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CircAnks1a in the spinal cord regulates
hypersensitivity in a rodent model of
neuropathic pain
Su-Bo Zhang1,2,6, Su-Yan Lin2,3,6, Meng Liu2,3,6, Cui-Cui Liu 1,6, Huan-Huan Ding2,3, Yang Sun4, Chao Ma1,

Rui-Xian Guo2, You-You Lv3, Shao-Ling Wu1, Ting Xu2 & Wen-Jun Xin 2,3,5

Circular RNAs are non-coding RNAs, and are enriched in the CNS. Dorsal horn neurons of the

spinal cord contribute to pain-like hypersensitivity after nerve injury in rodents. Here we show

that spinal nerve ligation is associated with an increase in expression of circAnks1a in dorsal

horn neurons, in both the cytoplasm and the nucleus. Downregulation of circAnks1a by siRNA

attenuates pain-like behaviour induced by nerve injury. In the cytoplasm, we show that

circAnks1a promotes the interaction between transcription factor YBX1 and transportin-1,

thus facilitating the nucleus translocation of YBX1. In the nucleus, circAnks1a binds directly to

the Vegfb promoter, increases YBX1 recruitment to the Vegfb promoter, thereby facilitating

transcription. Furthermore, cytoplasmic circAnks1a acts as a miRNA sponge in miR-324-3p-

mediated posttranscriptional regulation of VEGFB expression. The upregulation of VEGFB

contributes to increased excitability of dorsal horn neurons and pain behaviour induced by

nerve injury. We propose that circAnks1a and VEGFB are regulators of neuropathic pain.
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Many signaling cascades and molecules, such as the
neuroinflammatory response, purine receptors, endo-
genous opioids and neurotrophins, are involved in the

development of neuropathic pain1–4; however, the molecular
mechanism underlying neuropathic pain remains unclear. Cir-
cular RNAs (circRNAs) are endogenous noncoding RNAs that
form covalently closed loops5,6; their sequences are conserved
among species and they have higher stability than linear
mRNAs7,8. Most circRNAs are detected at a higher abundance in
mammalian brain than other surveyed tissues9,10, suggesting that
they may play a vital role in pathological processes and may serve
as biomarkers for some neurological disorders11. CircRNAs have
been shown to act as competing endogenous RNAs that sponge
miRNAs by complementary base pairing and regulate the trans-
lation of target mRNAs. For example, ciRS-7 functions as a
miRNA sponge to suppress miR-7 activity12. In addition, there is
evidence that some circRNAs may form RNA–protein complexes
with RNA-binding proteins and regulate their activities13,14.
Although recent studies showed that nerve injury alters circRNA
expression in rat spinal dorsal horn15,16, whether and how cir-
cRNA contributes to neuropathic pain has not been reported.

VEGFB, as the least well-characterized member of the VEGF
family, is widely expressed in various tissues, including muscle,
brain, and fat17,18. Due to its high sequence homology to VEGFA
and similar receptor binding pattern, VEGFB was originally
thought to be an angiogenic factor19 until a series of studies
demonstrated its involvement in various physiological and
pathological scenarios20,21. For example, VEGFB mRNAs were
significantly increased within temporal white matter following
radiation-induced brain injury22, and VEGFB was also found to
modulate central nervous system inflammation and thereby
worsen encephalomyelitis23. However, whether and how VEGFB
participates in neuropathic pain still remains elusive.

In this study, we show for the first time that a spinal cord-
specific circRNA, circAnks1a, promoted the translocation of the
transcription factor YBX1 into the nucleus. Furthermore, nuclear
circAnks1a facilitated the interaction of YBX1 and the Vegfb
promoter via specific RNA–DNA interaction following nerve
injury. Cytoplasmic circAnks1a also served as a miRNA sponge
for miR-324-3p and enhanced VEGFB mRNA translation. The
upregulation of VEGFB excited the dorsal horn neurons and
contributed to pain behavior induced by nerve injury. These
findings reveal a novel mechanism and identify specific targets for
the treatment of neuropathic pain.

Results
Sequencing of circRNAs in spinal dorsal horn. To generate a
circRNA profiling database, we collected spinal dorsal horn tissue
from rats following spinal nerve ligation (SNL) and examined the
expression of circRNA using RNA-seq analysis of ribosomal
RNA-depleted and RNase R-treated RNA. Sham (Day 14) and
SNL-treated tissues (Days 7 and 14) were sequenced on an Illu-
mina HiSeq platform, yielding an average of 70 million reads,
which were mapped onto the rat genome (Rnor_6.0) using
TopHat2 (Supplementary Table 1)24. We detected 61,833 distinct
circRNAs based on the criterion of at least one unique back-
spliced junction read. The reads per million mapped reads (RPM)
of 12,849 of these circRNAs was greater than 0.1. We annotated
these circRNAs using the RefSeq database and found that 65.02%
of the circRNAs consisted of protein-coding exons (Fig. 1a).
Information on the length of the detected circRNAs (minimum,
maximum, and median) is provided in Fig. 1b and Supplemen-
tary Table 2.

To identify the critical circRNAs in the pathogenesis of
neuropathic pain, we compared the circRNAs in the sham group

and the SNL-treatment group. The DESeq analysis showed that 21
circRNAs were significantly dysregulated with >2.5-fold change on
days 7 and 14 following SNL (Fig. 1c). Using circRNA-specific
divergent primers, quantitative polymerase chain reaction (qPCR)
analysis was performed to examine the changes in the levels of 21
circRNAs (Supplementary Table 3). We found that circ:
chr20:7561057-7573740 (circAnks1a) showed the most significant
increase on days 3, 7, 10, and 14 after SNL treatment (Fig. 1d,
Supplementary Table 3).

Characterization of circAnks1a in spinal dorsal horn. In silico
analysis predicted that circAnks1a was derived from exon 5 to
exon 11 of the Anks1a gene (988 bp) (Fig. 2a). Sanger sequencing
verified this prediction (Fig. 2b). To confirm the circular char-
acteristics of circAnks1a, random hexamer or oligo (dT)18 pri-
mers were used in reverse transcription experiments. Compared
with random hexamer primers, the relative expression of cir-
cAnks1a, but not Anks1a mRNA (mAnks1a), was barely detected
when the primers were replaced by oligo (dT)18 (Fig. 2c). Fur-
thermore, we found that the dorsal horn circAnks1a was resistant
to digestion by RNase R (Fig. 2d). We also validated the speci-
ficity of circAnks1a in dorsal horn (L4–L5) using northern
blotting. The results showed that circAnks1a could be detected
using a circAnks1a probe in samples that had undergone RNase R
treatment, whereas the mAnks1a probe only detected mAnks1a
in samples that had not been treated with RNase R (Fig. 2e). The
results confirmed the specificity of cyclization of circAnks1a.
Next, we intrathecally (i.t.) injected actinomycin D to inhibit
transcription and measured the content of circAnks1a and
mAnks1a in the spinal dorsal horn. CircAnks1a showed slower
degradation and a longer half-life (more than 24 h) than mAn-
ks1a (Fig. 2f). These results demonstrate that circAnks1a is a
stable circular transcript. In addition, we measured the abun-
dance of circAnks1a in various tissues following SNL. The results
showed that circAnks1a was predominantly expressed in spinal
dorsal horn in normal rats and that SNL significantly increased
the expression of circAnks1a only in the dorsal horn, suggesting
that circAnks1a is a well-expressed spinal/pain-specific (tissue/
status-specific) circRNA (Fig. 2g). We measured the expression of
circAnks1a at different levels of the spinal cord from T13 to S3;
the highest expression was found in laminae I-III of L4–L6
(Supplementary Fig. 1a). Fluorescence in situ hybridization
(FISH) and qPCR assays further demonstrated that circAnks1a
was expressed in the nucleus and cytoplasm of dorsal horn
neurons (Fig. 2h, i). As in other studies5, conservative analysis of
the full-length sequence in 20 different species was conducted
using Phylop, and circAnks1a was found to contain 66 con-
servative blocks (http://compgen.cshl.edu/phast/). In addition, the
full-length sequence of circAnks1a was blasted against the human
circRNAs in circBase, and circAnks1a was found to have high
homology with three human circRNAs that originate from
Anks1a: hsa_circ_0076077, hsa_circ_0076079, and hsa_-
circ_0076081 (Supplementary Fig. 1b). These results suggest that
the biogenesis of circAnks1a is conserved in mammals, while its
function has not been reported.

