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De novo and recessive forms of congenital heart
disease have distinct genetic and phenotypic
landscapes
W. Scott Watkins1, E. Javier Hernandez1,2, Sergiusz Wesolowski 1,2, Brent W. Bisgrove 3,

Ryan T. Sunderland3, Edwin Lin1, Gordon Lemmon 1,2, Bradley L. Demarest 3, Thomas A. Miller4,

Daniel Bernstein 5, Martina Brueckner 6,7, Wendy K. Chung8, Bruce D. Gelb 9, Elizabeth Goldmuntz 10,

Jane W. Newburger 11, Christine E. Seidman 12,13, Yufeng Shen14, H. Joseph Yost 3, Mark Yandell1,2* &

Martin Tristani-Firouzi4,15*

The genetic architecture of sporadic congenital heart disease (CHD) is characterized by

enrichment in damaging de novo variants in chromatin-modifying genes. To test the

hypothesis that gene pathways contributing to de novo forms of CHD are distinct from those

for recessive forms, we analyze 2391 whole-exome trios from the Pediatric Cardiac Genomics

Consortium. We deploy a permutation-based gene-burden analysis to identify damaging

recessive and compound heterozygous genotypes and disease genes, controlling for con-

founding effects, such as background mutation rate and ancestry. Cilia-related genes are

significantly enriched for damaging rare recessive genotypes, but comparatively depleted for

de novo variants. The opposite trend is observed for chromatin-modifying genes. Other

cardiac developmental gene classes have less stratification by mode of inheritance than cilia

and chromatin-modifying gene classes. Our analyses reveal dominant and recessive CHD are

associated with distinct gene functions, with cilia-related genes providing a reservoir of rare

segregating variation leading to CHD.
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Traditional case–control analyses (e.g. Genome-Wide Asso-
ciation Studies, GWAS) identify rare and common genetic
variants associated with common disorders, with most

variants exerting a small impact on the phenotype1. At the opposite
extreme are classical Mendelian diseases such as neurofibromatosis
type 1 and Huntington’s disease (dominantly inherited) or Tay-
Sachs and cystic fibrosis (recessively inherited) that are typically
characterized by high impact, highly penetrant damaging variants
located in one or a few genes. Located somewhere between these
two extremes are complex disorders such as autism spectrum
disorder and sporadic congenital heart disease (CHD). While these
diseases are also common, large-scale whole-exome (WES)- and
whole-genome sequencing (WGS)-based analyses have defined the
contribution of high-impact rare variants located in many different
loci, with no one gene having a large population attributable risk
(PAR)2–7. Thus, large-scale WES and WGS collections provide the
necessary resolution and allelic representation to discover and
quantify the impact of disease-causing variants for disorders with
high allelic and locus heterogeneity8–10.

Large-scale WES cohorts have revealed unique features of the
genetic architecture of CHD. For example, damaging de novo
variants account for ~8% of CHD cases, but up to ~28% of cases
associated with neurodevelopmental delay and extra-cardiac
anomalies3–5. Likewise, a distinct genetic architecture for syn-
dromic vs. sporadic CHD was reported, with unique enrichment
in loss-of-function de novo and incompletely penetrant inherited
genetic variants, respectively6. De novo variants associated with
CHD are highly enriched in genes related to chromatin regula-
tion3–5. More recently, support for the contribution of recessive
genotypes to CHD was reported in a study of 2645
parent–offspring trios ascertained by the Pediatric Cardiac
Genomics Consortium (PCGC). There, we noted enrichment in
damaging recessive genotypes for the CHD subgroup associated
with laterality clinical phenotypes and implicated variants in cilia-
related genes as candidates for isolated human CHD3. Recessive,
likely disease-causing, genotypes were also identified in cilia-
related genes in a WES analysis of 323 CHD probands with
laterality phenotypes7. Together, these observations are consistent
with the report of an abundance of recessive mutations in genes
related to cilia structure and regulation identified in a murine
forward genetic screen11. However, the relative importance of de
novo vs. recessive genotypes, and the relative contributions of
chromatin regulatory genes compared to cilia-related genes
within the genetic landscape of CHD, remains unclear.

In principle, large WES datasets make it possible to associate
classes of genes with particular phenotypes and outcomes, and to
measure the strength of those associations, so as to discover and
describe the large-scale genetic and phenotypic landscapes of a
complex disease via a process similar to category-wide association
testing, or CWAS2. Toward this end, we analyze 2391 trios from
the PCGC, using a methodology that allows us to identify addi-
tional gene-damaging compound recessive genotypes and new
disease genes, while at the same time controlling for the con-
founding effects of ancestry, sequencing methodologies, and dif-
ferences in genetic burden between genes and across functional
classes of genes. Using these data, we measure the relative con-
tribution of recessive and de novo genotypes to CHD, quantify
the strength of their associations with cilia-related and
chromatin-related genes, and estimate the magnitude of those
associations. Our examination of multiple gene classes, signaling
pathways, expression, and developmental categories reveals that
CHD is critically influenced by rare variants with high and
moderate impact in chromatin- and cilia-related genes. Moreover,
we find that dominant and recessive forms of CHD are associated
with distinct gene functions. That is, cilia-related genes are sig-
nificantly enriched for damaging rare recessive genotypes but

comparatively depleted for de novo variants. The opposite trend
is observed for chromatin-modifying genes. Consistent with these
findings, laterality phenotypes are also significantly more com-
mon in probands with damaging recessive genotypes than de
novo genotypes, a consequence of the distinct genetic architecture
of recessive CHD. Collectively, our findings demonstrate that
amid the considerable genetic and phenotypic heterogeneity of
CHD, there exists a network of highly significant associations
between genotypes, gene functions and phenotypes.

Results
Overview. We investigate the relative contribution and enrich-
ment profiles of various genes, gene functions, pathways, expres-
sion patterns, and phenotypes to CHD. As the potential number of
combinations of these categories is intractably large, we examine
those with prior association with CHD or logical relationship to
CHD etiology. We further evaluate the findings from the enrich-
ment analysis using a Bayesian network to discover and rigorously
describe a network of associations between genotypes, gene func-
tions, expression, and phenotypes within a large CHD cohort.

Data sets and gene lists. As a first step towards analyzing the
genetic, functional, and phenotypic landscape of CHD, we used
the Utah Genome Project’s FastQForward pipeline12 to analyze
whole-exome trio data (proband, mother, and father) from the
PCGC (Fig. 1). For the analyses reported here, we analyzed 2823
PCGC WES trios, 2391 of which passed our QC procedures (see
Methods, Supplementary Fig. 1, and Supplementary Note 1).

