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Visible-light-switched electron transfer over single
porphyrin-metal atom center for highly selective
electroreduction of carbon dioxide
Deren Yang 1,4, Hongde Yu1,4, Ting He 1, Shouwei Zuo 2, Xiaozhi Liu 3, Haozhou Yang1, Bing Ni 1,

Haoyi Li 1, Lin Gu3, Dong Wang 1 & Xun Wang 1

External fields are introduced to catalytic processes to improve catalytic activities. The light

field effect plays an important role in electrocatalytic processes, but is not fully understood.

Here we report a series of photo-coupled electrocatalysts for CO2 reduction by mimicking the

structure of chlorophyll. The porphyrin-Au catalyst exhibits a high turnover frequency of

37,069 h−1 at −1.1 V and CO Faradaic efficiency (FE) of 94.2% at −0.9 V. Under visible light,

the electrocatalyst reaches similar turnover frequency and FE with potential reduced by

~ 130mV. Interestingly, the light-induced positive shifts of 20, 100, and 130mV for por-

phyrin-Co, porphyrin-Cu, and porphyrin-Au electrocatalysts are consistent with their energy

gaps of 0, 1.5, and 1.7 eV, respectively, suggesting the porphyrin not only serves as a ligand

but also as a photoswitch to regulate electron transfer pathway to the metal center.
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Converting CO2 to high-value chemicals is an ongoing
challenge in the catalytic field1. Thermocatalysis2,3, pho-
tocatalysis4–6, and electrocatalysis7–10 are recognized as

promising technologies for CO2 conversion. However, these
catalytic routes still suffer from a series of issues, such as high
temperature for thermal catalysis, low yield for photocatalysis,
and high overpotential for electrocatalysis11–14.

In order to overcome such challenges, researchers propose that
external field input can significantly improve intrinsic activity and
energy efficiency. For example, a plasma field can vibrationally
excite CO2 molecules into free radicals and excited species, which
may largely reduce activation temperature in thermocatalytic
process15. In addition, external bias is widely used in photo-
catalytic processes to facilitate charge separation16. It is worth
mentioning that suitable light irradiation possibly interferes with
electronic properties of electrocatalysts, such as electron transfer,
band-bending, charge distribution, Fermi level, and desorption
energy of intermediate, and all these factors can alter catalytic
pathways and performance. However, there have been limited
studies looking into the light field effect on electrocatalytic
reduction of CO2. According to these limited studies, “photo-
coupled electrocatalyst” is usually constituted with a ternary
complex, including the dye as light harvester, semiconductor as
charge transfer mediator, and metal nanoparticle as CO2

activator17,18. On the one hand, the hybrid system easily leads to
complicated synthesis and poor durability; on the other hand, the
high interior resistance causes the low efficiency.

As we all know, chlorophyll continuously provides energy and
resources for the entire ecosystem by the photosynthetic con-
version of CO2 to glucose. It is worth mentioning that porphyrin
is the photosensitive core component of chlorophyll, whose
porphyrinic ligand cooperates with a centrally bound Mg
atom19,20. The electronic property is susceptible to conjugative
perturbation of 18π aromatic macrocycle, thus utilizing rational
external fine-turning (such as light irradiation) can drastically
alter electronic performance21. Furthermore, extensive studies
have indicated Au and single-Co-atom electrocatalysts display the
best catalytic activity for CO production among metals and
single-atom catalysts22,23, respectively, and Cu species are sole
candidates for C2+ production. Therefore, synthetic mimics of
chlorophyll may promote insight into the catalytic mechanism
and development of “photo-coupled electrocatalyst” at the atomic
level via replacing the central Mg of a chlorophyll molecule with
Au, Cu, or Co24 (Fig. 1a).