Increased circAnks1a-mediated pain-like hypersensitivity. To
verify that circAnks1a is involved in chronic pain, electro-
physiological alterations, and changes in pain behavior in the
treated animals were examined. We designed two small inter-
fering RNAs (siRNAs); one siRNA targeted the backsplice
sequence (circAnks1a siRNA) and was designed to silence the
expression of circAnks1a, and the other targeted the linear
transcript (mAnks1a siRNA) and was designed to knockdown
mAnks1a (Supplementary Fig. 1c). As expected, intrathecal
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injection of circAnks1a siRNA (1 nmol 10 µl−1) on 5 consecutive
days specifically knocked down the expression of circAnks1a,
whereas intrathecal injection of mAnks1a siRNA specifically
knocked down the expression of mAnks1a on day 14 following
SNL and in naïve rats (Fig. 3a and Supplementary Fig. 1d).
Electrophysiological studies showed that the frequency and
amplitude of miniature excitatory postsynaptic currents
(mEPSCs), depolarization-induced neuronal firing, and EPSP-
spike coupling were significantly increased in NK1R-positive
neurons (in which immunoreactivity was colocalized with
circAnks1a-positive cells) in the spinal cord slices on days 7 and
14 after nerve injury (Fig. 3b and Supplementary Fig. 2). Fur-
thermore, in vivo experiments showed that the number of C-
fiber–evoked action potentials increased after SNL (Fig. 3c).
Inhibition of circAnks1a by injection of circAnks1a siRNA
ameliorated the increase in the amplitude and frequency of
mEPSCs, the positive shift in the resting membrane potential, the
increase in the number of C-fiber–evoked action potentials, the
depolarization-induced neuronal firing and the EPSP-spike cou-
pling that were otherwise observed on days 7 and 14 after SNL
(Fig. 3b, c and Supplementary Fig. 2), whereas inhibition of
mAnks1a did not attenuate these neuronal activities on day 14
following nerve injury (Fig. 3b, c and Supplementary Fig. 2). A
subsequent behavioral test indicated that knockdown of cir-
cAnks1a, but not knockdown of mAnks1a, significantly elevated
the withdrawal threshold (Fig. 3d) and the withdrawal latency
(Fig. 3e) in the SNL-treated rats. Importantly, we also noted that
circAnks1a siRNA or mAnks1a siRNA injection per se did not
change the behavioral sensitivity in the sham rats (Fig. 3d, e). To
further test whether circAnks1a in the dorsal horn contributes to
chronic pain, 600 nl of recombinant AAV-hSyn-circAnks1a-
nEF1α-EGFP was intraspinally injected into the L4–L6 spinal
cord to overexpress circAnks1a. Twenty-one days after virus
injection, the presence of marked green fluorescence and
increased circAnks1a levels in the dorsal horn suggested a high
efficiency of transfection (Supplementary Fig. 3a, b). Importantly,
the number of EPSP-spike couplings (Supplementary Fig. 3c)
and the amplitude and frequency of mEPSCs (Fig. 3f) increased,
and the withdrawal threshold (Fig. 3g) and the withdrawal latency
(Fig. 3h) declined in AAV-circAnks1a-EGFP-injected rats relative
to AAV-EGFP-injected rats. These results suggest that the spinal
cord-specific and conserved circAnks1a contributes to central
sensitization and behavioral hypersensitivity and that it may
represent a novel target for the treatment of chronic pain.

VEGFB contributed to neuron excitation and neuropathic
pain. To elucidate the molecular mechanism through which
circAnks1a regulates neuropathic pain, we measured the gene

expression in the dorsal horn of AAV-injected naïve rats using
whole genome expression microarrays. Compared with AAV-
EGFP-injected rats, the expression of 29 transcripts was upre-
gulated by more than twofold in AAV-circAnks1a-EGFP-injected
rats (Fig. 4a). Among these transcripts, VEGFB mRNA showed
the maximum increase with a q < 0.05 (Fig. 4b). Furthermore, in
the SNL model, VEGFB mRNA and protein were also sig-
nificantly increased on days 3, 7, 10, and 14 compared with the
sham group (Fig. 4c, d). In addition, VEGFB was expressed only
in neurons (NeuN), but not in astrocytes (GFAP) or microglia
(Iba-1) in the dorsal horn (Fig. 4e). To determine whether the
upregulated VEGFB contributes to central sensitization and
nociceptive transmission, we intrathecally injected VEGFB siRNA
and examined the resulting alterations in electrophysiological
characteristics and pain behavior. The decreased VEGFB mRNA
and protein expression following injection of VEGFB siRNA
suggested the efficacy of transfection (Supplementary Fig. 4a, b).
Compared with scramble siRNA, intrathecal injection of VEGFB
siRNA (1 nmol 10 µl−1 for 5 consecutive days) significantly
ameliorated the increase in mEPSC amplitude and frequency
(Fig. 4f). Importantly, the withdrawal threshold and the with-
drawal latency in SNL rats, but not those in sham rats, increased
significantly following injection of VEGFB siRNA (Fig. 4g, h).
Next, recombinant AAV encoding Cre and mCherry (AAV-Cre-
mCherry) was intraspinally injected into VEGFBflox/flox mice.
Twenty-one days after virus injection, marked red fluorescence
and decreased expression of VEGFB mRNA suggested a
high efficiency of transfection (Supplementary Fig. 4c, d).
Importantly, mechanical allodynia (Fig. 4i) and thermal hyper-
algesia (Fig. 4j) were greatly attenuated in AAV-Cre-mCherry
injected VEGFBflox/flox mice relative to AAV-mCherry-injected
VEGFBflox/flox mice after SNL. Finally, we overexpressed VEGFB
by injecting AAV-VEGFB-EGFP into the L4–L6 dorsal horn
(Supplementary Fig. 4e, f). Compared with AAV-EGFP, over-
expression of VEGFB significantly decreased the withdrawal
threshold and the withdrawal latency in normal rats (Fig. 4k, l).
These results suggest that VEGFB plays a critical role in the
development of neuropathic pain induced by nerve injury.

CircAnks1a-regulated VEGFB upregulation in neuropathic
pain. We further examined whether VEGFB upregulation was
mediated by circAnks1a in SNL-induced chronic pain. The results
showed that circAnks1a colocalized with VEGFB (Fig. 5a), and
intrathecal injection of circAnks1a siRNA reduced the upregu-
lation of VEGFB mRNA (Fig. 5b) and protein (Fig. 5c) in the
dorsal horn on day 14 following SNL. Furthermore, circAnks1a
overexpression by intraspinal injection of the recombinant AAV-
circAnks1a-EGFP significantly increased the mRNA (Fig. 5d) and
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protein (Fig. 5e) levels of VEGFB. These results suggest that
upregulation of VEGFB in the dorsal horn after SNL is dependent
on circAnks1a expression.