To evaluate the contributions of cilia and cilia-related genes to
CHD, we created three cilia gene lists (Fig. 2a, Supplementary
Data 1): (1) a SysCilia gene list containing 302 well-characterized
structural cilia genes13, (2) an expanded cilia gene list that
contains 367 cilia-related genes plus all SysCilia genes, and (3) a
FoxJ1 gene list containing 116 human homologs of zebrafish
genes that are transcriptionally responsive to alterations in
transcription factor FoxJ1a expression. FoxJ1 is a key transcrip-
tional regulator of motile cilia genes. Additional genes and gene
lists were used to quantify their relative contribution to CHD.
These lists include (1) a set of non-cilia genes previously
implicated in CHD4,5,14–16 (referred to as the CHD list), (2) a
set of chromatin-modifying genes found to be disrupted in CHD
patients3–5 and (3) several gene lists assembled from the
reactome17 and other pathway databases representing candidate
genes and pathways associated with CHD including Notch, TGF-
β, non-cilia cytoskeletal, and receptor serine–threonine kinase
genes. Only 5 of 163 (~3%) chromatin genes overlap with the cilia

Genotype trios
(GATK) 

Annotate variants 
(VEP)

VAAST 
(VVP)

PHEVOR 
(CTD, LVO, HTX)

GRAPHITE Recessive & 
de novo variants

Fig. 1 Candidate gene discovery pipeline. PCGC trios were joint-genotyped
with the Genome Analysis Tool Kit (GATK). Variant calls were annotated
with the Ensembl Variant Effect Predictor (VEP version 90). Each trio VCF
file was processed with the Variant Annotation, Analysis and Search Tool
(VAAST version 3). Every candidate gene identified by VAAST in each trio
was re-ranked with the Phenotype Driven Variant Ontological Re-ranking
Tool (PHEVOR) using human phenotype ontology (HPO) terms matching
the proband’s phenotype. To assess variant quality and remove potential
false positives, each variant was adjudicated with the graph-based
alignment tool, GRAPHITE. A final list of all recessive and de novo
candidate genes was assembled for 2391 probands
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gene list. We note that the gene lists used here are non-
exhaustive, but encompass many genes characteristic of, or
ontologically linked to, each category or pathway. Genes utilized
as negative controls for each enrichment test include: (1)

uniformly expressed housekeeping genes18 and (2) a series of
randomly selected gene lists created to have an equal amount of
burden compared to each experimental list.

A key challenge for our enrichment analysis was controlling for
the increased burden of rare variants (i.e., the background
mutation rate) in cilia genes. As expected, large genes generally
contain more rare variation than smaller genes, but different gene
classes also have different rates of burden (Fig. 2b). The
observation that housekeeping genes have the lowest rate of
burden is likely the result of the increased purifying selection
pressures on these essential genes, especially when the variation is
damaging and inherited recessively.

The different burden associated with each gene list complicates
cross-list comparisons. Variant-filtering based approaches, which
are often used for variant prioritization, will recover candidate
variants in proportion to the burden of a given gene class—
leading to false associations, and overestimates of the relative
contribution of that gene class to a particular disease pheno-
type19. To avoid this pitfall, we used the association testing tool
VAAST which, by design, controls for gene-specific differences in
burden, meaning that the recovery of candidate disease-causing
variants is not biased towards high-burden genes20. This
approach allows for an unbiased comparison of the number of
damaging de novo and recessive genotypes identified in the
different gene lists among CHD probands. Figure 2c shows that
genotypes scored as damaging by VAAST are not over-
represented in larger, more burden-rich genes in general (see
also Supplementary Figs. 2 and 3, Supplementary Notes 2 and 3).

Permutation analyses. To further control for potential biases
related to differences in burden or other factors intrinsic to the
gene lists, we devised an algorithm for estimating the statistical
significance and extent of enrichment of mutations in a given
gene class (see Methods). The essence of the test lies in comparing
the observed number of damaging genotypes (de novo or reces-
sive) identified for a particular gene list, and comparing it to the
number of genes with damaging genotypes in a randomly selected
gene list of equal size. An empirical permutation test is used to
estimate p values. Results are shown in Fig. 3. In each panel, the
distribution of gene-hits for the randomly selected gene lists is
shown in blue. Note that, as expected, the variance of these dis-
tributions fluctuates across panels due to the differing sizes of the
gene lists and their intrinsic burden. Two controls are included in
each panel: a set of housekeeping genes matched to the number of
genes in each gene list (green arrows) and a burden-matched
random list of genes (pink arrows); see Methods for an expla-
nation of how the burden-matched lists were compiled. The
housekeeping list provides a reference point for low burden genes
(see Fig. 2b), whereas the burden-matched control list provides a
reference for the expected number of damaged genes for an
arbitrary list of genes equal in size and matched for burden.

Inspection of Fig. 3 reveals consistent trends across the
different gene sets and panels for all control gene lists. The first
general trend is that the housekeeping genes (green arrows) are
generally located near the mean of the de novo distributions
(right-hand panels in Fig. 3) and are shifted to the left in the
recessive distributions (left-hand panels). In other words, the
frequency of damaging de novo variants in housekeeping genes is
not significantly different from the frequency of de novo variants
observed genome-wide. On the other hand, housekeeping genes
are depleted for damaging recessive genotypes compared to the
genome as a whole. A simple explanation for this trend is that
probands with recessive, damaging genotypes in essential house-
keeping genes are not likely to have CHD and would not have
been included in the PCGC cohort. The second general trend to

2000

FoxJ1
(116)

CHD
(402)

SysCilia
(302)

a

b

c

Cilia
(669)

Cilia
(669)

Chromatin
(163)

76

0
24

16

351
278 123

35
0

5 664

0

367

0

1500

1000

500

0

0.006

0.005

0.004

0.003

0.002

0.001

0.000

0

0.00 0.02 0.04 0.06 0.08

Burden
(gnomAD variants maf < 0.005/transcript size)

0.10 0.12 0.14

FoxJ1
Cilia
SysCilia
CHD
Chromatin
HK

5000 10,000

Transcript size (bp)

p–value = 0.661

15,000 20,000

R2   = –0.00231adj

25,000

V
ar

ia
nt

s 
w

ith
 g

no
m

A
D

 m
af

 <
 0

.0
05

V
A

A
S

T
 p

–v
al

ue

Fig. 2 Cilia, chromatin, and CHD gene lists and burden analysis. a The
relationships among five major gene sets used for enrichment analysis.
Structural cilia (SysCilia) genes are a subset of all Cilia list genes. The CHD
gene list has no overlap with cilia genes, and chromatin genes have only 3%
overlap with cilia genes. b Gene burden by gene list. GnomAD-based gene-
burden estimates (gray circles) are plotted as a function of transcript size.
Regression lines for the genes contained in each major gene set are shown.
The positive slopes indicate that, in general, large genes have higher burden
than small genes. Cilia and FoxJ1-responsive genes show a higher rate
(steeper slope) of increase in burden with gene size than do CHD or
chromatin genes. Housekeeping genes have lower overall burden. c VAAST
p values estimates are not affected by gene length or gene-burden. VAAST
p values for damaged genes (gray dots) are plotted as a function of gene
burden. The regression line (blue) shows the relationship between the
VAAST p value estimates for damaged genes found in CHD probands and
gene burden normalized by transcript size. No significant relationship
between the number of damaged genes discovered nor magnitude of the
p value as a function of gene burden is observed (coefficient of variation
(R2adj)=−0.00231, p value ≥ 0.66, linear-model F-test)
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note is that the burden-matched control lists (pink arrows) are
located near the mean in every panel, and never differ
significantly from it, meaning that differences in burden across
the different gene lists cannot explain the significance of the
observations (red arrows) discussed in the following paragraphs.

