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Invariance to background noise as a signature of
non-primary auditory cortex
Alexander J.E. Kell1,2,3,5 & Josh H. McDermott 1,2,3,4

Despite well-established anatomical differences between primary and non-primary auditory

cortex, the associated representational transformations have remained elusive. Here we show

that primary and non-primary auditory cortex are differentiated by their invariance to real-

world background noise. We measured fMRI responses to natural sounds presented in iso-

lation and in real-world noise, quantifying invariance as the correlation between the two

responses for individual voxels. Non-primary areas were substantially more noise-invariant

than primary areas. This primary-nonprimary difference occurred both for speech and non-

speech sounds and was unaffected by a concurrent demanding visual task, suggesting that

the observed invariance is not specific to speech processing and is robust to inattention. The

difference was most pronounced for real-world background noise—both primary and non-

primary areas were relatively robust to simple types of synthetic noise. Our results suggest a

general representational transformation between auditory cortical stages, illustrating a

representational consequence of hierarchical organization in the auditory system.
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Humans and other animals infer a rich array of information
about the world from sound. Much of this information is
not readily accessible from the sound pressure waveforms

impinging on the eardrums. A cascade of sensory processing is
thought to be required to transform the incoming waveforms into
a representational format where behaviorally relevant informa-
tion is made explicit1–3. This cascade begins with the cochlea,
continues through the auditory midbrain and thalamus, and
culminates in what are believed to be multiple stages of cortical
processing3–9. Within the auditory cortex, primary and non-
primary areas exhibit clear anatomical differences in cytoarchi-
tecture and connectivity10,11. Physiologically, non-primary
neurons tend, on average, to exhibit longer response
latencies4,5,12 and broader frequency tuning4,13,14. However, the
consequences of such differences for real-world hearing—i.e., the
concomitant representational transformations—remain unclear.

Previous attempts to characterize such transformations have
largely been limited to speech2,15–21, which may involve a spe-
cialized pathway22–24, or have suggested that non-primary areas
are more influenced by task or attention4,17,25. Here, we probe for
a general sensory transformation that might differentiate stages of
representation, measuring the invariance of sound-evoked
responses throughout the auditory cortex to the presence of
background noise.

Listening in noise is a core problem in everyday hearing. Given
that sounds rarely occur in isolation and sum linearly in the air,
sounds of interest are often superimposed on a background of
noise from other sound sources. When, for instance, you are in a
bustling coffee shop and hear your phone ring or listen to a
companion speak, the ambient background noise distorts the
pattern of spikes in the auditory nerve, often substantially. Thus,
to recognize sources of interest, the auditory system must
somehow separate or suppress the effects of the noise. Typical
human hearing is remarkably noise-robust, but listeners with age-
related hearing loss or other forms of impaired hearing struggle in
noisy environments—and are not much helped by contemporary
hearing aids26,27.

What is considered “noise” can depend on the context, and
thus the ability to hear sound sources of interest is in some cases
critically dependent on selective attention28–32. However, some
sounds are more informative than others on basic statistical
grounds. Stationary signals, for instance, have stable statistics over
time and thus convey little new information about the world,
such that it might be adaptive to attenuate their representation
relative to nonstationary sounds. There has been long-standing
interest within engineering in developing methods to separate or
remove these less informative (stationary) sounds from audio
signals33,34. Neuroscientists have explored the possibility that
the brain might by default do something similar, measuring
how neural responses are affected by simple synthetic
noise15,18,19,35–39. Here, we seek to extend the logic implicit in
this research tradition to real-world sounds40,41, using a measure
of stationarity to characterize the extent to which natural sounds
are noise-like in this statistical sense. Stationary sounds, as are
produced by rain, fire, swarms of insects etc., are commonly
referred to as “textures”41. Although the perception of isolated
textures has been characterized to some extent41–43, little is
known about their representation in the brain, or about how they
affect the perception of concurrent foreground sounds43. We
hypothesized that robustness to these more structured sources of
everyday noise might necessitate mechanisms situated later in the
putative cortical hierarchy.

We assess the invariance of cortical responses to a broad
sample of everyday sounds embedded in various sources of real-
world noise, taking advantage of the large-scale coverage afforded
by fMRI to examine this invariance across multiple cortical fields

throughout the human auditory cortex. We find that responses in
primary areas are substantially altered by real-world background
noise, whereas responses in non-primary areas are more noise
invariant. We show that this pattern of invariance is general (i.e.,
it is not specific to speech or music processing), that it is not
observed for simpler synthetic background noises that lack the
structure of many real-world sounds, and that it is robust to
inattention. The results suggest mechanisms of noise robustness
that are complementary to those of directed attention, boosting
responses to nonstationary signals in auditory scenes. More
broadly, these findings reveal a general transformation between
auditory cortical stages, illustrating a representational con-
sequence of the putative hierarchical organization in the auditory
system that has clear relevance to everyday perception and
behavior.