CircAnks1a promoted the nuclear translocation of YBX1. To
elucidate the molecular mechanism by which circAnks1a reg-
ulates VEGFB expression in the dorsal horn following SNL, we
performed an RNA pulldown assay using exogenous linearized
circAnks1a to search for potential circAnks1a-associated proteins.
Mass spectrometry (Supplementary Fig. 5) and western blotting
(Fig. 6a) revealed an obvious interaction between linearized

circAnks1a and YBX1 protein on day 14 following SNL. To
examine whether endogenous circAnks1a also bound to YBX1
protein following SNL, we performed the RNA pulldown assay
using a circAnks1a probe. Compared with the sham group, YBX1
was significantly immunoprecipitated by endogenous circAnks1a
on day 14 following SNL (Fig. 6b). In addition, RNA-binding
protein immunoprecipitation (RIP) analysis showed that the level
of circAnks1a precipitated by the YBX1 antibody was significantly
increased on day 14 following SNL compared with the sham
group in dorsal horn tissues (Fig. 6c). Bioinformatics analysis
(ATtRACT, RBPmap) showed that two potential YBX1 motifs
were present in the circAnks1a (Fig. 6d). Furthermore, the EMSA
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experiment showed that recombinant YBX1 protein obviously
bound to the circAnks1a site-1 (YBX1 motif-1), but not to site-2
(YBX1 motif-2), and preincubation of unlabeled probe, but not
mut-unlabeled probe, prevented the binding of YBX1 to cir-
cAnks1a site-1 (Supplementary Fig. 6a). These results suggest that
the exact site of circAnks1a to which YBX1 binds is the
UCCAGCAA sequence. High resolution images obtained by
structured illumination microscopy (SIM) showed that cir-
cAnks1a bound to YBX1 in both the cytoplasm and the nucleus
(Fig. 6e). Transcription factors such as YBX1 often execute their
functions after translocating into the nucleus. Hence, we sepa-
rated the nucleus and cytoplasm of spinal dorsal horn tissues, and
measured the levels of nuclear YBX1 following SNL. The results
showed that the amount of nuclear YBX1, but not the amount of
total YBX1, increased significantly on days 7 and 14 following
SNL (Fig. 6f and Supplementary Fig. 6b), and this increase dis-
played a time course similar to that of the increase in circAnks1a.

We further investigated whether circAnks1a participated in the
nuclear translocation of YBX1. Intrathecal injection of circAnks1a
siRNA inhibited nuclear YBX1 accumulation on day 14 after SNL
(Fig. 6g), and intraspinal injection of AAV-circAnks1a-EGFP
markedly enhanced the level of nuclear YBX1 (but not that of
total YBX1) in naïve rats compared with naïve rats injected with
AAV-EGFP (Fig. 6h and Supplementary Fig. 6d). It is well-known
that transportin-1 plays an important role in cytoplasmic–nuclear
transport25, and that it mediates YBX1 nuclear translocation in
HeLa cells26. It is unclear whether the increased YBX1 found in
the nucleus following SNL is associated with transportin-1. Sig-
nificantly increased amounts of YBX1 were found in the immu-
nocomplexes precipitated by transportin-1 from dorsal horn
lysates on day 14 after SNL (Fig. 6i), suggesting an enhanced
interaction between YBX1 and transportin-1. Importantly,
intrathecal injection of circAnks1a siRNA significantly attenuated
the interaction between YBX1 and transportin-1 in the SNL
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group (Fig. 6i), and circAnks1a overexpression increased the
YBX1 content of immunocomplexes precipitated by transportin-1
in the naïve group (Fig. 6j). Next, we verified the interaction
between circAnks1and transportin-1. Immunoprecipitation with
transportin-1 antibody using RIP methods showed that SNL
significantly increased the level of circAnks1a, and this was
suppressed by YBX1 siRNA (Supplementary Fig. 6e). Further
EMSA showed that recombinant transportin-1 protein did not
bind to circAnks1a site-1 (Supplementary Fig. 6f). Taken toge-
ther, these results suggest that circAnks1a enhances the interac-
tion between YBX1 and transportin-1 by interacting directly with
YBX1, thus promoting nuclear translocation of YBX1 in the
dorsal horn after nerve injury.

YBX1 contributed to VEGFB upregulation. It is well-known
that the transcription factor YBX1 modifies the expression of
target genes by interacting with DNA in the nucleus. We examined
whether the increased nuclear YBX1 participated in the
circAnks1a-mediated VEGFB upregulation that was observed fol-
lowing SNL. The results showed that YBX1 immunofluorescence
was present in the DAPI-positive nuclear region and that the
YBX1 immunofluorescence colocalized with VEGFB-positive cells

(Fig. 7a). Furthermore, intrathecal application of YBX1 siRNA
completely blocked the upregulation of VEGFB mRNA (Fig. 7b),
and partially attenuated the increase in VEGFB protein in SNL rats
(Fig. 7c). Notably, administration of transportin-1 siRNA (i.t.) also
attenuated the upregulation of YBX1 in the nucleus (Fig. 7d) and
the increases in VEGFB mRNA (Fig. 7e) and protein (Fig. 7f) on
day 14 following SNL.

CircAnks1a promoted recruitment of YBX1 to Vegfb pro-
moter. To explore the mechanism underlying nuclear YBX1
mediation of VEGFB upregulation, we first predicted the poten-
tial binding sites of YBX1 in the Vegfb gene promoter region
using the Genomatix database (Fig. 8a). ChIP-PCR assays using
primers designed to amplify a fragment (−2036 to −1820) of the
Vegfb promoter showed that recruitment of YBX1 to the Vegfb
promoter was significantly increased on day 14 following SNL
(Fig. 8b). To further confirm that the binding of YBX1 to the
Vegfb promoter is functional, a 2200-bp fragment of the Vegfb
promoter was fused to the promoter-less firefly luciferase gene of
the pGL3-Basic vector to generate a Vegfb-luc reporter. Promoter
activity was assessed by measuring luciferase activities in trans-
fected 293T cells. YBX1 overexpression enhanced the luciferase
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Fig. 7 Increased YBX1 in the nucleus contributes to VEGFB expression. a Representative image labeled for YBX1, VEGFB, and DAPI. Scale bar, 50 μm (n=
3). b Continuous intrathecal administration of YBX1 siRNA prevented the upregulation of VEGFB mRNA induced by SNL (*P < 0.05, **P < 0.01 vs. sham
group, ##P < 0.01 vs. corresponding scramble group, two-tailed one-way ANOVA, n= 5). c YBX1 siRNA (i.t.) attenuated the VEGFB protein upregulation
on day 14 after SNL (*P < 0.05, **P < 0.01 vs. sham group, #P < 0.05 vs. corresponding scramble group, two-tailed one-way ANOVA, n= 4). d Suppression
of transportin-1 by transportin-1 siRNA (i.t.) decreased YBX1 accumulation in the nucleus (**P < 0.01 vs. sham group, ##P < 0.01 vs. corresponding scramble
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the mean ± s.e.m. Source data are available as a Source Data file
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activities compared with the negative control vector, while
overexpression of circAnks1a alone had no effect on Vegfb
transcription (Fig. 8c).

In addition, the PCR results showed that circAnks1a expres-
sion in the nucleus was significantly increased on days 7 and 14
following SNL (Fig. 8d). Considering the high-resolution images
showing that circAnks1a binds to YBX1 in the neuronal nucleus
(Fig. 6e), we tested the hypothesis that circAnks1a also affects the
transcriptional regulation of Vegfb by YBX1. Our study showed
that suppression of circAnks1a expression by intrathecal injection
of circAnks1a siRNA significantly decreased the enrichment of
YBX1 (Fig. 8b) and that overexpression of circAnks1a increased
the enrichment of YBX1 on the Vegfb promoter (Supplementary
Fig. 7). Importantly, the luciferase assay analysis showed that the
binding of YBX1 to the Vegfb promoter was enhanced by
overexpression of circAnks1a, indicating that circAnks1a may
directly promote the recruitment of YBX1 to the Vegfb promoter
(Fig. 8c, e). Moreover, in silico analysis using IntaRNA, LncRNA
and LncTar showed that the Vegfb promoter has two potential
circAnks1a binding regions, one at positions −1834 to −1687
(promoter region 1) and another at −1510 to −1451 (promoter
region 2). We constructed promoter region 1- and promoter
region 2-truncated dual luciferase vectors and found that the
luciferase activities decreased significantly when promoter region
1 was truncated (Fig. 8e). Next, we performed chromatin isolation
by RNA purification (ChIRP) assays in vitro and found that
circAnks1a bound strongly to the Vegfb promoter at positions

−1834 to −1687, but that it did not bind strongly at positions
−1510 to −1451 in circAnks1a-overexpressing C6 cells (Fig. 8f).
These results suggest that circAnks1a promotes the transcription
of Vegfb by YBX1 only when it is bound to promoter region 1. In
in vivo experiments, we confirmed that SNL treatment sig-
nificantly enhanced the binding of circAnks1a to the Vegfb
promoter at positions −1834 to −1687 compared with the sham
group (Fig. 8g). The above evidence demonstrates for the first
time that exonic circAnks1a in the nucleus binds directly to the
Vegfb gene and promotes the transcription of Vegfb by recruiting
YBX1 to the Vegfb promoter (Fig. 8h).

