the latter and requires the
application of a magnetic field20.

In the presence of an in-plane field, the gap of the SP-phase at
half-filling is expected to grow with a slope consistent with the
Zeeman g ¼ 2 factor. However, the orbital effect discussed earlier
leads to a reduction in the effective g-factor by 20–50% depending
on the band structure details (Fig. 4e), which is in agreement with
the experimental data20. From the numerical calculation, we
confirmed that such a reduction in gap also depends on the in-
plane field direction, which exhibits threefold periodicity (see the
Methods section). Therefore, the orbital effect can be directly
verified in a rotating in-plane field setup, where we predict the
modulation of the g-factor with period 2π=3 in the angle.

Superconductivity. When the correlated insulator is doped
away from half-filling, a superconducting phase is observed
below 3.5 K20. Our proposed scenario for the observed super-
conductivity is illustrated in Fig. 5a, where pairing takes place
between time-reversal partners in opposite valley. Such an
intervalley pairing between time-reversal partners has also been
proposed43–45 and observed in transition metal dichalcogenides
(TMD)46. However, unlike in TMD, where strong spin–orbit
coupling implies a locking between spin and valley, here the
proposed pairing takes place between the electrons with the
same spin. To understand this, we first note that doping a spin-
polarized insulator is expected to give rise to a ferromagnetic
metal with spin-split Fermi surface. Similar to other ferro-
magnetic metals47–49, ferromagnetic spin fluctuations can act as
a pairing glue responsible for superconductivity50. This moti-
vates the following simplified Hamiltonian,

H ¼
X
k;τ;σ

cyσ;τ;kξσ;τ;kcσ;τ;k � g
X
q

Sq 	 S�q; ð3Þ

where the spin operator Saq ¼
P

k;τ;σ;σ 0c
y
σ;τ;kþqσ

a
σ;σ 0cσ 0;τ;k . This

Hamiltonian can be obtained within an RPA treatment by
identifying the ferromagnetic order as the leading instability in
the doped itinerant phase. The ferromagnetic susceptibility is
peaked at q ¼ 0, which justifies a k-independent coupling.

Next, we consider the simplest possible intervalley super-
conducting pairing function Δ, which is k-independent (s-wave)
within each valley. Note, however, that the overall orbital
symmetry incorporating both momentum and valley may still
be anti-symmetric, e.g., p-wave. For the proposed pairing, Δ is
proportional to τx or τy corresponding to valley triplet or singlet,
respectively. The overall antisymmetry of Δ implies that the
former scenario corresponds to a spin-singlet iσy , whereas the
latter corresponds to a spin triplet iσyd 	 σ. Here, d is the vector
which captures the direction of the spin state. To see which of
these is the dominant pairing channel, it is useful to decouple the
interaction in the pairing channel as

Hint ¼ �g
X
k;q

tr ðσΔkÞ 	 ðσTΔy
kþqÞ ð4Þ

We now assume k-independent Δ and decompose it into spin-
singlet/velly triplet Δs and spin triplet/valley-singlet Δt. We now
use

σ 	 ðΔt;sσ
TÞ ¼ λt;sΔt;s; ð5Þ

where λt ¼ 1 and λs ¼ �3. This means that the interaction is
repuslive in the singlet channel, and attractive in the triplet
channel making the latter the dominant pairing channel. A more

Table 1 Symmetry broken states and the remaining
symmetries for all possible translation-symmetric gapped
states at ν ¼ 1; 2; 3.