SysCilia genes. For structural cilia genes, VAAST identified 129
damaged genes with recessive or compound heterozygous
inheritance in 126 probands (Supplementary Data 2). These genes
include several dyneins (DNAH1, DNAH5, DNAH6, DNAH11,
DYNC2H1), other components necessary for ciliary assembly and
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Fig. 3 Enrichment profiles for damaged cilia and chromatin genes in CHD probands. Five candidate gene lists, SysCilia (302), Cilia (669), FoxJ1 (116), CHD
(402), and chromatin-modifying (163) genes were tested for enrichment in damaging genotypes using 2391 congenital heart disease trios. The number of
damaged genes discovered in the 2391 probands for each candidate gene list (red arrows) is compared to the distribution of damaged genes found using
random gene lists of equal size (blue distributions, 100,000 independent random gene lists per distribution). a, c SysCilia and Cilia genes are highly enriched
for damaged recessively inherited genotypes. b, d SysCilia and Cilia genes show only modest enrichment in de novo mutations. e, f FoxJ1-responsive genes
are also modestly enriched for recessive variation but not for de novo variation. g, i CHD and chromatin-modifying genes are only modestly enriched for
damaging recessive genotypes. h, j In contrast to cilia genes, known CHD and chromatin-modifying genes are highly enriched for damaging de novo
mutations. Burden-matched control genes (pink arrows) are not significantly enriched for any gene set. Housekeeping genes (green arrows) are depleted for
damaging recessive variation and have a typical amount of damaging de novo variation. All p values are obtained by empirical permutation
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vesicle trafficking (CEP290, NPHP3, IFT172, IFT140, PCM1),
myosins (MYO15A, MYO3B), tubulins (TUBB3, TUBGCP6), and
actin-associated proteins (SYNE2). The rate of recovery of
recessive genotypes is significantly higher compared to the
empirical distribution of damaged genes found using an equal
number of randomly sampled genes (permutation p value < 1e−5;
Fig. 3a). Moreover, an equal number of randomly selected
burden-matched genes and a list of housekeeping genes showed
no enrichment compared to the random distribution. In contrast,
VAAST identified 36 damaged genes with de novo variants in 36
probands in the SysCilia gene list (permutation p value < 0.0092;
Fig. 3b).

Cilia genes. VAAST identified 229 damaged genes in 213 pro-
bands (8.9% of analyzed probands) with recessive genotypes in the
expanded cilia gene list (Fig. 3c). The larger cilia list identified an
additional 64 distinct damaged cilia-related genes not found in
the SysCilia gene list alone, and once again the signal was highly
significant (permutation p value < 1e−5). These genes include
additional dyneins (DNAH3, DNAH7, DNAH12), tubulin mod-
ifying proteins (TTLL4, TTLL5, TTLL10), laminins and related
proteins (LAMA5, SUN1), and spectrins (SPTBN5). By compar-
ison, de novo variants were only modestly enriched in the Cilia list:
70 damaged genes in 69 probands (permutation p value < 0.0052;
Fig. 3d).

FoxJ1-responsive genes. Also included in Fig. 3 are results for a
list of 116 genes that show at least a twofold change in expression
when FoxJ1 is over-expressed or depleted in a zebrafish model.
The forkhead box transcription factor FoxJ1 is responsible for the
formation of motile cilia during early development and the sub-
sequent control of left-right asymmetry21,22. Genes that are
regulated by the FoxJ1 transcription factor may contribute to
CHD through alteration of cilia function during development.
Consistent with the other cilia gene lists, there is a modest signal
for recessive genotypes (permutation p value < 0.036; Fig. 3e). This
recessive signal, however, was much lower in magnitude compared
to the other cilia-related gene lists. Also, consistent with the trends
observed for the larger SysCilia and Cilia lists, we observe no
significant enrichment for de novo variants in the FoxJ1 list
(permutation p value > 0.958; Fig. 3f). Considering all cilia-related
lists, 47 genes with damaging recessive genotypes occurred in
multiple probands (Supplementary Data 3) and 14 probands had
two or three damaged cilia genes (Supplementary Table 1).

CHD genes. The CHD candidate gene list provides an oppor-
tunity to assess the relative contribution of de novo and recessive
genotypes to a wider set of genes previously implicated in
CHD4,5,14–16. This gene list includes 35 chromatin-remodeling
genes, but does not include any SysCilia or Cilia-related genes
(see Fig. 2a). Figure 3g and h thus provide a reference point that
reflects the current, general consensus for candidate genes (apart
from chromatin-remodeling genes alone) implicated in CHD.
Damaging recessive genotypes are modestly, but significantly
enriched, and damaging de novo genotypes are highly enriched.

Chromatin-modification genes. Reciprocal trends with regard to
the enrichment of de novo vs. recessive genotypes are observed for
chromatin-modifying genes related to CHD. VAAST identified
55 genes with damaging recessive genotypes in 55 probands for
chromatin-related genes, a modest but significant enrichment
compared to the expectation (permutation p value < 0.0014; Fig. 3i).
Consistent with prior publications that have documented an excess
of de novo variants in chromatin genes3–5, the enrichment of de
novo variants in the chromatin list exceeds that observed for

recessive variants, with VAAST identifying 77 damaged genes in 76
probands (3.2% of all probands) having de novo damaging variants
(permutation p value < 1e−5; Fig. 3j).

Other gene pathways. Because the potential number of func-
tional classes, pathways and expression categories is very large, we
restricted our analyses to key categories of high a priori interest to
CHD researchers. In addition to trends described above for cilia
and chromatin-related genes, we also observed enrichment sig-
nals in Notch signaling pathway genes for de novo variants
(permutation p value < 0.0012), for both recessive and de novo
genotypes in TGF-β signaling genes (permutation p values < 1e−5

and <5.0e−5, respectively), and for non-ciliary cytoskeletal genes
but not receptor serine-threonine kinases (Fig. 4a–h, Supple-
mentary Data 4). The magnitudes of these signals, however, are
smaller, and there is less difference between the inheritance
modes of the enrichment signals as compared to cilia and
chromatin-related genes.