CircAnks1a acted as a sponge for miR-324-3p. The above
results showed that administration of YBX1 siRNA completely
blocked the upregulation of VEGFB mRNA (Fig. 7b) but only
partially attenuated the increase in VEGFB protein in SNL rats
(Fig. 7c). Considering our finding that circAnks1a siRNA com-
pletely inhibited the upregulation of VEGFB protein induced by
nerve injury, another YBX1-independent pathway might exist
through which circAnks1a regulates the expression of VEGFB in
the setting of nerve injury. It is well-known that miRNAs play a
critical role in post-transcriptional regulation and that cyto-
plasmic circRNAs can act as miRNA sponges to regulate target
gene translation. We first conducted RIP from spinal dorsal horn
tissues using an antibody against argonaute 2 (AGO2). The qPCR
analysis showed that endogenous circAnks1a was enriched in
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AGO2 immunoprecipitates, implying that circAnks1a might have
the ability to sponge miRNAs (Fig. 9a). Next, we used miRanda to
predict that 84 miRNAs had potential binding sites with cir-
cAnks1a (Supplementary Table 4); 9 of these miRNAs had at least
3 potential binding sites for circAnks1a (Fig. 9b). After con-
structing a luciferase reporter by inserting the entire circAnks1a
sequence into the 3’ untranslated region (UTR) of firefly luci-
ferase, we performed a luciferase screening by co-transfecting the
miRNA mimic and the luciferase reporter into 293T cells.
Compared with control miRNA, miR-324-3p significantly
reduced the luciferase reporter activities by more than 50%
(Fig. 9c). Next, we performed RNA pull-down experiments using
dorsal horn tissue. The results showed that the circAnks1a-
specific probe significantly enriched the miR-324-3p compared to
the scramble probe (Fig. 9d). Furthermore, we used a biotin-
coupled miR-324-3p mimic to test whether miR-324-3p could
pull-down circAnks1a. The results showed that the biotin-
coupled miR-324-3p probe captured more circAnks1a than the
biotin-coupled control probe in pull-down experiments using
dorsal horn tissues (Fig. 9e). FISH demonstrated that miR-324-3p
was expressed in neurons (Fig. 9f) and that it colocalized with
circAnks1a (Fig. 9g). Taken together, these results suggest that
circAnks1a acts as a sponge for miR-324-3p.

CircAnks1a regulates VEGFB expression through miR-324-3p.
We observed that miR-324-3p colocalized with VEGFB in the
dorsal horn (Fig. 10a), and we predicted a putative miR-324-3p
binding sequence in the 3’UTR of VEGFB mRNA using miRanda
and RNA22 (Fig. 10b). The luciferase reporter vector in which the

3’UTR of VEGFB mRNA was fused to the 3’UTR of luciferase
was transfected into 293T cells together with miR-324-3p mimics.
The results showed that miR-324-3p mimics significantly reduced
the luciferase signal compared with the control miRNA (Fig. 10c).
In vivo experiments further showed that intrathecal injection of
miR-324-3p agomir significantly attenuated the increase in
VEGFB protein (Fig. 10d), but did not affect VEGFB mRNA
levels (Fig. 10e) on day 14 following SNL. Behavioral tests also
showed that miR-324-3p agomir application (i.t.) significantly
increased the withdrawal threshold (Fig. 10f) and the withdrawal
latency (Fig. 10g) in SNL-treated rats. Furthermore, suppression
of miR-324-3p by intrathecal injection of antagomir did not
change VEGFB mRNA levels (Fig. 10h) but markedly promoted
the expression of the protein in naïve animals (Fig. 10i).
Importantly, miR-324-3p antagomir treatment significantly
induced mechanical allodynia (Fig. 10j) and thermal hyperalgesia
(Fig. 10k) in naïve animals. To verify that circAnks1a regulates
VEGFB expression by targeting miR-324-3p, we co-transfected
the circAnks1a vector and miR-324-3p mimics into 293T cells
containing the luc-VEGFB vector. The results showed that cir-
cAnks1a overexpression rescued the decrease in the luciferase
signal in the presence of miR-324-3p mimics (Fig. 10l). These
results support the conclusion that circAnks1a also regulates
the expression of VEGFB translationally by sponging miR-324-3p
following SNL.

Discussion
In the present study, we identified for the first time a spinal cord-
specific conservative circRNA, circAnks1a, that may be a key
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biomarker in the treatment of chronic pain. Suppression of cir-
cAnks1a decreased VEGFB upregulation and attenuated the
excitability of dorsal horn neurons and neuropathic pain fol-
lowing SNL, while overexpression of circAnks1a reduced the
withdrawal threshold and withdrawal latency and increased
VEGFB expression in naïve rodents. These data suggest for the
first time that the novel circAnks1a/VEGFB pathway plays an
important role in the development of neuropathic pain induced
by nerve injury. Next, we found that the transcription factor
YBX1 is a critical protein mediator of circAnks1a-regulated
VEGFB expression in rodents with neuropathic pain. The
increased binding of circAnks1a to YBX1 in the cytoplasm pro-
moted the translocation of YBX1 into the nucleus through

transportin-1. We further found that nuclear circAnks1a can bind
to the promoter region of Vegfb following SNL treatment and that
this enhanced the recruitment of transcription factor YBX1 to the
Vegfb promoter and facilitated Vegfb transcription. Taken toge-
ther, our findings indicated that circAnks1a facilitated the nuclear
translocation and promoter binding of YBX1, thereby inducing
VEGFB upregulation and neuropathic pain induced by nerve
injury.

According to their biogenesis, circRNAs can be classified into
three categories: exonic circular RNAs, intronic circular RNAs
and exon–intron circular RNAs5,27,28. Previous studies showed
that exonic circular RNAs are mainly distributed in the cyto-
plasm. Here, we found that circAnks1a, as an exonic circular
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RNA, was expressed in both the cytoplasm and the nucleus of
dorsal horn neurons. Furthermore, circAnks1a was specifically
expressed in the spinal dorsal horn only, and it was significantly
increased in rodents with nerve injury. These data raise the
possibility that circAnks1a might exhibit remarkable regulatory
function and mediate the development of chronic pain induced
by nerve injury. This possibility was further validated by our
study of the gain and loss of circAnks1a function in modeled and
naive rodents. We found that silencing endogenous circAnks1a
with siRNA significantly attenuated the neuronal hyper-
excitablity, mechanical allodynia and thermal hyperalgesia that
otherwise occur in rats with nerve injury and that overexpression
of circAnks1a enhanced glutamatergic transmission in dorsal
horn neurons and induced hypersensitivity to mechanical and
thermal stimuli in control rodents. Studies have reported changes
in the expression of some circRNAs (>twofold) in rats with sciatic
chronic constriction injury (CCI)15,16, and changes in the
expression of several circRNAs, such as circRnf4, were shown to
overlap between CCI and SNL, although some differences existed.
The difference in circAnks1a expression in these studies and in
the current study may result from different experimental condi-
tions or detection methods. The present study for the first time
identified the functional involvement of a spinal cord-specific and
conservative circular RNA, namely, circAnks1a, in the regulation
of neuronal excitability and pain behavior in rodents with nerve
injury; thus, circAnks1a provides an attractive biomarker for
treating chronic pain.