Here we synthesize zirconium porphyrinic metal-organic fra-
mework (MOF) hollow nanotubes (HNTMs) as supports to
anchor Au, Cu, and Co (named as HNTM-Au-SA, HNTM-Cu-
SA, and HNTM-Co-SA), respectively. In the dark, HNTM-Au-SA
exhibits an ultrahigh turnover frequency (TOF) of 37,069 h−1 at
−1.1 V. Motivated by light irradiation, a similar TOF value is
obtained at a lower overpotential with a positive shift of 130 mV.
Interestingly, we observed similar results on HNTM-Cu-SA and
HNTM-Co-SA, suggesting that the light irradiation can easily
facilitate electrochemical activation of CO2 molecule over single
porphyrin-metal atom catalyst. Through both experimental tests
and density functional theory (DFT) calculations, we have suc-
cessfully demonstrated the feasibility of “photo-coupled electro-
catalysis.” Thus, the application of a “photo-coupled
electrocatalyst” that integrates electrocatalytic activity with light
sensitivity provides an avenue to activate CO2 at a low
overpotential.

Results
Characterization of single-Au-atom structure. As shown in
Supplementary Fig. 1, HNTM could be synthesized via a

solvothermal method with ZrCl4, tetrakis (4-carboxyphenyl)-
porphyrin and benzoic acid. Transmission electron microscopy
(TEM) images reveal the uniform HNTM morphology with a size
of around 500 nm (Supplementary Fig. 2a, d). The inherent
hollow interior of HNTM could serve as a collector for CO2

concentration and a microreactor for CO2 conversion
simultaneously25.

Then the HNTM were treated with HAuCl4·4H2O (CoCl2,
CuCl2·2H2O) in N,N-dimethylformamide (DMF) at 80 °C for 4 h
to immobilize corresponding metal atoms (HNTM-M-SA)
(Fig. 1b and Supplementary Fig. 2b, e). The HNTM loaded with
metal nanoparticles (HNTM-M-NP) were also prepared for
comparison (Supplementary Fig. 2c, f). The TEM and scanning
tunneling electron microscopy (STEM) images exhibit that
HNTM-Au-SA retains its initial nanostructure after metal atom
immobilized (Supplementary Fig. 3a, b). Neither sub-nanometer
clusters nor nanoparticles are detected, indicating Au species
possibly exist as single atoms. The line-scanning spectra and
energy dispersive spectroscopy (EDS) mapping images indicate
that C, N, O, Zr, and Au elements are well-dispersed over the
entire nanostructure (Fig. 1c and Supplementary Fig. 3c, d). Low
loading amount of gold (0.07% by optical emission spectrometry-
inductively coupled plasma (OES-ICP)) results in weak Au
element signal. As shown in Fig. 1d, clearly observed porphyrin
units on HNTM-Au-SA surface are marked by red rhombus.
Aberration-corrected high-angle annular dark-field imaging
(HAADF)-STEM images confirm that the Au species are in
single atom form, which are presented as bright dots in the center
of red circles (Fig. 1e). As for HNTM-Au-NP, the TEM and
STEM images prove the existence of Au nanoparticles with a size
distribution between 5 and 10 nm (Supplementary Fig. 4). Due to
the insufficient anchoring sites, excessive addition of metal salt
would result in the formation of nanoparticles.

As shown in Fig. 2a, N2 adsorption–desorption isotherms of
HNTM and HNTM-Au-SA exhibit similar type IV curves. The
H3-type hysteresis loops indicate the existence of abundant
mesopores with the sizes of 2–5 nm, which is also confirmed by
pore size distribution in Supplementary Fig. 5. Compared with
HNTM with the specific surface area of 894 m2 g−1, the
incorporation of Au atoms and Au nanoparticles result in lower
value of 384 and 31 m2 g−1 for HNTM-Au-SA and HNTM-Au-
NP, respectively.

Both of HNTM and HNTM-Au-SA show the X-ray diffraction
(XRD) patterns in consistence with PCN-22526 (Fig. 2b),
indicating the well-maintained crystallinity after single Au atom
immobilized. An apparent diffraction peak located at 6–7° is
observed in HNTM-Au-NP, which may be ascribed to the high
degree of ordered Au plane within MOF framework27.