Additional gene lists. No enrichment of damaging recessive or
de novo genotypes was found using the most highly expressed
400 genes from each of three different mature organs: left ven-
tricle, brain, or liver. Embryonic high heart expression (HHE)
genes were, as previously reported4,5, highly enriched for dama-
ging de novo mutations (permutation p value < 1e−5). There was
a modest enrichment of damaging genotypes in 86 candidate
genes for autism spectrum disorder, recapitulating previous
findings that showed damaging de novo mutations in chromatin
genes that were common to patients with CHD and to patients
with autism spectrum disorder3 (Supplementary Fig. 4, Supple-
mentary Note 4). Moreover, there was no enrichment in dama-
ging recessive genotypes and only modest enrichment in de novo
mutations for the fibroblast growth factor (FGF), platelet derived
growth factor (PDGF), and WNT signaling pathways (Supple-
mentary Fig. 5, Supplementary Note 5).

Relative contributions to CHD. The results shown in Figs. 3 and
4 naturally raise questions as to the relative contributions of
recessive versus de novo genotypes to CHD. Within the SysCilia
list, the rate of discovery of damaged recessive genotypes are
enriched 1.57-fold compared to de novo mutations, whereas for
the more inclusive Cilia-related list, the enrichment ratio
decreases to 1.43-fold (averaging both lists gives a value of 1.50-
fold). By comparison, de novo genotypes are enriched 3.19-fold in
the chromatin gene list compared to recessive genotypes. Thus,
the relative enrichment of damaging recessive genotypes within
the cilia and cilia-related genes is about half (0.47) that of de novo
variants within chromatin genes.

These simple calculations, however, do not take into account
differences in burden and size between gene lists. This can be
accomplished by standardizing the distributions shown in Figs. 3
and 4 using Z-scores23, as shown in Table 1. The normalized
distributions are shown in Fig. 5. Once normalized, the SysCilia
and Cilia gene lists produce similar Z-score values of 7.73 and
7.95, respectively, for recessive genotypes. For the Chromatin
gene list, the value is 17.10 for de novo genotypes (see
Supplementary Data 5 for all Z-scores). The Z-score-derived
enrichment ratio for the averaged Cilia recessive gene lists (7.84)
to Chromatin de novo genotypes is 0.46x. This value is very
similar to the non-burden adjusted value obtained using the
VAAST genotype counts directly. That both approaches to the
calculation give comparable values indicates that our analytical
methods adequately controlled for differences in burden between
the gene sets.
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Although the Z-scores provide means to compare relative
enrichment of gene lists and gene pathways, they should not be
interpreted as measurements of PAR. Considering genotypes
found in all probands, the relative PAR estimates for damaging

recessive and de novo genotypes are 8.9% and 3.2% for the Cilia
and Chromatin-related gene lists, respectively. When considering
PAR for categorical associations, the size of the gene list should be
taken into account. For example, normalizing these estimates by
the size of the cilia- and chromatin-related gene lists (669 vs. 163)
produces similar per gene PAR estimates of 0.013 and 0.020
percent gene−1, respectively.

Laterality defects and recessive genotypes. Previous studies have
linked human ciliopathies to heterotaxy, and several studies have
characterized CHD in a subset of those individuals11,24,25. Very
recently, WES analysis of unrelated laterality patients with CHD
identified inherited variation, including low-frequency recessive
and compound heterozygous genotypes, as likely candidates for
the disease7. To test the hypothesis that rare recessive and
damaging genotypes in cilia genes are preferentially associated
with laterality defects, we examined the association between
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Fig. 4 Enrichment profiles for additional genes and gene pathways. Several additional pathways implicated in congenital heart disease were tested for
enrichment in damaging recessive genotypes and de novo mutations. a, b The Notch signaling pathway is enriched for de novo mutations (p value <
0.0012) but is not enriched for damaging recessive genotypes. c–f Genes involved in TGF-β signaling and non-ciliary cytoskeletal genes are moderately
enriched in damaging recessive and de novo genotypes. g, h In contrast, receptor serine-threonine kinases show no enrichment for either damaging de
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Table 1 Relative enrichment of damaging genotypes by
gene list

Gene list Z-score
(recessive)

Z-score
(de novo)

p value
(recessive)

p value
(de novo)

SysCilia 7.73 2.60 <1e-5 0.0094
Cilia 7.95 2.79 <1e-5 0.0103
FoxJ1 1.93 −1.67 0.0728 0.0273
CHD 3.75 13.95 0.0009 <1e-5
Chromatin 3.68 17.10 0.0027 <1e-5

p values obtained by Z-distribution permutation
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having a laterality/heterotaxy phenotype and a damaged recessive
genotype by gene list (Table 2).

We find that probands with damaged structural cilia genes are
weakly associated with laterality defects. Probands with damaging
recessive genotypes in the SysCilia genes are marginally more
likely to have laterality/heterotaxy phenotypes than other
phenotypes (p value < 0.016, Fisher’s test). It is essential to note
that damaged cilia genes are found in probands of all phenotypic
classes. Indeed, 3.9% of probands with conotruncal defects harbor
a damaged cilia gene, compared to 1.6% of probands with a
heterotaxy/laterality phenotype. Overall, though, laterality
accounts for a much smaller fraction of all CHD than other
phenotypes. The observed enrichment of cilia genes in laterality is
driven by the relative proportions of probands harboring a
damaged recessive cilia genotype. Collectively, these results
suggest that the excess of laterality/heterotaxy defects associated
with cilia genes is a consequence of the fact that dominant and
recessive CHD have distinct functional signatures, a point we
discuss in more detail below.

Belief network-based analyses. We used a Belief network26 to
further investigate the intertwined relationships between geno-
types, gene functions, and phenotypes in our data. This Bayesian
approach provides a means to tease apart the confounding effects
of overlapping gene lists, and potentially confounding variables

such as proband ancestry and exome capture methodology. Belief
nets also avoid the well-known pitfalls associated with maximum
likelihood estimates derived from limited numbers of observa-
tions, and provide a best-practice methodology for dealing with
missing data26,27.

Figure 6a shows a best-fit belief net summarizing the relation-
ships between proband genotypes and gene lists with significant
contributions to CHD (see Fig. 5 for relative contributions). Also
shown are potentially confounding variables such as gender,
ancestry, and the capture method used for WES. As would be
expected from Fig. 5, positive relationships are observed between
de novo genotypes and chromatin-related genes, and reciprocally,
recessive genotypes and cilia-related genes. Belief nets not only
illustrate data trends, they also provide means to quantify them.
For example, knowing that a proband has a damaging de novo
genotype increases the probability that the proband has a
damaged chromatin-related gene by about 50% compared the
null expectation (P(chromatin |de novo)/(chromatin)= 1.48).
Reciprocally, knowing that a proband has a damaging recessive
genotype increases the probability that the proband has a
damaged cilia-related gene by about 30% compared the null
expectation (P(cilia|recessive)/P(cilia)= 1.3).