We further identified VEGFB as the target protein whose
expression in the dorsal horn was meticulously regulated, at the
transcriptional and translational levels, by circAnks1a, thus
contributing to the central sensitization and the pain behavior
induced by nerve injury. While VEGFB released from tumors is
known to augment pain sensitivity through selective activation of
VEGFR1 expression in peripheral sensory neurons in cancer pain
models29, the present study for the first time illustrated the
functional significance of spinal neuron-derived VEGFB in the
central sensitization to neuropathic pain induced by spinal
nerve injury. We first observed increased expression of VEGFB in
the dorsal horn with a time course consistent with behavior
hypersensitivity induced by nerve injury. Local knockdown or
deletion of VEGFB using VEGFB siRNA and local deletion of
VEGFB by injection of AAV-Cre into VEGFBflox/flox mice
decreased the excitability of dorsal horn neurons and ameliorated
the neuropathic pain induced by nerve injury, whereas over-
expression of VEGFB induced hypersensitivity to mechanical and
thermal stimuli in normal rats. The binding of VEGFB to its
receptor leads to activation of a number of downstream pathways,
including p38 MAPK, ERK/MAPK, PKB/AKT, and PI3K19,30. It
is well-known that activation of p38 MAPK or PKB/AKT can
enhance neuronal excitability via the initiation of an inflamma-
tiory response in the nervous system. Importantly, the upregu-
lation of VEGFB coincided with the increase in circAnks1a in
dorsal horn neurons, and suppression of circAnks1a by specific
siRNA inhibited VEGFB upregulation in dorsal horn neurons as
well as pain behavior induced by SNL. Together, these results
demonstrated that increased levels of VEGFB in dorsal horn
neurons, which are subject to regulation by circAnks1a, con-
tribute substantially to the central sensitization and pain behavior
induced by nerve injury.

Next, we determined the mechanism through which cir-
cAnks1a mediates the transcriptional regulation of VEGFB
induced by nerve injury. We found that spinal nerve injury
significantly increased the interaction between circAnks1a and
transcription factor YBX1, which regulates the expression of
target genes via translocation into the nucleus and binding to
promoter regions31. A previous study reported that lncRNA-

BX111 could recruit YBX1 to the ZEB1 promoter, consequently
activating ZEB1 transcription32. Similarly, the present study
showed that circAnks1a facilitated the nuclear translocation of
YBX1 and its binding to the Vegfb promoter region, thereby
regulating VEGFB expression and pain behavior induced by
nerve injury. SNL significantly increased the interaction between
YBX1 and transportin-1, an essential step in YBX1 transloca-
tion26, and the nuclear distribution of YBX1 in dorsal horn
neurons, and this was attenuated by intrathecal injection of
circAnks1a siRNA. Furthermore, luciferase assays showed that
the binding of YBX1 to the Vegfb promoter was enhanced by
overexpression of circAnks1a. Importantly, chromatin isolation
by RNA purification (ChIRP) using circAnks1a probes showed
that circAnks1a exhibited marked binding to the Vegfb promoter
in vitro, and SNL enhanced the binding compared with that
observed in sham rats. In addition, inhibition of circAnks1a
attenuated the increased binding of circAnks1a and YBX1 to the
Vegfb promoter observed in rats with nerve injury. Taken toge-
ther, the present study for the first time demonstrated that
enhanced interaction between circAnks1a and YBX1 can facil-
itate YBX1 nuclear translocation and its binding to the Vegfb
promoter region and thereby lead to VEGFB upregulation
induced by nerve injury. Whether or not circAnks1a regulates
the expression of other genes that participate in chronic pain
needs further study.

We further characterized the circAnks1a-mediated miRNA
regulation of VEGFB mRNA expression and its functional
involvement in pain behavior induced by nerve injury. Recent
studies have indicated that circRNAs function as miRNA spon-
ges to modulate the pathogenesis and progression of various
diseases33,34. In the present study, we first showed, using a
luciferase reporter assay, that circAnks1a binds to miR-324-3p.
RNA pull-down and FISH analysis further showed that cir-
cAnks1a interacts with miR-324-3p in the dorsal horn to regulate
neuropathic pain induced by SNL. It is well-known that dysre-
gulation of miRNA expression in the spinal cord regulates the
expression of target proteins and contributes to the development
of neuropathic pain35. Previous study showed that miR-324, by
downregulating potassium channel Kv4.2 expression, increased
the excitability of hippocampal neurons and cardiac cells36. In
the present study, we found that miR-324-3p targeted VEGFB
mRNA and regulated VEGFB expression and pain behavior in
rodents with nerve injury. Bioinformatics analysis also showed
that miR-324-3p can target VEGFB mRNA in humans, sug-
gesting the potential involvement of miR-324-3p-mediated
VEGFB expression in patients with neuropathic pain. We fur-
ther found that circAnks1a binds to miR-324-3p and that these
two RNAs are colocalized in dorsal horn neurons. Considering
that circAnks1a functions to mediate VEGFB upregulation and
pain behavior induced by nerve injury, miR-324-3p sponging
activity by circAnks1a potentially contributed to VEGFB upre-
gulation and subsequent central sensitization and pain behavior
induced by nerve injury.

Taken together, our results illustrate the molecular mechanism
through which circAnks1a regulates VEGFB expression in dorsal
horn neurons at transcriptional and posttranscriptional levels
and contributes to central sensitization and pain behavior
induced by nerve injury. Interaction between circAnks1a and
YBX1 promoted YBX1 translocation into the nucleus and
enhanced its binding to the Vegfb promoter, thus facilitating
Vegfb transcription in dorsal horn neurons following nerve
injury. The increase in the levels of circAnks1a also sponged
miR-324-3p, thereby unleashing VEGFB mRNA translation in
the dorsal horn. These findings identify novel targets for the
development of effective treatment for neuropathic pain induced
by nerve injury.
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Methods
Animals. Male Sprague–Dawley rats weighing 200–220 g were obtained from the
Institute of Experimental Animals of Sun Yat-sen University. The mice used in this
study were adult males of C57BL/6 background weighing 20–30 g. VEGFBflox/flox

mice were graciously provided by Prof. Xu-Ri Li of the Zhongshan Ophthalmic
Center. All animals were kept at 24 °C and 50–60% humidity under a 12:12-h light/
dark cycle and with ad libitum access to food and water. All experimental proce-
dures were approved by the Local Animal Care Committee and were conducted in
accordance with the guidelines of the National Institutes of Health (NIH) on
animal care and with the ethical guidelines.

CircRNA sequencing. Total RNA samples (2 μg) were treated with the Epicenter
Ribo-Zero rRNA Removal Kit (Illumina) and RNase R (Epicenter) to remove
ribosomal and linear RNA. Then, RNA-seq libraries were constructed using the
NEBNext® UltraTM RNA Library Prep Kit for Illumina® (NEB) according to the
manufacturer’s instructions. The libraries were quality controlled with Agilent 2200
TapeStation (Agilent) and sequenced using Illumina HiSeq 3000 by RiboBio Bio-
technology Co (Guangzhou, China).

Bioinformatics analysis. For identification and quantification of circRNAs, reads
obtained from the sequencing were first filtered to obtain high-quality clean reads.
To obtain effective clean reads, the residual rRNA was mapped and removed using
an RNA central database. The remaining reads were used for alignment and
analysis. For each sample, the rRNA-removed reads were first mapped to the rat
reference genome (Rnor_6.0) by TopHat2. After alignment with the reference
genome, the unmapped reads were then remapped using the Tophat-fusion
module to identify circRNAs37. The identified circRNA was called if it was sup-
ported by at least one unique back-spliced read in at least one sample. Next, we
used HTseq to calculate the count values and RPM values of the circRNAs in each
sample and subjected the candidate circRNAs to annotation and length analysis.
Differential expression analysis of the RNA-seq was performed using DESeq in R
with the default parameters.