X-ray photoelectron spectroscopy (XPS) was used to investi-
gate the oxidation state of Au in HNTM-Au-SA and HNTM-Au-
NP. The survey XPS spectrum reveals the predominant presence
of Zr, C, O, N, and Au elements, and no other hetero-elements
(Cl) are detected (Supplementary Fig. 6). The Au 4 f XPS
spectrum of HNTM-Au-SA displays two peaks at binding
energies (BEs) of 92.0 eV (Au 4f5/2) and 88.2 eV (Au 4f7/2),
corresponding to Au3+, which could be ascribed to Au-N
coordination28 (Fig. 2c).

To further confirm the single-Au-atom structure, X-ray
absorption fine structure (XAFS) spectroscopy was conducted
(Fig. 2d). The Au L3-edge in the X-ray absorption near edge
structure (XANES) curve of HNTM-Au-SA is almost the same as
HAuCl4·4H2O, suggesting the oxidation state of Au atom is
around +3, which is in good accordance with XPS results.
Meanwhile, the XANES curves of HNTM-Au-NP and Au foil are
approximately the same, implying Au species mainly exist as
metallic nanoparticles.
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The coordination information of single-atom structure was
indicated by the extended XAFS (EXAFS). Figure 2e shows the
Fourier transform (FT) k3-weighted EXAFS spectra of HNTM-
Au-SA at Au L3-edge. In contrast to reference samples (Au foil
and HAuCl4·4H2O), no obvious peaks of Au-Au (2.1 and 2.7 Å),
Au-H (0.9 Å), and Au-Cl (1.8 Å) coordination are detected. Only
a prominent peak at 1.5 Å is observed, corresponding to Au-N
coordination28. As a comparison, the EXAFS spectra of HNTM-
Au-NP exhibits strong Au-Au peaks, in good agreement with
XANES results. Wavelet transform was also conducted to search
the atomic dispersion of Au atom. The intensity maximums of Au
foil and HNTM-Au are 2.6 Å and 1.5 Å, corresponding to Au-Au
and Au-N contributions, respectively28 (Supplementary Fig. 7).

Figure 2f shows the fitting curve of single-Au-atom structure,
which is perfectly reproduced by the experimental FT-EXAFS

data. As shown in Supplementary Table. 1, the coordination
number (Au-N) is 4, the bond length is 1.52 Å, and the disorder is
0.00785 Å2. Based on the above results and previous study24, we
propose the schematic model of HNTM-Au-SA in the inset of
Fig. 2f. A single Au atom is coordinated with four N atoms and
anchored in the center of square-planar porphyrin unit to form a
catalytic active site.

The single-atom structure of HNTM-Cu-SA and HNTM-Co-
SA was also corroborated by HADDF-STEM and EXAFS
analysis. As shown in Supplementary Fig. 8 and 9, no
nanoparticles are detected on the MOF framework, implying
the single-atom structure of Co and Cu. The aberration-corrected
HAADF STEM images and EDS mapping display Cu and Co
atoms are well-dispersed over the entire structure (Supplementary
Fig. 8–10). XPS and EXAFS analysis further confirm their

Replace central Mg atom with Au atom
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Fig. 1 Preparation and nanostructure characterization of HNTM-Au-SA. a Schematic illustration of photosynthesis and photoelectrochemical reduction of
CO2 on chlorophyll and HNTM-Au-SA, respectively. b TEM image. c STEM image (inset is line-scanning spectrum for Au element). d HRTEM image. Each
rhombus represents a porphyrin unit. e HAADF STEM image. Single Au atoms are highlighted in red circles. Scale bar: b is 1 μm, c is 50 nm, d, e is 5 nm
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single-atom structure (Supplementary Fig. 11), indicating Co and
Cu atoms in the oxidation state of +2. The ICP-OES results show
the single atom loadings are 0.35% and 0.59% on HNTM-Cu-SA
and HNTM-Co-SA, respectively (Supplementary Table 2).