The network shown in Fig. 6a makes it clear that stratification
between gene function and genotype is due to both positive and
negative associations. Thus, knowing that a proband has a
damaging de novo genotype, but not a recessive one too, increases
the probability that the de novo genotype will lie in a chromatin-
related gene from 1.48- to 2.6-fold, compared to the expectation
given no knowledge of genotype, e.g. P(chromatin|de novo, ¬
recessive)/P(chromatin)= 2.6. Reciprocally, knowing that a
proband has a damaging recessive genotype, but not a de novo
also, increases the probability that the recessive genotype will lie
in a cilia-related gene from 1.3-fold to 1.7-fold, compared to the
expectation given no knowledge of genotype (P(cilia|recessive, ¬
de novo)/P(cilia)= 1.7).

The impacts of confounding variables, such as gender,
sequencing methodology and ancestry, on these trends can also
be explicitly addressed and controlled for by using a belief net.
Figure 6a indicates strong stratification between sequencing
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Table 2 Association of CHD probands and laterality defects
by gene list

Gene list Number of genes p value

SysCilia 302 0.0158*
Cilia 669 0.0377
FoxJ1 116 0.0719
CHD 402 0.2175
Chromatin 163 0.5009
Housekeeping 669 0.7233

Fisher’s test; *Significant with Benjamini–Hochberg correction, FDR= 0.1
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capture and ancestry. For example, there is a twofold bias in the
dataset as regards use of the xGEN IDT capture technology for
probands of African ancestry, i.e., P(ancestry=African|capture
= xGEN IDT)/P(ancestry=African)= 2.0. Importantly, specify-
ing ancestry explicitly allows us to investigate its potentially
confounding role on other trends. For example, knowing that a
proband has African ancestry and has a damaging recessive
genotype, increases the probability that the proband has a
damaged cilia-related gene by 30% compared the null expecta-
tion. In fact, the same 30% increased probability holds true when
specifying Asian or European ancestry (P(cilia|recessive, ancestry
=African)/P(cilia)= P(cilia|recessive, ancestry=Asian)/P(cilia)
= P(cilia|recessive, ancestry=Western European)/P(cilia)= 1.3).
Thus, ancestry is not driving the association between cilia genes
and recessive genotypes, nor is sequencing capture, as specifying
ancestry explicitly negates any confounding effects of sequence
capture on ancestry. Thus, the belief net informs us that while a
disproportionate number of African-ancestry probands were
sequenced using a unique capture method, neither ancestry nor
capture method fundamentally impact the recessive cilia and de
novo chromatin associations.

There also exists a strong positive conditional dependency
between the Chromatin-related and Notch-pathway gene lists. The
belief net provides the context to further understand these
dependencies. For instance, if we know that a proband does not
have damaging de novo chromatin variant, the probability of
harboring a damaging Notch variant is 0.15 × (P(Notch|¬Chroma-
tin, de novo)/P(Notch|Chromatin, de novo)= 0.15). The fact that
this ratio is <1 indicates that the association between de novo
genotypes and Notch-pathway genes is driven by de novo genotypes
in genes shared in common between the chromatin and Notch gene
lists (e.g. CREBBP, HDAC2, HDAC7, KAT2A, TP53).

We also observe that co-occurrence of damaging de novo and
recessive genotypes within the same proband can complicate
relationships between genotypes and gene functions. In Fig. 6a,
for example, it appears the cytoskeletal genes are depleted, rather

than enriched for de novo genotypes, in apparent contradiction to
Fig. 4. Globally speaking this is true, as the probability of a
damaging de novo cytoskeleton gene (without knowledge of a
recessive variant) is 0.79 × (P(cytoskeleton|de novo)/P(cytoskele-
ton)= 0.79). However, restricting the calculation to probands
with only de novo genotypes, knowing that a proband has a
damaging de novo, but not recessive variant, increases the
probability that the patient harbors a damaging de novo
cytoskeleton variant to 1.3×, compared to the null expectation
(P(cytoskeleton|de novo, ¬ recessive)/P(cytoskeleton)= 1.3). It is
worth noting that double-hit individuals occur less often in the
CHD cohort than would be expected by chance, by a factor
of 0.73 × (P(recessive, de novo)/[P(recessive)*P(de novo)]= 0.73,
p < 7.9e−16), suggesting that these individuals are being system-
atically excluded, perhaps because they tend to die in utero.
Moreover, we also observe no increased probability of double-hit
individuals to manifest an HTX phenotype, as P(HTX|R_Cilia,
D_Chromatin)/P(HTX|R_Cilia)= 1.0. We cannot, however, fully
exclude an important multi-genic contribution to CHD, because
we did not assess the role of inherited (incompletely penetrant)
dominant genetic variants.

As regards expression, de novo genotypes are about twice as
likely to occur in embryonic HHE genes than are recessive ones.
This trend is slightly more pronounced when gene function is
taken into account; for example, P(HighHeart|chromatin, de
novo, ¬ recessive)/P(HighHeart|cilia, recessive, ¬ de novo)= 2.8,
in general agreement with previous reports3–5.

Finally, we asked how well the model in Fig. 6a explains the
CHD dataset globally. The likelihood ratio test (LRT) is
traditionally used to compare the relative fit of different
probabilistic models to the data27. Belief nets provide an intuitive
way to think about the capability of different models to describe
the data, as alternative (nested) models can be produced simply
by deleting some combination of edges from the net. For example,
the LRT p value for the model presented in Fig. 6a is 3.9e−91

compared to one without any connections between the genotype
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nodes and the rest of net, meaning that genotype is a key feature
of the CHD landscape. Inclusion of cilia genes also significantly
increases the fit of the model compared to one without (LRT p
value: 2.3e−12), as does adding the high-heart expressing, Notch,
TGF-β, and cytoskeletal gene lists (LRT p value 4.8e−39).

Figure 6b shows a belief net summarizing the relationships
between phenotypes, recessive genotypes in cilia genes (R_Cilia),
and de novo genotypes in chromatin-related genes (D_Chroma-
tin), together with potentially confounding variables such as
ancestry, sequence capture methodology, and gender. The
belief net highlights a positive association between heterotaxy
and recessive cilia genotypes. This same association is detectable
via traditional hypothesis testing (Table 2), but the belief net
provides means to quantify relative risk. For example, having a
recessive cilia genotype increases the relative risk of heterotaxy
1.4-fold compared to a de novo mutation in a chromatin-related
gene, (P(HTX|R_Cilia)/P(HTX|D_Chromatin)). Risk estimates
are not absolute, but dependent upon the dataset used to
estimate them. In light of this fact, the 1.4-fold increase in LVO
phenotypes observed for males (e.g., P(LVO|Gender=male)/
P(LVO|Gender= female)= 1.4) can be used to provide context
for the strength of the HTX-cilia-recessive association. The
gender bias for LVO phenotypes is well described, with a 2–4-fold
male predilection, depending upon the LVO lesion28–30. Thus,
the association between HTX and cilia-related recessive genotypes
is similar in magnitude to that observed between LVO
phenotypes and gender in this cohort.