The potential binding sites of circAnks1a to the Vegfb promoter were predicted
by three bioinformatics software programs (IntaRNA, LncRNA and LncTar).
LncRNA (LongTarget) was developed to predict ncRNA-DNA binding motifs and
binding sites in a genomic region based on potential base pairing rules; the
LncRNA (LongTarget) analysis showed that a specific region of the Vegfb promoter
(−1451 to −1510) was a potential binding site for circAnks1a. The results of
IntaRNA analysis, a program for the accurate prediction of interactions between
two RNA molecules, indicated that the region of circAnks1a from 228 to 375 may
be a site with high affinity for the −1834 to −1687 region of the Vegfb promoter.
Finally, LncTar calculation showed that circAnks1a could bind to the region of
−1041 to −2000 of the Vegfb promoter. The binding of miRNA to circAnks1a and
the Vegfb gene was predicted by miRanda.

Whole-genome expression microarray analysis. Total RNAs were reverse
transcribed into double-stranded cDNAs. The cDNAs were invitro transcribed into
antisense cRNAs and labeled with Cy3-CTP and Cy5-CTP using a Two-Color Low
Input Quick Amp Labeling Kit (Agilent Technologies). Fluorescent dye-labeled
cRNAs were fragmented and hybridized to a Sure Print G3 Rat GE 8 × 60 K
microarray using an Agilent Gene Expression Hybridization Kit. The fluorescence
intensities at 635 nm (Cy5) and 532 nm (Cy3) were measured using an Agilent
microarray scanner. The microarray data were extracted using Agilent Feature
Extraction Software. Low-intensity spots were removed so that each gene had
expression values in more than 80% of the samples analyzed. Signals were nor-
malized by Loess normalization. Differentially expressed genes (DEGs) were
screened using SAM v4.01 software with the false discovery rate set to 5% (q-value
< 0.05).

RNA preparation and qRT-PCR. Nuclear and cytoplasmic RNA was extracted
using Norgen’s Cytoplasmic & Nuclear RNA Purification Kit (Norgen Biotek
Corp.). RNAs were extracted using Trizol reagent (Life Technologies). For RNase R
treatment, 2 µg of RNA was incubated with 3 U µg−1 of RNase R (Epicenter) for
20 min at 37 °C. To quantify the amount of mature miRNA, the All-in-OneTM

miRNA qRT-PCR Detection Kit (GeneCopoeia) was used according to the man-
ufacturer’s instructions. PrimeScript RT Master Mix (Takara) and SYBR Premix Ex
Taq II (Takara) were used to quantify the amounts of mRNA and circRNA. In
particular, the annealing of divergent primers at the distal ends of circRNAs was
used to determine the abundance of circRNA. The primers used are listed in
Supplementary Table 5.

SNL and behavioral tests. In rats under isoflurane (4%) anesthesia, the left
L5 spinal nerve was isolated adjacent to the vertebral column and tightly ligated
with 6–0 silk sutures distal to the dorsal root ganglion and proximal to the for-
mation of the sciatic nerve. In sham-operated rats, the L5 spinal nerves were
identically exposed without ligation.

For behavioral testing, animals were placed in a plastic box for 3 consecutive
days (15 min day−1) to allow them to adapt to the environment before testing. Von
Frey filaments that produce different forces were applied alternately to the plantar

surface of the hind paw. In the absence of a paw withdrawal response, a stronger
stimulus was presented; when paw withdrawal occurred, the next weaker stimulus
was chosen. Optimal threshold calculation by this method required 5 responses in
the immediate vicinity of the 50% threshold.

Thermal hyperalgesia was tested using a plantar test (Ugo Basile Plantar Test
Apparatus). Briefly, a radiant heat source beneath a glass flour was aimed at the
plantar surface of the hind paw. Three measurements of hind paw withdrawal
latency were taken for each hind paw and averaged as the result of each test. A 25-s
cutoff was set to prevent tissue damage. All the experiments were performed by
investigators who were blinded to the treatments/conditions.

Intrathecal or intraspinal injection and AAV construction. The cholesterol-
conjugated siRNA, miR-324-3p agomir and antagomir used for intrathecal injection
were obtained from RiboBio. A polyethylene-10 catheter was implanted into the L5/
L6 intervertebral subarachnoid space after the injection of sodium pentobarbital
(50mg kg−1, i.p.); the localization of the tip of the catheter was between the levels of
the L4–L6 spinal segments. The rats were allowed to recover for 5 days. Animals
that exhibited hind limb paresis or paralysis were excluded from the study. SiRNA
(specific sequences are listed in Supplementary Table 6) and miR-324-3p agomir
(1 nmol day−1) were intrathecally injected 30 min prior to SNL surgery, and
administration was continued for 5 days. MiR-324-3p antagomir (1 nmol day−1)
was intrathecally injected for 5 consecutive days.

For intraspinal injection of the AAV virus, the L4–L5 vertebrae were exposed,
and the vertebral column was mounted in a stereotaxic frame. A slight laminotomy
was performed, and the dura was incised to expose the spinal cord. AAV virus was
injected into both sides of the spinal dorsal horn at 4 injection sites (150 nl of AAV
was injected at each site). The micropipette was withdrawn 10 min after viral
injection, and the incision was closed with stitches.

AAV2/9 viruses were designed and constructed by standard methods with
assistance from Obio Technology (Shanghai, China) or BrainVTA (Wuhan,
China). Briefly, a modified vector, pAAV-hSyn-polyA, was obtained by replacing
the DNA fragment between hSyn and the right ITR with PCR-amplified polyA and
the flanking cloning sites. The target gene was synthesized and inserted following
hSyn. A total of 293 cells were transfected with pAAV-RC and pHelper together
with the pAAV vector. Forty-eight hours after transfection, virus was purified from
the cell lysate using a heparin-agarose column and concentrated to its final volume.

C-fiber-evoked action potentials in vivo. The left sciatic nerve of rats was dis-
sected free for bipolar electrical stimulation. C-fiber-evoked responses in the spinal
dorsal horn (L4–L6 segments) were recorded at a depth of 50–500 μm from the
dorsal surface with a microelectrode (impedance, 1–2 MΩ; exposed tip diameter,
1–2 μm). A bandwidth of 0.1–500 Hz was used to record field potentials. An A/D
converter card (DT2821-F-16SE, Data Translation) was used to digitize and store
data in a Pentium computer at a sampling rate of 10 kHz. Single square pulses (0.5
ms duration at 1-min intervals) delivered to the sciatic nerve were used as test
stimuli. The numbers of action potentials were counted at different simulation
intensities. The distance from the stimulation site at the sciatic nerve to the
recording site in the lumbar spinal dorsal horn was approximately 11 cm.

Spinal cord slice preparation. The L4–L6 spinal cord was quickly removed from
the lumbar vertebrae and transferred to oxygenated (95% O2 and 5% CO2) ice-cold
slice solution containing (in mM): 126 NaCl, 3 KCl, 10 D-glucose, 26 NaHCO3, 1.2
NaH2PO4, 0.5 CaCl2, and 5 MgCl2. The dorsal and ventral roots were carefully
removed except that in some slices the associated dorsal roots were kept for
reception of stimulation from the stimulus isolator. The spinal cord was coated
with agarose (Sigma, USA), and 400-μm thick acute spinal L4–L6 cord slices were
cut on a vibratome (Leica VT-1000 S). The slices were incubated in continuously
oxygenated standard artificial cerebrospinal fluid (ACSF: 125 mM NaCl, 3 mM
KCl, 26 mM NaHCO3, 1.25 mM NaH2PO4, 2 mM CaCl2, 1 mM MgCl2 and 10 mM
D-glucose, pH 7.3) for at least 1 h at 33 °C and then transferred to the recording
chamber. Lamina I to II neurons were visualized using a 40× water-immersion
objective on an upright infrared Nikon microscope (Nikon, Japan).