ν ¼ 2 Example of the state Symmetry

SP " Kþ
�� �� " K�

�� �
Uð1Þz, Uð1Þv,
T

VP " Kþ
�� �� # Kþ

�� �
SUð2Þ, T

SVL " Kþ
�� �� # K�

�� �
Uð1Þz, Uð1Þv,
T 0

IVC ð " Kþ
�� �þ eiθ " K�

�� �Þ � ð # Kþ
�� �þ eiθ # K�

�� �Þ SUð2Þ, T
SIVCL ð " Kþ

�� �þ eiθ # K�
�� �Þ � ð # Kþ

�� �þ eiθ " K�
�� �Þ Uð1Þz, Zxv

2 , T

ν ¼ 1; 3 Example of the state Symmetry

SVP " Kþ
�� �

Uð1Þz, Uð1Þv
SPIVC " Kþ

�� �þ eiθ " K�
�� �

Uð1Þz, T
SVLIVC " Kþ

�� �þ eiθ # K�
�� �

Zzv
2 , T 0

The similar table with the form of MðkÞ and symmetry generators is in the Supplementary
Table 1. Here, T is the spinless time-reversal T ¼ τxK squaring to þ1 whereas T 0 is the spinful
time-reversal T 0 ¼ iσyT squaring to �1 (with K denoting complex conjugation). Uð1Þθx; y; z ¼
eiθσx; y; z=2 denotes spin rotation around the x; y; z axis by an angle θ whereas Uð1Þθv ¼ eiθτz=2

denotes rotation in the valley x� y plane by an angle θ. Finally, Zz;v
2 is generated by the

combined rotation Uð1Þπz Uð1Þπv
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detailed discussion of these pairing channels within the linearized
BCS equation is provided in the Supplementary Note 5.

We highlight here that spin-triplet pairing is only known to
occur in liquid He351 and a few Uranium compounds47–49, as it
requires pairing that varies over the Fermi surface (eg. p-wave)
which is likely to be energetically unfavorable in typical solids.
The existence of the valley degree of freedom here enables us to
evade this difficulty and obtain a spin-triplet valley-singlet order
parameter even for a k-independent interaction.

The experimental consequences of the proposed spin-triplet
valley-singlet superconductivity can be investigated by writing the
Ginzburg–Landau free energy for the order parameter Δ ¼
τyσyd 	 σ in the presence of a magnetic field B. Restricting
ourselves to terms up to quartic order in d or B, we can write the
following free energy functional

F ¼ κ½ðT � Tc þ bðμBBÞ
2Þd 	 d
 þ iaμBB 	 ðd ´ d
Þ

þ cμ2BjB 	 dj2 þ αðd 	 d
Þ4 þ ηjd 	 dj4�
ð6Þ

Detailed microscopic derivation of the coefficients a; b; c; κ; α; η
is provided in the Supplementary Note 6. In the absence of
spin–orbit coupling, the order parameter’s spin is expected to
align with the magnetic field. Assuming the magnetic field is

parallel to the z-axis, B ¼ Bez , we can then write

d ¼
Δ"" þ Δ##

2
;
Δ"" � Δ##

2i
; 0

� �
ð7Þ

Substituting in the free energy (6) and using the fact that η ¼
�α=2 yields

F ¼ κ

2

X
s¼";#

Fs

Fs ¼jΔssj
2ðT � Tc � σsaμBBþ bðμBBÞ

2Þ þ α

2
jΔssj

4
ð8Þ

One important feature is that α> 0 which implies the stability
of the phase considered.

The free energy (8) leads to the following dependence of the
superconducting Tc on the applied field

Tc;"=#ðBÞ ¼ Tc ± aμBB� bðμBBÞ
2: ð9Þ

The most remarkable feature of this result is that, for nonzero a,
Tc initially increases upon the application of magnetic field. This
can be understood as follows: for a ferromagnetic metal with
weakly spin-split Fermi surfaces, the application of the Zeeman
field increases (decreases) the density of states for the majority
(minority) spin Fermi surface, leading to a linear increase in Tc
for the majority spin with the coefficient

a ¼ 2χTc
N 0ð0Þ
Nð0Þ ln

Λ

Tc
ð10Þ

where Λ is the bandwidth, Nð0Þ is the density of states at the
Fermi energy, and χ is the dimensionless magnetic susceptibility
(Supplementary Note 6). Similar linear field-dependence of Tc is
known in superfluid He3

51, indicating independent pairing for
each spin species. This behavior is in stark contrast to the
monotonic decrease of Tc under increasing B-field in a spin-
singlet superconductor. One crucial observation here is that a
seems to depend on several details and is expected to be very
small since Tc �

Nð0Þ
N 0ð0Þ � ϵF. Surprisingly, the measured value of a

is of order 120, which suggests the vicinity of a quantum critical
point where the scaling of the susceptibility cancels exactly
against the other parameters. Indeed, the scaling χ � ϵF=ðTlogTÞ
predicted by Herz-Millis theory in the quantum critical regime

a b

K+

B

TC (B)

K–

Fig. 5 Spin-triplet superconductivity. a Triplet paring between opposite
valleys, cσ;þðkÞ and cσ;�ð�kÞ with exact energy match. b Schematic plot for
the Tc as a function of B-field.
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for an itinerant ferromagnet52,53 leads to such cancellation
resulting in a � 1.

The origin of the quadratic term in Eq. (9) can be understood
in terms of the in-plane orbital effect discussed in Sec. IA. First,
note that Zeeman splitting cannot break Cooper pairs between
aligned spins. Instead, it yields an initial linear increase in TcðBÞ
followed by saturation at large fields when all the spins are
aligned. On the other hand, the in-plane orbital effect can induce
pair breaking by mismatching the energies of time-reversal
partner states in opposite valleys, resulting in a quadratic decrease
in Tc with the applied field whose coefficient is given by (see
Supplementary Note 6)

b ¼ 1
Tc

Z
FS
dkðeB 	 gþ;kÞ

2 ð11Þ

where eB is the direction of the external magnetic field. The
average value of ðeB 	 gþðkÞÞ

2 over the Fermi surface depends
strongly on the filling and the field direction with typical value
around 1 (cf. Fig. 3d–f). Using this value, we can make a rough
estimate for the in-plane field needed to destroy superconductiv-
ity as μBBc �

ffiffiffiffiffiffiffiffiffiffi
Tc=b

p
yielding a value about 3 Teslas, which

compares favorably to the experimental value20. Furthermore, if
we consider an out-of-plane field instead, jgzj is on average ~1–2
orders of magnitude larger than jgx;yj, yielding a critical field of
� 0:1T which is very close to the experimentally observed
result20.

It is worth noting that the reduction of Tc at large field can also
arise from the suppression of ferromagnetic fluctuations respon-
sible for the pairing, as has been observed in the ferromagnetic
superconductor UCoGe54. Such effects are neglected within our
simplified analysis 3, which assumes a constant coupling g.

Discussion
In this work, we theoretically investigated the physics of twisted
double-bilayer graphene (TDBG), addressing the experimental
observations of correlated insulating phases at integer fillings and
the neighboring superconductor reported in ref. 20.

First, let us summarize a few important features of the band
structure. Due to the absence of a C2 symmetry in TDBG, isolated
conduction and valence bands with nonzero valley Chern num-
bers can exist. Moreover, trigonal warping and particle–hole
asymmetry in each bilayer graphene lead to (i) a significant
broadening of each band so that they overlap in the absence of a
displacement field, and (ii) asymmetry between electron- and
hole-doped systems. As a result, the parameter space that can
host strongly correlated physics is significantly constrained, and
the tunability from displacement field at a particular filling
becomes essential to realizing correlated states.

Second, we identified an important role played by the coupling
of in-plane field to the orbital motion of the electron in TDBG.
Despite being small compared with the bandwidth, this effect is
comparable with Zeeman splitting, leading to a modified g-factor
which compares favorably to the experimental value20 extracted
from the slope of the half-filling gap as a function of in-plane
field. Moreover, in our theory, this effect is responsible for the
reduction of Tc under an in-plane field by providing the main
pair-breaking mechanism when pairing takes place between
aligned spins in opposite valleys. The resulting decrease in the
superconducting Tc with in-plane field agrees qualitatively with
the experimental results.

Furthermore, we have performed a self-consistent Hartree–Fock
mean-field calculation to identify the possible symmetry broken
correlated insulating states at integer fillings. Our prediction of a
spin-polarized ferromagnet at half-filling is consistent with the
observed increase in the gap with in-plane field.