Discussion
We carried out a gene-burden aware quantitative analysis of 2391
CHD trios to discover and quantify relationships between gene
functions, genotypes, and CHD phenotypes. We find that, as a
class, cilia and cilia-related genes are enriched for rare, damaging
recessive variants. This increased burden has interesting ramifi-
cations for human CHD, suggesting that cilia and cilia-related
genes may provide a reservoir of rare and potentially damaging
variation that is segregating in the population, with recessive
homozygous and compound heterozygous combinations leading
to CHD. Moreover, while enriched for damaging, rare recessive
genotypes, cilia and cilia-related genes are less enriched for
damaging de novo variants. Within the PCGC cohort, we found
that 8.9% of probands harbored a damaging recessive genotype in
cilia-related gene, while 3.2% harbored a damaging de novo
variant in a chromatin-modifier. Correcting for the size of the
cilia- and chromatin-related gene lists produces similar per gene
PAR estimates (~0.013 and ~0.020 percent gene−1, respectively).

The overall low recurrence rate among CHD loci in the
PCGC cohort3–5 suggests that more loci await discovery. Pre-
vious studies have implicated a variety of genes highly
expressed in the developing heart as important candidate CHD
disease-causing genes15. Our HHE and CHD gene lists contain
many of these previously reported genes and like chromatin-
modifying genes, damaging de novo variants in these genes are
enriched in the PCGC cohort, with less enrichment observed in
recessive genotypes. The genetic enrichment signals reported
here are strongly weighted towards chromatin-modifying and
cilia-related genes, with weaker, but significant, associations
also detected in other gene classes relevant to CHD. The
magnitude of genetic enrichment suggests that future de novo
and recessive CHD-causing mutations will lie predominately in
chromatin-modifying and cilia-related gene classes. That being
said, the recent report31 of a variably expressed left ventricular
non-compaction cardiomyopathy phenotype caused by het-
erozygous mutations in three separate genes (MYH7, MKL2,
and NKX2–5) also emphasizes the need for methods that

incorporate oligogenic and polygenic risk modeling. Moreover,
future WGS approaches are likely to identify genomic loci not
assessed in this analysis, such as promotors, enhancers and
large structural variants.

While there is no single, overarching genotype–phenotype
correlation throughout the dataset, we find that damaging
recessive cilia genotypes in CHD probands show enrichment in
laterality defect phenotypes, similar to recent reports7, although
other CHD phenotypes also harbor damaged cilia genes. Thus,
proband phenotypes reflect, in part, the distinct functional sig-
natures of recessive and de novo CHD. Collectively, our findings
show that amid the genetic and phenotypic heterogeneity of CHD
there exists a network of highly significant associations between
genotypes, gene functions, and phenotypes.

Methods
Participants. Patients were diagnosed, phenotyped, and recruited from PCGC
centers and regional hospitals under institututional review board approved pro-
tocols from Boston’s Children’s Hospital, Brigham and Women’s Hospital, Chil-
dren’s Hospital of Los Angeles, Children’s Hospital of Philadelphia, Columbia
University Medical Center, Great Ormond Street Hospital, Icahn School of Med-
icine at Mount Sinai, Rochester School of Medicine and Dentistry, Steven and
Alexandra Cohen Children’s Medical Center of New York, and Yale School of
Medicine ([ClinicalTrials.gov] Accession number: NCT01196182)3–5. All patients
or the patient’s parent(s) provided informed consent. CHD probands were clas-
sified into four major groups based on their cardiac phenotype: conotruncal dis-
orders (CTD); left ventricular obstructive disorders (LVO), heterotaxy/laterality
defects (HTX), or other (OTH, including atrial septal defect (ASD)). We defined
heterotaxy/laterality as reported in Jin et. al. (2017) and included the following
diagnoses: dextrocardia, situs inversus/ambiguous, atrial isomerism, asplenia/
polyspenia, and all transpositions of the great arteries (TGA). The HTX diagnoses
were often associated with AV canal defects, pulmonary atresia, or anomalous
pulmonary venous drainage. HTX did not include isolated ASD.

Variant calling. Raw sequencing data for all patients and parents were downloaded
in fastq format from the PCGC HeartsMart database. Sequence data were aligned
to the human genome reference sequence (hg19). Briefly, aligned BAM files
underwent INDEL realignment and base recalibration. Each well-formed BAM file
was processed with the Genome Analysis Tool Kit (GATK) haplotype caller to
produce a sample GVCF file. The GVCF files were combined and jointly genotyped
in two batches along with samples from the 1000 genome project (CEU and GBR).
The GATK variant recalibrator was used to reduce potential false positives calls in
the dataset. Tranche values were set to 99.5 and 99.0 for SNPs and INDELs,
respectively. To reduce processing time, UGP pipeline steps were parallelized over
hundreds of compute cores at the University of Utah Center for High Performance
Computing [www.chpc.utah.edu]. Variants were normalized and decomposed
using the vt program32. Annotation was applied to normalized variants with the
Variant Effect Predictor (VEP) version 90 (ref. 33).

Quality control. Quality control metrics were first applied to each of 2823 trios
(see Supplementary Fig. 1, Supplementary Note 1). Relatedness among trio
members was assessed as a kinship coefficient using the KING algorithm34. Trios
with unrelated parent-offspring kinships estimates (<0.0884) were removed. These
trios may represent families with adoptions, step-parents, sample-swaps, or
incorrect paternity. Trios with parent–parent or parent–offspring with kinship
estimates exceeding 0.35 were likely to be a result of a sample switch and were
removed. Four trios with first cousin parents were retained. Trios in which the
proband was diagnosed with Down syndrome, DiGeorge syndrome, or 22q micro-
deletion/duplications were removed. Finally, trios with excessive exonic de novo
mutations (>10) or very few recessive genotypes (<30) were removed. A final set of
2391 trios was used for analyses. Ninety percent of these trios (2157) have been
included in previous reports3–5.