Photo-coupled electrocatalytic performances of CO2 reduction.
To evaluate the CO2 catalytic reduction performance of
porphyrin-metal center structure, the photoelectrochemical
reduction of CO2 was carried out in a transparent H-cell equip-
ped with a 300W Xe lamp (with > 420 nm cutoff filter, 67% solar
intensity). The distance between the light source and H-cell was
about 30 cm to keep electrolyte (0.1 M KHCO3 without a sacri-
ficial regent) temperature stable at 25 °C. The gas and liquid
products were analyzed by gas chromatography (GC) and 1H
NMR, respectively. Notably, no gas and liquid product signals
were detected during photocatalytic process, as the absence of
sacrificial agent cannot trap the photogenerated holes for CO2

activation29,30.

Figure 3a presents the linear sweep voltammograms (LSVs) of
HNTM-Au-SA scanned at 5 mV s−1 in N2- and CO2-saturated
0.1 M KHCO3. HNTM-Au-SA exhibits a very small cathodic
current density in a N2 atmosphere and only H2 is detected at all
potential range, conversely verifying that the products are
originated from the reduction of CO2 (Supplementary Fig. 12).
To further verify the origin of the products, we performed isotope
labeling experiments by using 13CO2 as a carbon source. The
generated CO and HCOOH were analyzed by GC-mass spectro-
metry (MS) and 1H NMR, respectively. As shown in Supple-
mentary Fig. 13a, b, only the 13CO signal (m/z= 29) is observed
in analysis of gas mixture, which is different from the 12CO
(m/z= 28) when 12CO2 was used. For liquid product, the 1H
NMR spectrum of the electrolyte exhibits a doublet after 13CO2

electrocatalysis, which is attributed to the methine proton of
H13COO− (Supplementary Fig. 13c). In contrast, H12COO− is
observed as a singlet at 8.3 p.p.m. after 12CO2 electrocatalysis.
These results clearly prove that both CO and HCOOH are
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Fig. 2 Single-Au-atom structure characterization. a Nitrogen adsorption–desorption isotherms and b XRD curves of HNTM, HNTM-Au-SA, and HNTM-Au-
NP. c Au 4 f XPS spectra of HNTM-Au-SA and HNTM-M-NP. d The normalized XANES spectra. e FT-EXAFS spectra of HNTM-Au-SA, HNTM-Au-NP,
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originated from CO2 reduction and not from the organic residue
in the electrolyte or MOF material.

With the assistance of visible light, the current density of
HNTM-Au-SA significantly increases from 10 to 13 mA cm−2 at
−1.1 V in CO2-saturated electrolyte (Fig. 3b). It is evident that the
porphyrin can utilize solar light to transfer more electron for CO2

reduction. As reference, the current densities of HNTM are
negligible and almost overlapped in N2- and CO2-saturated
electrolyte, revealing the inactivity for CO2 reduction (Supple-
mentary Fig. 14a). Furthermore, the current density on HNTM
shows negligible increase under visible light, suggesting the
entwined orbitals of porphyrin-Au unit can transfer more
electrons from porphyrin under visible light.

The effect of visible light on Faradaic efficiency (FE) at
different potentials was also investigated. As expected, the sole
reaction product for HNTM is H2, indicating Au is the active
site for CO2 reduction (Supplementary Fig. 14c). As for
HNTM-Au-SA, the FECO reaches a maximum of 94.2% at
0.9 V in dark condition as well as 95.2% at 0.8 V under visible
light (Fig. 3c). Therefore, it is reasonable to infer that the visible
light could interfere the electronic property of porphyrin to
enhance atomic activity, which benefits CO2 reduction occurred
at a relatively low potential. It is also worth mentioning that the
higher FECO of HNTM-Au-SA than HNTM-Au-NP can be
attributed to a more suitable chemical bond between inter-
mediate and Au3+ single site than Au nanoparticle (Supple-
mentary Fig. 14d).

TOF results can help us clearly understand the light field effect
in CO2 activation (Fig. 3d). As expected, HNTM-Au-SA shows a
maximum of 37,069 h−1 at −1.1 V under dark condition, much
higher than those previously reported electrocatalysts31,32. When
coupled with light, a similar TOF curve of HNTM-Au-SA is
obtained with a positive shift about 130 mV, indicating visible

light can easily disturb electronic property of catalysts and reduce
the overpotential for CO2 activation.