Finally, here we have proposed a pairing mechanism based on
ferromagnetic fluctuations, which is motivated by the evidence
for a ferromagnetic parent insulator. Such a mechanism leads
naturally to the spin-triplet pairing suggested by experiments. In
addition, we showed that the experimentally observed depen-
dence of Tc on in-plane field suggests that the superconductor
emerges in the vicinity to a quantum critical point.

In conclusion, our theoretically established phase diagram for
twisted double-bilayer graphene, captures all significant obser-
vations of the experiments reported in ref. 20. This includes
single-particle features such as the parameter range for band
isolation as well as correlation-induced features including a fer-
romagnetic insulator at half-filling which leads to a spin-triplet
superconductor upon doping. In addition to deepening our
understanding of correlated Moiré materials, our results highlight
how phases which are rare in conventional solids can be readily
realized in this novel and tunable platform.

After completing this work, we noticed two experimental
papers55,56 which are consistent with ref. 20 and theoretical dis-
cussion contained here.

Methods
Numerical simulations for single particle. Here, we summarize the numerical
methods used to calculate the single-particle physics. First, each bilayer-graphene
(BLG) layer is modeled by the following bloch Hamiltonian:

hk ¼

U1 þ Δ �γ0f ðkÞ γ4f

ðkÞ γ1

�γ0f

ðkÞ U1 γ3f ðkÞ γ4f


ðkÞ
γ4f ðkÞ γ3f


ðkÞ U2 �γ0f ðkÞ
γ1 γ4f ðkÞ �γ0f


ðkÞ U2 þ Δ;

0
BBB@

1
CCCA; ð12Þ

which is labeled in the order of A1, B1, A2, B2. Here, we consider a realistic model
of BLG illustrated in Fig. 1. AB stacking means that the A-site of the first layer (A1)
sits on top of the B-site of the second layer (B2). This gives a small on-site energy Δ
for these sites. Here, f ðkÞ �

P
le
�ik	δl , where δ1 ¼ að0;�1Þ, δ2 ¼ að�

ffiffiffi
3

p
=2; 1=2Þ,

and δ3 ¼ að
ffiffiffi
3

p
=2; 1=2Þ are vectors from B-site to A-sites. One can expand f ðkÞ

near K± ¼ ± ð4π=3
ffiffiffi
3

p
a; 0Þ as

f ðK± þ kÞ ¼ 3
2
ð�kx þ ikyÞa; ð13Þ

where a is the distance between carbon atoms. Throughout, we will use the phe-
nomenological parameters extracted from ref. 57

ðγ0; γ1; γ3; γ4;ΔÞ ¼ ð2610; 361; 283; 138; 15Þ meV; ð14Þ

where γ0;1;3;4 and Δ are the parameters illustrated in Fig. 1. In addition, the
potential difference between the top and bottom graphene layer, U is an important
parameter in the experiment, which is controlled by the gate voltage difference. For
a displacement field strength D, AB–AB system’s dielectric constant ϵ and the
thickness of the BLG/BLG system d, U ¼ ϵ�1D 	 d.

Next, we couple two layers of AB-stacked bilayer graphenes by Moire hoping
terms. As we are interested in the physics near charge neutrality point, we focus on
band structures mostly originated near K ± points. In the continuum model
approximation30, Moire bands from K ± valleys decouple; for the Moire band from
Kþ valley, the Hamiltonian is given by

Hþ ¼
X
k

"
htθ

2
ðKþ þ kÞcyk;þ;t ck;þ;t þ hb�θ

2
ðKþ þ kÞcyk;þ;bck;þ;b

þ
X
n

Tnc
y
kþqn ;þ;bck;þ;t þ Ty

nc
y
k;þ;t ckþqn ;þ;b

� �#
;