Variant impact scoring. The 2391 trios were analyzed as trios using the VAAST
Variant Prioritizer (VVP)35 and VAAST burden tests. A typical VVP command
was: VVP -d vvp_v2_background/1KG.050417.vvp.db -i 1-00004.vcf.gz -v
CSQ,3,6,0,15 -c -n 1 -o 1-00004.scored_variants.out>1-00004_VVP.out. All coding
and splice-site SNVs and INDELs in each of the final 2391 probands over the entire
exome were analyzed to assess the impact of each variant relative to variants seen in
a background population of ~2500 samples (1000 genomes phase3). The output
from VVP produces a VVP score of 0–100 (100 being the most damaging) for each
variant under hemizygous, heterozygous, and homozygous inheritance models,
accounting for the amino acid substitution, evolutionary conservation of the var-
iant, and the frequency of the variant in the background population.
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Burden testing. Output from VVP was then used as input into the Variant
Annotation Analysis and Search Tool (VAAST, version 3)20,36. VAAST is a gene-
burden test19 that ranks the probability that a gene is damaged based on the gen-
otypes found in the gene, the frequency of those genotypes in a background
population, the amino acid substitution of each variant in that gene relative to
variants found in the background samples, and the phastCon cross-species con-
servation at the variant site. VAAST assesses the genotypic burden in each gene
relative to gene burden in the background population. This burden-based approach
is especially relevant for assessing the impact of compound heterozygous genotypes
because variant prioritization tools do not judge the impact of combinations of
alleles. VAAST overcomes this pitfall by assaying each locus and its alleles in a
combinatoric fashion and then permutes against a background population to identify
combinations of alleles (burden) that may be disease causing (see ref. 19 for more on
these points). A typical VAAST command was: VAAST -i 1-00004.scored_variants.
out -d vvp_v2_background/1KG.050417.vvp.db -t 3 -b 2504 -n 1 -e r -f t -r 1 -m 2 -w
0 > 1-00004.burden.out 2 > 1-00004.burden.error. The output from VAAST produces
a composite likelihood ratio score and a permutation-based p value for every gene
taking into account an inheritance model and every possible combination of allelic
variants in the proband relative to all possible combinations of allelic variants in
background population, in this case, the ~2500 1K genomes samples.

Integration of phenotype data with burden test results. The Phenotype Driven
Variant Ontological Re-ranking Tool (PHEVOR) was used to re-rank genes from
the VAAST output based on the posterior-probability that the gene was associated
with the proband’s phenotype37. PHEVOR utilizes Human Phenotype Ontology
(HPO) and Gene Ontology (GO) terms to prioritize genotype–phenotype asso-
ciations. Phenotype-specific HPO information for each of the major cardiovascular
phenotypes (CTD, LVO, HTX, and OTH) was used for re-ranking VAAST output.
The HPO node ids used for the PHEVOR re-ranking were: Conotruncal Defects
(CTD) [HP:0001669, HP:0001719, HP:0001660, HP:0001636, HP:0004414]; Left
Ventricular Obstructive disorders (LVO) [HP:0001680, HP:0001647, HP:0001682,
HP:0001706, HP:0004381]; Heterotaxy (HTX) [HP:0001669, HP:0001642,
HP:0001643, HP:0011599, HP:0010772,HP:0012020, HP:0002101, HP:0011565,
HP:0001696, HP:0010452, HP:0001674, HP:0001746, HP:0001629, HP:0004935,
HP:0001748, HP:0001631, HP:0011537, HP:0011536]; Atrial Septal Defects (ASD)
[HP:0001631, HP:0001684]; or other defects (OTH) [HP:0010316, HP:0001642,
HP:0001674, HP:0006695, HP:0010772, HP:0011662, HP:0004935, HP:0001629].
The most damaged genes (up to 100) from the VAAST and PHEVOR analyses for
every trio were retained and managed in a local MySQL database.

Variant adjudication. To confirm the validity and inheritance of all recessive and
de novo mutations identified by VAAST and PHEVOR, each variant from each
gene was tested with GRAPHITE (D. Lee and G. Marth; [github.com/dillonl/gra-
phite]). Graphite uses a local graph-based Smith–Waterman alignment to assess
the sequencing reads at candidate variant position. Briefly, all sequencing reads in a
3 kb window around the variant were realigned in a variant graph using a
Smith–Waterman algorithm. Only sequencing reads with a ≥95%
Smith–Waterman alignment were used. Recessive variants with at least six sup-
porting reads in each trio member that had at least two supporting reads on each
strand and that demonstrated correct inheritance were retained. The de novo
variants were required to have at least eight reads in the proband, and no reads in
the parents. GRAPHITE adjudicated de novo variants were retained if also con-
firmed in the integrated genome viewer (IGV) or previously reported by the
PCGC3. We tested 12 graphite-verified recessively inherited variants in three CHD
genes (DNAH5, CHD8, KMT2D) and eight de novo variants in chromatin-related
genes by Sanger sequencing. One variant could not be amplified. Eighteen of the
remaining 19 variants were confirmed, thus yielding a 95% confirmation rate
following GRAPHITE adjudication and IGV validation (Supplementary Data 6).

Criteria for identification of damaging genotypes. A VAAST p value of ≤0.005
was used to classify genes as damaged. This VAAST p value threshold was calibrated
against a previously published independent assessment of damaged genes causing
CHD in PCGC patients3–5. A PAR filter of ≥0.005 was used to filter genotypes to
eliminate genes with excessive variation attributable primarily to incorrect read
mapping. We excluded mucins, olfactory receptors, any recessive genotype where
either allele could be considered a common polymorphism (maf ≥ 0.05). Note that
de novo and recessive genotypes are scored using the identical process and para-
meters, meaning that recessive and de novo genotype scores and p values are
directly comparable. A total of 3083 recessive and 1351 de novo genotypes were
identified and retained for enrichment-by-gene-list analyses. An estimated PAR of
3.2% for damaging de novo variants in chromatin-related genes is consistent with
the PCGC’s previously reported estimate of 2.3%, which screened a smaller, less
inclusive candidate list of chromatin-related genes using a different definition of
deleterious missense variants3–5. In contrast, we identified many more candidate
recessive genotypes on average, 1.3 proband−1, compared to 0.2 proband−1

reported previously3. The increased numbers result from VAAST’s ability to
identity compound heterozygous genotypes for which the combined burden of two
moderately damaging variants is equal to that of a single, severely damaging de novo
variant19,20,35,36. By contrast, the PCGC’s previously reported recessive genotypes3

were restricted solely to cases for which both variants were loss-of-function alleles or
missense variants predicted to be maximally damaging by MetaSVM.