In order to better study the light field effect, CO2 reduction
performance was also recorded on HNTM-Cu-SA and HNTM-
Co-SA. Similar to HNTM-Au-SA, both HNTM-Cu-SA and
HNTM-Co-SA deliver larger current densities under visible light,
whereas the nanoparticle counterparts perform lower activities,
proving that single atom is much more active than nanoparticle
due to specific valence state and maximum atom efficiency33

(Supplementary Fig. 15). As depicted in Fig. 4a, FECO of HNTM-
Co-SA shows a maximum of 82.9% at −0.7 V under dark
condition. Under visible light, all the FECO exceed 85.0% from
−0.6 to −0.8 V and a maximum of 90.4% is achieved at −0.8 V.
As for HNTM-Cu-SA, only HCOOH and H2 are detected with a
total FE of nearly 100%. FEHCOO

− attains a maximum of 77.2% at
−0.7 V under visible light, higher than that without light
irradiation (58.3% at −0.8 V) (Fig. 4b). As expected, both
HNTM-Cu-NP and HNTM-Co-NP exhibit low FE, reconfirming
lower activity of metal nanoparticles (Supplementary Fig. 16).
Only a weak signal of formate is detected on HNTM-Cu-NP, with
a relatively low FEHCOO

− below 22% at all potential range.
The calculated TOF of HNTM-Cu-SA and HNTM-Co-SA at

fixed potentials is plotted in Fig. 4c, d. A general trend is obtained
as the peak position of TOF curves positively shifted ~ 100 mV
for HNTM-Cu-SA and ~ 20 mV for HNTM-Co-SA. The shifts
demonstrate once again that visible light can alter catalytic
activity of different metal atoms.

The observed product and corresponding FE maximum on
each catalyst are compared in Fig. 5a. HNTM-M-SA always show
the highest FEmax under visible light. To further evaluate the
photo-coupled system, the mass-specific, area-specific, and
charge-specific rate of CO and HCOO− on each catalyst are
presented in Supplementary Fig. 17–19. All of HNTM-M-SA
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exhibit significant improvement under visible light, verifying the
light field effect. Furthermore, HNTM-Cu-SA and HNTM-Co-SA
show similar performance with reported porphyrin complex;
however, TOF value of HNTM-Au-SA shows at least one order of
magnitude larger than them (Supplementary Table. 3). Reported
photoelectrocatalysts are also listed, while they usually show
complicated structures with low FE and reaction rate, which limit
their practical application. Thereby, how to design and synthesize
photo-coupled electrocatalysts with high performance remains
the central challenge in this field.

Photo-coupled electrocatalytic mechanism. To understand the
observed high selectivity and activity on the porphyrin-based
catalysts, we performed DFT calculations of the free energy
landscape for the CO pathway of CO2 reduction with computa-
tional hydrogen electrode model34. The conversion of CO2 to CO
is an overall two-electron two-proton process. As demonstrated
by the energy profile (Fig. 5b), the rate-determining step in this
process is the first proton-coupled electron-transfer step in which
the adsorbed *CO2 is transformed to *COOH, and the corre-
sponding free energy changes are 1.2 eV, 0.6 eV, and 2.8 eV,
respectively, on HNTM-Au-SA, HNTM-Co-SA, and HNTM-Cu-
SA catalysts, which is qualitatively consistent with previous
computational studies of CO2RR on Co and Cu phthalocyanine
and porphyrin monolayers, despite differences in model designs
and material structures35–38. The energy required for the CO2-to-
COOH conversion on HNTM-Cu-SA is so high that it is not an
active catalyst for CO production. It is further noted that different
from the regular 5-coordination single-atom catalysts with only
one active site23, the metal atom in HNTM-M-SA is anchored in
the porphyrin plane and coordinated by four N atoms, so that it
may simultaneously adsorb two CO2 molecules and catalyze the
reduction reaction on both sides of the porphyrin plane. As