Whole-cell recordings. The recording chamber was continuously perfused with
pre-heated 33 °C ACSF at a rate of 2 ml min−1. The pipettes (3–6MΩ, ~2 µm tip
diameter) were pulled from borosilicate glass with filament (OD: 1.2 mm, ID: 0.69
mm) on a P-2000G micropipette puller (Sutter Instruments, USA). In the
experiments involving recording of evoked responses, a concentric bipolar elec-
trode (FHC, Bowdoin, ME USA) connected to a constant-current stimulus isolator
(DS3; Digitimer Ltd., UK) was used to stimulate the spinal cord dorsal root. Data
were recorded using an EPC 10 amplifier (HEKA Elektronik, Germany). Stimulus
delivery and data acquisition were performed using Patchmaster software (HEKA
Elektronik). A seal resistance of ≥ 2 GΩ and an access resistance of ≤20MΩ were
considered acceptable. The electrophysiological data were replaced and analyzed by
Clampfit10.4 (Axon Instruments Inc., USA) and mini Analysis program6.0.7
(Synaptosoft Inc., Decatur, GA, USA).

mEPSC recordings. The neurons in lamina I/II of L4-6 spinal cord dorsal horn
were voltage clamped at −70 mV, and mEPSCs were recorded after application of
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TTX (0.5 µM) and picrotoxin (100 µM). The pipette contained an internal solution
(135 mM K-gluconate, 0.5 mM CaCl2, 2 mM MgCl2, 5 mM EGTA, 5 mM HEPES,
and 5 mM Mg-ATP, pH 7.3). To stain the recorded neurons, 0.5% biocytin (Sigma,
USA) was also included in the internal solution. Current traces were recorded
continuously for a period of 5 min after at least 5 min achieving whole-cell con-
figuration and analyzed using mini Analysis program 6.0.7 (Synaptosoft Inc.,
Decatur, GA, USA).

Action potential (AP) recordings. The neurons in lamina I/II of the dorsal horn
of L4–6 spinal cord were recorded using pipettes containing an internal solution
(135 mM K-gluconate, 0.5 mM CaCl2, 2 mM MgCl2, 5 mM EGTA, 5 mM HEPES,
5 mM Mg-ATP, and 0.5% biocytin, pH 7.3) under current clamp conditions. All
the recordings were clamped at −70 mV. APs were evoked by current injection
every 10 s with step intervals of 20 pA from −80 to 400 pA over a period of 500 ms.
The relationship between frequency and injected current was analyzed using
Clampfit10.4 (Axon Instruments Inc., USA).

EPSP-spike coupling (E–S) recordings. Whole-cell recordings were acquired
from neurons in lamina I/II of L4–6 spinal dorsal horn while a concentric bipolar
electrode connected to a constant-current stimulus isolator was used to stimulate
the spinal cord dorsal root under current clamp conditions with picrotoxin
(100 µM) in ASCF. All recordings were performed for at least 5 min after achieving
whole-cell configuration. The pipette contained an internal solution (135 mM K-
gluconate, 0.5 mM CaCl2, 2 mM MgCl2, 5 mM EGTA, 5 mM HEPES, 5 mM Mg-
ATP, and 0.5% biocytin, pH 7.3). The E–S protocol began with a 5-min stable
baseline in which a 5-mV EPSP could be evoked by the stimulus isolator. The
stimulus current at baseline was the base stimulus intensity, called N, for each cell.
E–Ss were then recorded following a current stimulus at step intervals of 0.5 N
from 1.0 to 2.5 N; the stimuli consisted of five bursts of five bursts of five bursts of
five pulses each at 20 Hz. E–Ss were analyzed in Clampfit10.4 (Axon Instruments
Inc., USA). Neurons transfected with AAV virus were visualized using a 40× water-
immersion objective on an upright infrared Nikon microscope (Nikon, Japan).
One neuron per slice was sampled for electrophysiological recording. The
recorded neurons were NK1R+ projection neurons, as shown by the fact that
the recorded biocytin-positive cells colocalized with NK1R-positive cells (Supple-
mentary Fig. 2d).

Liquid chromatography–mass spectrometry analysis. The full-length sequence
of circAnks1a was constructed into a linear DNA template containing the T7
promoter. A biotinylated RNA probe was transcribed in vitro using T7 RNA
polymerase (Thermo Scientific) and bound to streptavidin C1 magnetic beads
(Invitrogen). Spinal dorsal horn tissues were ground in liquid nitrogen and incu-
bated in lysis buffer [50 mM Tris-HCl, 150 mM NaCl, 2 mM MgCl2, 1% NP40,
SUPERase-In (Ambion), and protease inhibitors (Roche)] on ice for 30 min. The
lysates were then incubated with the RNA probe for 2 h at 4 °C. The beads were
briefly washed five times with wash buffer and boiled in sodium dodecyl sulphate
(SDS) buffer. The retrieved proteins were separated via SDS-PAGE. The gel bands
were manually excised and digested with mass spectrometry-grade trypsin (Pro-
mega). The digested peptides were analyzed on an AB Sciex TripleTOF® 6600
System (AB Sciex). The mass spectrometry data were analyzed and identified using
Mascot (Matrix Science) in the NCBI Rattus database and the UniProt Rattus
database.

RNA pull-down assays. Biotinylated circAnks1a and miRNA probes were syn-
thesized by Ribo Bio (Guangzhou, China). Spinal dorsal horn tissues were ground
in liquid nitrogen and incubated in lysis buffer [50 mM Tris-HCl, pH 7.4, 150 mM
NaCl, 2 mM MgCl2, 1% NP40, SUPERase-In (Ambion), and protease inhibitors
(Roche)] on ice for 30 min. The lysates were incubated with the biotinylated probes
at RT for 4 h; streptavidin C1 magnetic beads (Invitrogen) were then added to each
binding reaction, and the mixtures were incubated at RT for 2 h. The beads were
then washed briefly with wash buffer [0.1% SDS, 1% Triton X-100, 2 mM EDTA,
20 mM Tris-HCl, and 500 mM NaCl] five times. The bound proteins in the pull-
down were analyzed by western blotting. The bound RNA in the pull-down was
further identified after purification and reverse transcription. The sequence of
circAnks1a and miR-324-3p probes are shown in Supplementary Table 7a.

RNA-binding protein immunoprecipitation. RIP experiments were performed
using a Magna RIP RNA-Binding Protein Immunoprecipitation Kit (Millipore).
Briefly, the spinal dorsal horn was collected and homogenized into a single-cell
suspension in ice-cold PBS. After centrifugation, the pellet was resuspended in an
equal volume of RIP lysis buffer. Magnetic beads were incubated with 5 μg anti-
body against Ago2 (Abcam; ab32381; 5 μg), YBX1 (Abcam; ab12148; 5 μg) or IgG
at RT. The tissue lysates were then incubated with the bead-antibody complexes
overnight at 4 °C. After treatment with proteinase K, the immunoprecipitated
RNAs were extracted and reverse-transcribed. The abundance of circAnks1a was
detected by qPCR.

Chromatin immunoprecipitation (ChIP). ChIP assays were performed using the
ChIP Assay Kit (Thermo). The animal’s L4 and L5 spinal cord was removed
quickly and placed in 1% formaldehyde for 10 min at room temperature to cross-
link transcription factors with chromatin. The formaldehyde was then inactivated
by addition of 125 mM glycine. Sonicated chromatin extracts containing DNA
fragments were immunoprecipitated using YBX1 antibody (Abcam; ab12148;
10 μg) or normal rabbit IgG and pre-blocked protein G-Sepharose beads overnight
at 4 °C. The next day, the chromatin-protein-antibody-bead complexes were eluted,
and the DNA was extracted. The precipitated DNA was resuspended in nuclease-
free water, and qPCR was performed as described above. Finally, the ratio of ChIP/
input in the spinal dorsal horn was calculated.