ð15Þ

where cyk;þ;t=b is a 4-components electron creation operator for top/bottom layer

with momentum Kþ þ k. Here, hθðkÞ ¼ hðR�θkÞ with Rθ denoting the counter-
clockwise rotation matrix by angle θ relative to the x-axis. The momenta q0;1;2 are

given by q0 ¼ Rθ=2K � R�θ=2K ¼ 8π sinðθ=2Þ
3
ffiffi
3

p
a

ð0;�1Þ, q1 ¼ Rϕq0, and q2 ¼ R�ϕq0
where ϕ ¼ 2π=3. The hopping matrices Tn , n ¼ 0; 1; 2 are given by

Tn ¼
0 1

0 0

� �
layer

� ðw0 þ w1e
2πnσ3=3σ1e

�2πnσ3=3Þsublattice; ð16Þ

where w0;w1 are Moiré hopping parameters. One crucial parameter tunable in
experiments is displacement field U . In Fig. 6, we demonstrated how the band
structure evolves with increasing U . One can see that the first conduction band
becomes isolated in the range of U 2 ½40; 80�. Furthermore, to illustrate the how
the band isolation arises, we plot the energy gap between different bands in Fig. 7.
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For a smaller value of r, gapped regimes in Fig. 7a–c expand in the parameter space
of ðθ;UÞ, giving arise to a wider band isolation regime (data available upon
request).

Chern number. In the main text, we presented Chern number carried by Moire
first conduction bands from K ± -valleys. Here, we carefully examine the evolution
of Chern. First, at U ¼ 0, the reflection symmetry My enforces C ¼ 0 for both
valleys as My maps the system back to itself without exchanging valleys, but
ky 7! � ky so Berry curvature flips its sign24. In the quadratic band approximation
limit of BLG, as we increase U , the band inversion between conduction and valence

bands occurs at the Moiré K2-point (K1 for negative U) with a quadratic touching.
Thus, Chern number of ± 2 is exchanged.

Next, let us understand the Chern number evolution in the realistic
Hamiltonian with parameters of Eq. (14) along the dotted line in Fig. 3b. With a
trigonal warping term, the quadratic band touching point splits into four Dirac
cones, three with positive and the other with negative chirality. These three
Dirac cones are located at generic momenta, thus would not be observed in the
band plot along the high symmetric line. Under the presence of particle–hole
asymmetry terms, the degeneracy between four Dirac cones split, and the band
inversion would happen first at three Dirac cones, exchanging Chern number by
± 3. Then, the band inversion would occur at the center Dirac cone, exchanging
Chern number by �1. In total, it will still change the Chern number by ± 2. At
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larger values of the gate voltage U , the band inversion happens between first and
second conduction band at Γ point, and the Chern number then changes by
�1 (It can change by �2 for other parameter setting), decreasing the Chern
number.

This can be further checked by inspecting symmetry indicators58–60. There are
three C3-invariant momenta Γ, K , and K 0 . For a Bloch state with these momenta,
C3 rotation symmetry would map the state back to itself with a rotation eigenvalue:

R2π=3 k; nj i ¼ e2πiLn;k=3 k; nj i; k ¼ K1;K2; Γ ð17Þ

where Ln;k is an angular momentum associated with the Bloch state k; nj i. Then,
the Chern number of the n-th band can be determined modulo 3 by

Cn � Ln;Γ þ Ln;K1
þ Ln;K2

mod 3 ð18Þ

Thus, by tracking how C3 eigenvalues of the three momenta change with the gating
voltage U , we can understand how Chern number transition happens in the
system. Indeed, the aforementioned scenario can be confirmed. For example,
consider a Moiré first conduction band for Kþ valley at θ ¼ 1:33� . At U ¼ 0 meV,
we start with ðnΓ; nK1

; nK2
Þ ¼ ð0; 1; �1Þ. At U ¼ 14 meV, Chern number

changes by þ3 but it can be only captured by Berry curvature not by symmetry
indicator. At U ¼ 30 meV, Chern number changes by �1, manifested by
nK2

: �1 7! 1. At U ¼ 90 meV, Chern number again changes by �1, manifested by
nΓ : 0 7! �1. See Fig. 6 for the detail.