illuminated in Fig. 5b, ΔG of the rate-limiting step is reduced
from 1.2 eV to 0.8 eV on HNTM-Au-SA when one of the
adsorbed *CO2 has been reduced to *COOH, whereas it is
increased from 0.6 eV to 0.8 eV on HNTM-Co-SA, suggesting the
CO2 activation on both sides of porphyrin plane may be synergic
for HNTM-Au-SA. This synergistic catalysis mechanism for
HNTM-Au-SA is illustrated in Fig. 5c, in which each Au atom
has two active sites and it adsorbs two CO2 molecules and cat-
alyzes their reduction synergistically. The proposed mechanism
for the CO formation on HNTM-Au-SA gives rise to the lower
potential of −0.9 V in corroboration with the experimental
observation and the improved efficiency of CO2 reduction com-
pared with HNTM-Co-SA with non-synergistic mechanism. It
has thus explained the much higher TOF observed for CO pro-
duction on HNTM-Au-SA than HNTM-Co-SA (25,425 h−1 vs.
1847 h−1 at −0.9 V under dark).

UV-vis diffuse reflection was performed to better understand
the optical properties. All samples show strong absorption in the
range of 200–800 nm, which is ascribed to photon absorption
ability of porphyrin39. After single Au atom immobilized, HNTM-
Au-SA exhibits higher visible light absorption (Supplementary
Fig. 20a). Furthermore, the HNMT-Au-SA shows a lowest
photoluminescence (PL) intensity, suggesting the most efficient
charge separation occurred on coordinated single atom than
encapsulating nanoparticles (Supplementary Fig. 20b). To com-
pare the photo-induced electron transfer efficiency, the difference
value between photocurrent respond at −0.8 and 0 V was
calculated. HNTM-Au-SA shows the highest value of 0.50 mA,
more than five times higher than HNTM-Au-NP, confirming that
visible light can accelerate electron transfer to single Au atom than
nanoparticles (Fig. 6a). More importantly, Fig. 6b clearly reveals
that HNTM-Co-SA shows a higher Tafel slope of 1.21 V dec−1

under dark at the overpotential rang of 0.6–0.8 V, whereas it
decreases to 0.78 V dec−1 under visible light, indicating visible
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light can facilitate a faster 1e− transfer from CO2 to CO2
•−. We

also measured the electrochemical impedance spectroscopy (EIS)
to investigate the effect on the charge transfer resistance (Rct). As
presented in Fig. 6c, EIS results show the Rct is 7.8 ohms under
visible light vs. 8.5 ohms under dark condition, indicating the
photoexcited porphyrin can efficiently facilitate charge transfer.

As illuminated by the frontier orbital analysis of porphyrin-Au,
the electron of the vacant highest occupied molecular orbital
(HOMO) is mostly localized on the porphyrin ligand, and that of
the lowest unoccupied molecular orbital (LUMO) is mainly
localized on the central metal atom. Under dark condition,
external electrons can only flow to the LUMO, which need a high
overpotential to excite across the HOMO-LUMO gap (in the
right part of Fig. 6d). To illustrate the mechanism of photoelec-
trocatalysis and the effect of visible light, we further calculated
the electronic properties of S1 and T1 excited states of these
porphyrin-based catalysts. Both S1 and T1 exhibit clearly the
ligand-to-metal charge-transfer excitation characteristic, which
apparently facilitates the electron-flow and CO2 activation
occurring on the single-Au-site (Fig. 6e). Upon the light
absorption, porphyrin is first excited from the S0 ground state
to the S1 state, and then undergoes fast relaxations to the ground
state as well as the T1 triplet state through the intersystem

crossing process. The spin-orbital coupling in heavy metal
elements is so strong that the relaxation to this long-lived T1

state after the visible light irradiation is prominent. As all the
photophysical processes occur much faster than the electro-
catalysis process, we expect the photo-coupled electrocatalysis of
CO2 proceeds mainly from the T1 state of porphyrin-Au instead
of the S0 state, with the same mechanism proposed above
(Fig. 5c). In addition, the energy required for T1 state is taken
from the light absorption and no electricity is needed (Fig. 6f).
The energy of T1 is 1.7 eV higher than the S0 state, which may
result in the reduction of overpotential by ~ 130 mV (Fig. 6e). To
our delight, the T1 states of HNTM-Cu-SA and HNTM-Co-SA
are 1.5 eV and 0 eV, respectively, consistent with the over-
potential shift of ~ 100 mV and 20 mV observed in experiment.