Chromatin isolation by RNA purification (ChIRP). For affinity capture of com-
plexes containing circAnks1a and chromatin, we designed probes covering the
sequence of circAnks1a for use in ChIRP38–40. The animals’ L4 and L5 spinal cord
tissue was removed quickly and cut into pieces in cold PBS (0.1 M). The tissues or
the collected C6 cells were crosslinked with 1% glutaraldehyde at 25 °C for 10 min
and quenched by the addition of 1.25 M glycine for 5 min. Tissue pellets were
collected by centrifugation and lysed in a buffer containing 50 mM Tris 7.0, 10 mM
EDTA, 1% SDS, 1 mM PMSF, 1× protease inhibitor and 0.1 U μl−1 RNase inhi-
bitor. The lysates were sonicated to shear the DNA to lengths of 100–500 bp using
an Ultrasonic Broken Instrument in a 4 °C water bath for 30 min. Meanwhile, pre-
binding probes labeled with biotin (1 μl of 100 pmol μl−1 probe per 1 ml chro-
matin) were incubated with streptavidin beads for 30 min. The sonicated samples
were centrifuged, and the resulting supernatants were hybridized with the beads
bound to probes in a buffer consisting of 750 mM NaCl, 1% SDS, 50 mM Tris 7.0,
1 mM EDTA, 15% formamide, 1 mM PMSF, 1× protease inhibitor and 0.1 U μl−1

RNAse inhibitor at 37 °C overnight on an end-to-end shaker. Subsequently, the
beads were washed five times with 1 ml of pre-warmed wash buffer for 5 min per
wash at 37 °C. At the last wash step, 1/20 of the beads were reserved for qPCR
analysis. DNA was extracted and used for qPCR analysis. The probe sequences are
shown in Supplementary Table 7b.

FISH and immunohistochemistry. Animals were perfused through the ascending
aorta with 4% paraformaldehyde under anesthesia. The spinal cord tissues were cut
into 25-μm-thick transverse sections after 30% DEPC-sucrose dehydration at 4 °C
and hybridized at 42 °C for 18 h with the 3’ and 5’-TYE563-labeled circ-Anks1a
probe 5’-TCGTTGTCGTTGTTCTTCAGT-3’ (1:100, EXQON) and the 3’ and 5’-
TYE665-labeled miR-324-3p probe 5’-CAGCAGCACCTGGGGCA-3’ (1:100,
EXQON). The sections were then incubated at 4 °C overnight with primary anti-
bodies against VEGFB (Santa Cruz; sc-80442; 1:50), YBX1 (Biorbyt; orb8480; 1:50),
GFAP (CST; 3670; 1:200), Iba1 (Abcam; ab5076; 1:200), or NeuN (Millipore;
MAB377; 1:200). After that, the sections were incubated with Cy3, Cy5, or fluor-
escein isothiocyanate-conjugated secondary antibody at 37 °C for 60 min. The
stained sections were examined using with a Nikon confocal microscope equipped
with a digital camera or by Nikon SIM.

Co-immunoprecipitation (Co-IP). Co-IP was conducted using a Co-
Immunoprecipitation Kit (Pierce). Spinal dorsal horn tissues were excised quickly
and placed in lysis buffer. A Pierce Spin Column was placed in a microcentrifuge
tube. After addition of AminoLink Plus Coupling Resin and affinity-purified
transportin-1 antibody (GeneTex; GTX103003; 10 μg), the complex was incubated
on a rotator at room temperature for 90–120 min to ensure antibody immobili-
zation. Tissue lysates were added to the appropriate resin columns and incubated
with gentle rocking overnight at 4 °C. The spin columns were then centrifuged and
placed in new collection tubes, elution buffer was added, and the flow-through was
collected by centrifugation. The immune complexes in the flow-through were
analyzed by western blotting using YBX1 antibody (Abcam; ab12148; 10 μg). All
co-IP steps were performed at 4 °C unless otherwise indicated.

Dual-luciferase reporter assay. To test the binding of miRNAs to circAnks1a or
to its target gene Vegfb, the full-length sequence of circAnks1a or the 3’UTR of
Vegfb was constructed into the 3’ UTR of pMIR-Report Luciferase vector
(Ambion). 293 T cells were co-transfected with a mixture of 200 ng pMIR-Report
Luciferase vector, miRNA mimic (RiboBio) and/or pAAV-circAnks1a plasmid at a
final concentration of 100 nM using Lipofectamine 2000 (Invitrogen). To investi-
gate the effect of circAnks1a on the binding of YBX1 to the Vegfb promoter, the
Vegfb promoter region containing the truncated or non-truncated putative binding
area was fused to the promoterless firefly luciferase gene of the pGL3-Basic vector
(Promega), and 293T cells were transfected with luciferase reporter plasmids, the
pcDNA3.1-YBX1 plasmid and the pAAV-circAnks1a plasmid. After 48 h, the
luciferase activity of the cells was measured using a dual-luciferase reporter assay
kit (Promega). The result was normalized to the ratio between firefly activity and
renilla luciferase activity.

Western blotting. Proteins obtained from spinal dorsal horn tissues were sepa-
rated by gel electrophoresis SDS-PAGE and transferred to a PVDF membrane. The
PVDF membrane was incubated with primary antibodies against VEGFB (Santa
Cruz; sc-80442; 1:200), YBX1 (Abcam; ab12148; 1:1000), histone H3 (Biorbyt;
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orb136531; 1:500) or β-actin (CST; 4967; 1:1500) overnight at 4 °C. The blots were
then incubated with secondary antibodies conjugated to horseradish peroxidase.
The immunostained bands were quantified using a computer-assisted imaging
analysis system (ImageJ). All uncropped images for full-length blots and gels were
presented in the Source Data file.

Northern blotting. Digoxin-labeled RNA probes were prepared using the DIG
Northern Starter Kit (Roche) with the corresponding PCR products as templates
for T7 transcription. Total RNAs (with or without RNase R treatment) were
electrophoresed on 2% agarose gels and transferred to a Hybond-N+ membrane
(GE Healthcare). After crosslinking by 265-nm ultraviolet light with an energy of
200,000 mJ/cm2, the membranes were pre-hybridized and hybridized with probes
at 62 °C overnight. The membranes were then washed twice in 2× SSC, 0.1% SDS at
room temperature and washed two additional times at 62 °C. After washing, the
blots were incubated with anti-digoxigenin-AP (Roche) and visualized according to
the manufacturer’s instructions. The sequences of the probes are shown in Sup-
plementary Table 8b. All uncropped images for full-length blots and gels were
presented in the Source Data file.

Electrophoretic mobility shift assay (EMSA). EMSA was performed using a
LightShift Chemiluminescent RNA EMSA Kit (Pierce) according to the manu-
facturer’s instructions. RNA probes were labeled at the 3’-ends with biotin. Biotin-
labeled RNA probes were mixed with recombinant YBX1 protein (Abcam;
ab187443; 20 μg) or Transportin-1 protein (GeneTex; GTX103003; 20 μg) and
incubated at room temperature for 20–30 min. Loading buffer was then added to
the reaction mixture, and the sample was loaded on a native acrylamide gel.
Electrophoretic separation of the RNA–protein complexes was conducted at 100 V
for 60 min, and images were acquired. The sequences of the probes are shown in
Supplementary Table 8a.

Statistics. SPSS 25.0 was used to analyze the data; the results are shown as the
mean ± s.e.m. The data were analyzed using the two independent samples t test or
one-way ANOVA followed by Dunnett’s T3 or Tukey’s post hoc test. When tests of
normality were not satisfied, the permutation test was substituted. The criterion of
statistical significance was 0.05. Although no power analysis was performed, the
sample size was determined according to previous publications in behavioral and
pertinent molecular studies. All measurements were taken from distinct samples.

Reporting summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability
The RNA-seq data obtained in this study have been deposited in the SRA database, with
the accession code PRJNA558403. All relevant data supporting the findings of this study
are provided as a Source Data file.
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