Magnetic field effect. Under in-plane magnetic field B ¼ ðBx ;By ; 0Þ, one can
choose the gauge AðzÞ ¼ �z ´B. Then, the effect of a magnetic field on hopping
terms is evaluated via Peierl’s substitution, where the hopping term from R to
Rþ δ is multiplied by the phase factor

ei
q
_

R Rþδ

R
dr	AðzÞ ¼ e�ie_δxy 	 Rzþ

δz
2ð Þ ´B½ �; ð19Þ

such that X
R;δ

ei
q
_

R Rþδ

R
dr	AðzÞcyRþδcR ¼

X
k;δ

e�iðkþαÞ	δcykck ; ð20Þ

where α ¼ � q
_AðRz þ δz=2Þ ¼ � e

_ ðRz þ
δz
2 Þ ´B

h i
since AðzÞ is linear function of

z. Hence, the effect of in-plane field can be included by simply replacing all
k-dependent matrix elements of Bloch Hamiltonians by k þ α as follows (we take
ck ¼

P
Re

�ik	RcR):

Hl;mðk;BÞ ¼ Hl;m k � e
_

ðl þmÞd
2

ez ´B
� �

ð21Þ

where Hl;m is the matrix element connecting layers l and m (l;m ¼ 0; ¼ ; 3 from
bottom to top) in Eq. (15), d ¼ 3:42A is the interlayer distance, and ez is the unit
vector in the z direction.

Due to its small magnitude relative to the energy gap, it suffices to
consider the in-plane orbital effect to first order in pertrubation theory. This
amounts to adding the following in-plane orbital term to the single-particle
energies

ξn;τðk;BÞ ¼ ξn;τðkÞ þ μBg
xy
n;τðkÞ 	 B ð22Þ

where gxyn;τðkÞ is given by

gxyn;τðkÞ ¼
1
μB

hψn;τðkÞj∇BHτðk;BÞjB¼0jψn;τðkÞi; ð23Þ

where τ is the valley index. Time-reversal symmetry implies that
gxyn;τð�kÞ ¼ �gxyn;�τðkÞ. The in-plane orbital g-factor transforms under C3
rotation as

gxyn;τðR ± 2π=3kÞ ¼ R�2π=3g
xy
n;τðkÞ ð24Þ

provided that the band n is non-degenerate at k. This implies that gxyn;τðkÞ
vanishes at any C3-invariant point. As pointed out in the Results, in general, the
in-plane orbital contributions affects the bands very differently from the Zeeman
effect. For example, it can distort the Fermi surface when the bands are partially
filled in an opposite way in the two valleys which can influence the physical
properties, e.g., superconducting Tc (see Supplementary Note 6).

The effect of out-of-plane field on the energy bands is generally more
complicated since any gauge choice breaks translation symmetry. As a result, the
band picture breaks down for large enough out-of-plane fields where Landau level
physics form instead. In the following, we will consider the limit of weak out-of-
plane fields which can be treated perturbatively. In this case, the out-of-plane field
induces an orbital valley Zeeman effect as pointed out in ref. 38,39 whose g-factor is
given by

gzn;τðkÞ ¼ � 4m

_2
Im

X
l≠n

hn; τj∂kxHτ jl; τihl; τ; j∂kyHτ jni
ϵn;τ;k � ϵl;τ;k

: ð25Þ

In summary, the single-particle energies has the following dependence on

magnetic field

ξn;σ;τðk;BÞ ¼ ξn;τðkÞ þ μBðgσ 	 Bþ gn;τðkÞ 	 BÞ; ð26Þ
where σ is the electron spin operator (which is ±1=2 for up/down spins) and
τ ¼ ± . The valley orbital g-factor is defined as

gn;τðkÞ ¼ ðgxyn;τðkÞ; gzn;τðkÞÞ: ð27Þ
We have also assumed that the spin-quantization axis is parallel to the field.

Data availability
All relevant data are available from the authors upon reasonable request.
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All relevant codes are available from the authors upon reasonable request.
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