Discussion
In summary, we have successfully synthesized a series of photo-
coupled electrocatalysts (HNTM-Au-SA, HNTM-Cu-SA, and
HNTM-Co-SA) based on the structure of chlorophyll. When
coupled with light, HNTM-Au-SA and HNTM-Co-SA achieve
high FECO of 95.2% and 92.6%, as well as FEHCOO

− of 77.2% on
HNTM-Cu-SA. HNTM-Au-SA presents a volcano TOF curve
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with a maximum of 37,069 h−1 at −1.1 V under dark condition,
whereas it positively shifts ~ 130 mV under visible light. The
light-assisted TOF results show a positive shift of 20, 100, and
130 mV for HNTM-Co-SA, HNTM-Cu-SA, and HNTM-Au-SA,
respectively, consistent with the calculated energy gaps of 0, 1.5,
and 1.7 eV. Coupled with light field, the porphyrin ligand serves
as a photoswitch to collect photons and motivate external elec-
tron transfer from ground state to T1 state. On the contrary,
electrons can only transfer from the high-energy LUMO under

dark conditions, resulting in high overpotential. This work pro-
vides a blueprint for the design of photo-coupled electrocatalysts
at the atomic scale, utilizing porphyrin ligand as photosensitizer
and coordinated metal atom as catalytic site.

Methods
Synthesis of HNTM-M-SA (Au, Co, Cu). In a typical procedure, 2 mL DMF,
10 mg ZrCl4, 250 mg benzoic acid, and 200 μL H2O were added to 10 mL capacity
Teflon-lined autoclave in sequence. After stirring for 5 min, 10 mg TCCP (detail
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synthetic process is shown Supplementary Methods) was further added in the
above-mentioned solution and stirred for 10 min at room temperature. The
autoclave was sealed and then heated at 120 °C for 18 h. The products were col-
lected via centrifugation at 6000 r.p.m. for 3 min and further washed with ethanol
for three times. HNTM was obtained after drying in vacuum drying oven at room
temperature overnight.

In a typical procedure, 4 mL DMF, 20 mg HNTM, and 200 μL HAuCl4·4H2O
aqueous solution (20 mg Au per mL) were added to a 10 mL Teflon-lined autoclave
and then stirred for 10 min at room temperature. Next, the mixture was heated at
80 °C for 4 h. After cooling down, HNTM-Au-SA was separated via centrifugation
at 10,000 r.p.m. for 3 min and further washed with ethanol for three times. For
HNTM-Co-SA and HNTM-Cu-SA, the same concentration of CoCl2 and
CuCl2·2H2O replaced HAuCl4·4H2O, respectively. HNTM-M-NP was also
obtained by adding doubling dose of metal salts.

Material characterization. The as-prepared samples were characterized by TEM
(HITACHI H-7700), high-resolution TEM (HRTEM, FEI Tecnai G2 F20), XRD
(Bruker D8-advance), and XPS (PHI Quantera SXM), respectively. The BEs were
corrected by the C1s peak at 284.8 eV. All the single atom catalysts were performed
on HAADF-STEM (Titan 80–300). Metal loading was measured by ICP-OES (IRIS
Intrepid II XSP, ThermoFisher). UV-vis diffuse reflectance spectra were obtained
using a UV-vis spectrophotometer (UV-3600, Shimadzu). The PL spectra were
carried out on a Varian Cary Eclipse Fluorescence spectrophotometer in a range of
420–850 nm. The CO and HCOOH produced from the 13CO2 labeling experiments
were analyzed by GC-mass spectrometer (GC/MS-QP2010, Shimadzu) and 1H
NMR, respectively.

The XAFS spectra were measured at 1W1B station in Beijing Synchrotron
Radiation Facility. XAFS measurements at the Au L3-edge, Co K-edge, and Cu K-
edge were conducted in fluorescence mode using a Lytle detector. The energy was
calibrated using corresponding metal foil as references. The acquired EXAFS data
were processed according to the standard procedures using the Athena program.