Population genotype frequencies. The recessively inherited damaging genotypes
identified here comprise allelic combinations that are very rare in the general
population. These genotypes are predominantly compound heterozygotes (88%) in
the CHD patients. Eighteen percent of all identified alleles are not found in the
gnomAD database. The variant effect predictor (VEP) annotates 13% of the alleles
as high impact, 87% as moderate impact, and 0% as low impact variants. Most
alleles (83%) have no reported homozygotes. After assigning a conservative allele
frequency of 1/100,000 to alleles not found in the gnomAD database, we calculated
a median expected genotype frequency for simple recessive and compound het-
erozygous genotypes of 8.7e-6 and 1.1e-7, respectively. Thus, most reported gen-
otypes will be found in fewer than 1 in 100,000 individuals in the general
population (Supplementary Fig. 6, Supplementary Note 6). Additionally, discovery
of these damaging genotypes was not biased toward any particular population (e.g.
populations with admixture or high heterozygosity) but was proportional to the
ethnic distribution of the PCGG cohort as a whole (Supplementary Fig. 7, Sup-
plementary Note 7, and Supplementary Data 7).

Candidate gene lists. Several gene lists were utilized to enhance the search for
genes involved in CHD (see Supplementary Data 1). A list of 302 published and
well-characterized structural cilia genes (SysCil 2.0) was assembled from the lit-
erature13. An additional 367 cilia and potential cilia genes were identified by a GO-
ontology search for cilia genes in model organisms (zebrafish and mouse). These
additional genes include various gene classes such as dyneins, tubulin ligases,
spindle proteins, regulatory proteins, and others, linked to cilia through the HPO
and GO ontologies and model organisms. Orthoretriever was used to convert
model organism genes to human genes. Several genes with more than three
orthologs in either conversion direction were omitted. Recently, 61 mouse cilia
genes associated with CHD were identified11. These additional cilia-related genes
found in zebrafish and mouse models were added to the 302 SysCilia genes to
create an expanded list of 669 cilia and cilia-related genes. A list of genes that were
two-fold up- or down-regulated in response to forkhead box transcription factor
FoxJ1a over-expression and knockdown in zebrafish was compiled from RNA-Seq
and RNA-tiling expression results38. A list of 402 genes associated with CHD in
humans or other organisms was compiled from published sources4,5,14–16. The
CHD gene list contains a variety of genes encoding structural molecules, signaling
molecules, and transcription factors, but does not overlap with the cilia genes
defined in our cilia lists. A chromatin gene list included 163 chromatin-modifying
genes defined by the PCGC3–5. Genes in this list include histone acetylases, histone
deacetylases, SWI/SFN chromatin packaging complex proteins, actin methyl-
transferases, DNA-helicases, 16 transcription factors, etc., related to the mod-
ification of chromatin. The Notch gene list was hand curated. The cytoskeletal, Ser-
Thr kinases, and TGF-β genes were assembled using the [reactome.org] and
[genenames.org] pathway databases. Cancer-related genes were excluded. Highly
expressed genes in the mature heart, liver, and brain were identified using the
Genotype-Tissue Expression (GTEx) database [gtexportal.org/home/datasets].
High-ranking autism candidate genes (categories 1 and 2) were identified and
assembled by the Simons Foundation Autism Research Initiative (SFARI, [https://
www.sfari.org/resource/sfari-gene/]).

Control gene lists. To create control gene lists, human housekeeping genes that
show consistent expression over different cell types and conditions were randomly
selected from published housekeeping gene lists18. To construct random gene lists
with an equal genetic burden to the SysCilia, Cilia, FoxJ1, CHD, Chromatin, and
other tested gene lists, rare variants (maf ≤ 0.005) found in the ExAC/gnomAD
database39 were summed over the largest coding transcript of every gene. This sum
was then divided by transcript length to produce a burden ratio for each gene. The
mean burden ratio and corresponding standard deviation for each decile of the
distribution of each gene list was matched by randomly sampling genes from the
whole genome (excluding genes in the test list). By using a sampling approach, a
list of random genes equal in size and matched for burden was created for each
gene list tested for enrichment.

Permutation testing. The permutation analyses were performed using a random
sampling/permutation strategy. A gene list containing 18,876 RefSeq genes was first
created. For each experimental gene list (SysCilia, Cilia, FoxJ1, Chromatin, etc.) of
size N, random samples of equal size were drawn from the 18,876 genes. The
database of all recessive or de novo variation was queried with the random gene
lists to identify damaging recessive and de novo variation (VAAST p value ≤ 0.005).
This process was repeated 100,000 times, each time with an independently gen-
erated random gene list, to create an empirical distribution of the number of
damaged genes (VAAST p value ≤ 0.005) for a gene list of size N. Genes with a
PAR of ≥0.005 were excluded. To test whether the PCGC probands show
enrichment in the SysCilia, Cilia, FoxJ1, CHD, Chromatin, and other gene lists, the
actual number of damaged genes (VAAST p value ≤ 0.005) found for each list was
compared to the distribution of damaged genes found using random genes. An
empirical p value was calculated as p value= (d+ 1)/(P+ 1), where d is the
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number of damaged random genes that exceeded the actual number of damaged
genes in the test list, and P is the total number of random permutations. The
empirical null distributions are good fits to Gaussian distributions. Thus, each
distribution can be standardized by subtracting the mean and dividing by the
standard deviation, i.e., Z-scores, allowing us to rank and order of p values of
different tests.

Belief nets. We learned the structure of the Bayesian networks using the package
“bnstruct”40, which provides an exact search and an Akaike Information Criterion
(AIC)-based scoring function (Silander-Myllymaki algorithm). The exact search
algorithm explores the entire space of conditional dependencies in order to dis-
cover the optimal network structure for the data. Parameter learning for this
optimal network is accomplished using the junction tree algorithm26 provided by
gRain package41. We use the same package for our inference and risk calculations.
To obtain the edge frequencies of the learned structure, we used bootstrap esti-
mates provided by the “bnlearn” package42. In this setting we performed 10,000
bootstrap replications. Bootstrapped structures were calculated with a heuristic hill
climbing search algorithm that uses AIC for optimization. Belief networks by
definition represent conditional dependencies in the dataset as a directed acyclic
graph (DAG); however, it is important not to confuse directionality with causality
or temporal ordering. In keeping with best practice, the belief networks are
visualized in their undirected, moralized form, in which every node is connected to
its Markov blanket.

URLs. Software used for the analyses may be obtained from the following sites:
GATK: [software.broadinstitute.org/gatk/download/], VEP: [uswest.ensembl.org/info/
docs/tools/vep/script/vep_download.html], VVP and VAAST: [github.com/Yandell-
Lab/VVP-pub], PHEVOR: [www.yandell-lab.org/software/phevor.html], GRAPHITE:
[github.com/dillonl/graphite], MySQL: [dev.mysql.com/downloads/repo/yum], R:
[www.r-project.org] (bnlearn, gRain, and bnstruct libraries), Julia: [julialang.org].

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The sequencing data used in this analysis may be downloaded, with committee-approved
access, from the database of Genotypes and Phenotypes (dbGaP) [www.ncbi.nlm.nih.
gov/] (accession numbers phs000571.v5.p2). Additional data files may be obtained from
the authors upon request.
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