Photoelectrochemical measurements. Electrochemical measurements were car-
ried out in a transparent H-cell with an electrochemical station (CHI 660E).
Photoelectrochemical measurements were performed in the above-mentioned
electrochemical system equipped with a 300W Xe lamp (with > 420 nm cutoff
filter, 67% solar intensity). The distance between the light source and H-cell was
about 30 cm to keep electrolyte (0.1 M KHCO3 without a sacrificial regent) tem-
perature stable at 25 °C. Five milligrams of catalyst and 5 mg Vulcan XC-72 were
dispersed in 2 ml water–isopropanol solution with a volume ratio of 1:1. Nafion
(20 μL; 5 wt%) was further added in the mixture and kept sonicating for 30 min to
form a homogeneous ink. Then, 400 μL link was uniformly dropped onto the gas
diffusion electrode (area: 1 cm × 2 cm) at room temperature, giving a catalyst
loading of 0.5 mg cm−2. The gas diffusion electrode, Pt wire, and Ag/AgCl were
used as working electrode, the counter electrode, and reference electrode, respec-
tively. Reversible hydrogen electrode (RHE) potentials were calculated by the
Nernst equation, ERHE= EAg/AgCl+ 0.197 V+ 0.0591 × pH.

Before measurements, CO2 gas (99.99%) was purged into the cathodic
electrolyte at a rate of 20 s.c.c.m. for 30 min. During electrochemical and
photoelectrochemical process, the flow rate of CO2 was controlled at 7 s.c.c.m. The
LSVs scanned at 5 mv s−1 in N2- and CO2-saturated 0.1 M KHCO3. Collected gas
products and liquid products were qualitatively and quantitatively analyzed by GC
and 1H NMR. The mole number of gas products and liquid products were
calculated from GC peak areas and 1H NMR peak areas based on standard curves
of pure samples, respectively. The FE was calculated according to the following
equation (1):

FEð%Þ ¼ 96485ðC=molÞ ´ nðmol=mlÞ ´ 2 ´ 7ðml=minÞ ´ 60ðminÞ
Q

´ 100% ð1Þ

Where 96,485 is Faraday constant (C/mol), n is the amount of products per
milliliter (mol/ml), 2 is the electron transfer number (CO, HCOOH, and H2), 7 is
the flow rate of CO2 (mLmin−1), 60 is reaction time (min), and Q is total charge
obtained from chronoamperometry.

The TOF value of catalysts was calculated by the equation (2):

TOFðh�1Þ ¼ Iproduct=2F

mw=M
ð2Þ

Where TOF is TOF (h−1), Iproduct is the partial current density of products (A), 2 is
the electron transfer number for CO and HCOOH production, F is faraday
constant (96,485 Cmol−1), m is catalyst mass in the electrode (g), w is metal
loading (Au, Co, Cu) on HNTM, and M is atomic mass.

DFT calculations. All the calculations including structural optimization, vibra-
tional, and thermochemistry analysis were carried out using DFT with the Gaus-
sian 16 package40. The PBE0 functional was used to treat the exchange-correlation
energy and the long-range dispersion interaction was taken into account by
Grimme’s D3 parameters. The 6–31 G* basis set was applied for the light elements
including H, C, N, and O, and the LANL2DZ basis set and pseudopotential were

used for the heavy metal elements such as Co, Cu, and Au. All the metal porphyrin
complex structures were first fully optimized and then fixed with only adsorbed
species relaxed in the later computations. The free energies of reactants, CO2 and
H2, were corrected to reproduce ΔG298= 0.208 eV for CO2RR to produce CO:
CO2(g)+H2(g) → CO(g)+H2O(l).

Data availability
The data that support the plots within this paper and other findings of this study are
available from the corresponding author upon reasonable request. The source data
underlying Figs. 2–4, 6a–c and Supplementary Figs 5–6, 11–19 are provided as a Source
Data file at https://doi.org/10.6084/m9.figshare.8845793.v1 (https://doi.org/10.6084/m9.
figshare.8845793)41.
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