Results
Measuring the stationarity of real-world sounds. To select real-
world background “noise”, we measured the stability of sound
properties (i.e., the stationarity) of hundreds of natural sounds,
assigning sounds with the most stationary statistics to a back-
ground noise set (Fig. 1a). We first computed a cochleagram of
each sound—a time–frequency decomposition obtained from the
output of a simulated cochlear filter bank. We divided the
cochleagram into small temporal segments, and in each segment
separately measured three sets of perceptually relevant statis-
tics41–43: (i) the mean of each frequency channel (capturing the
spectrum), (ii) the correlation across frequency channels (cap-
turing aspects of co-modulation), and (iii) the power in a set of
temporal modulation filters applied to each frequency channel
(capturing rates of amplitude modulation). To assess stationarity
at different time scales, we varied the segment length (50, 100,
and 200 ms). We computed the standard deviation of each of
these statistics over time, averaging across statistics and segment
lengths to return a single stationarity score for each sound (see
the Methods section for details). We used sounds with the most
stationary statistics as noise sources for the experiments below
(the resulting sounds are those that would typically be considered
textures; Fig. 1b lists the stimuli for Experiment 1; see Supple-
mentary Fig. S1 for summary acoustic measures of the stimuli).

Noise invariance increases from primary to non-primary areas.
We examined the invariance of auditory cortical representations
to background noise by assessing the extent to which noise altered
cortical responses to natural sounds. In Experiment 1, we mea-
sured fMRI responses in 11 human listeners to 30 natural sounds
presented in quiet, as well as embedded in 30 real-world back-
ground noises (Fig. 1c). To minimize the MR image acquisition
time, we used a partial field of view, recording responses
throughout the temporal lobe (Fig. 1d). Each sound was ~2 s long
(see Supplementary Fig. S2 for schematic of the experimental
design). To quantify the invariance of the cortical response, we
leveraged the fact that a voxel’s response typically varies across
natural sounds, presumably due to the tuning properties of the
neurons sampled by the voxel. We simply correlated each voxel’s
response to the natural sounds in isolation with its response to
those same natural sounds embedded in background noise
(Fig. 1c). If the neurons sampled by a voxel are robust to back-
ground noise, this correlation coefficient should be high. Different
voxels exhibit different amounts of measurement noise (Supple-
mentary Fig. S3), due to a variety of factors, including differences
in distance from the receiver coils. To enable comparisons across
voxels, we corrected for such measurement noise44,45 (see the
Methods section for details). As a result of this reliability cor-
rection, any differences in the robustness metric across cortical
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areas is not the result of differences in measurement noise across
cortical areas.

Primary cortical responses were substantially altered by back-
ground noise, but non-primary responses were more robust.
Figure 2a shows summary maps of the invariance metric in all
voxels that exhibited a reliable response to sounds, averaged across
all 11 participants. A two-tailed paired t test showed a significant
difference in mean invariance between a primary and non-
primary region of interest (dark blue line in Fig. 2b, t10= 8.37, p
= 7.88 × 10−6; see Supplementary Fig. S4 for plots with individual
subjects). The difference in the effect of background noise on the
invariance of responses in the primary and non-primary regions
could not be explained simply by differential suppression of
responses by background noise—overall responses were similar in
the two conditions (Supplementary Fig. S5). These results suggest
that invariance to real-world background noise may distinguish
primary and non-primary auditory cortical responses.

Increased invariance is not specific to speech or music. It has
long been proposed that parts of non-primary human auditory
cortex may serve to produce invariant representations of

speech15,17–19. But is speech processing somehow special in this
regard? Or is non-primary processing more noise-invariant
irrespective of the sound source? Experiment 1 left this ques-
tion open because about half of the foreground sounds were
instances of speech or music. Given the relatively small number of
non-speech and non-music sounds in the data from Experiment
1, we ran a second experiment with a new stimulus set.

In Experiment 2, we scanned another 12 participants in a
similar paradigm, but with speech and music excluded (Supple-
mentary Table S1 lists the 35 foreground and 35 background
sounds used). The pattern of invariance was similar to that
observed in Experiment 1 (Fig. 2c). A two-tailed paired t test
again showed a difference in the mean invariance in primary and
non-primary regions of interest (light blue line in Fig. 2b; t11=
4.56, p= 8.17 × 10−4). An ANOVA comparing Experiment 1 and
2 showed a main effect of region (F1,26= 57.4, p= 4.83 × 10−8),
but failed to show a main effect of experiment (F1,26= 0.02, p=
0.88) or an experiment-by-ROI interaction (F1,26= 1.39, p=
0.25). These results suggest that the noise invariance of non-
primary auditory cortical responses is not simply a reflection of
speech and music processing, and may instead be a more generic
property of non-primary representations.
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Increased invariance is specific to real-world noise. How do our
results relate to previous work, which used simple, synthetic noise
signals15,18,19,35–37,39? Given that such synthetic signals lack the
structure present in many real-world sounds40,41, it seemed
plausible that invariance to simpler synthetic noise could arise
earlier in a putative hierarchical processing stream compared with
the invariance to more naturalistic noise sources. To address this
question, in Experiment 3, we scanned another 23 participants
with the same 35 foreground sounds as Experiment 2 (i.e.,
without speech or music), but in two different background-noise
conditions. In the first condition, we sought to replicate Experi-
ment 2, presenting the same 35 real-world background noises. In
the second condition, we replaced each of the 35 real-world
background noises with a spectrally matched Gaussian noise
signal—i.e., with the same long-term power spectrum as the
corresponding real-world noise, but otherwise unstructured.

Figure 3a shows example cochleagrams of the real-world and
spectrally matched synthetic backgrounds (see Supplementary
Fig. S1 for the average modulation spectrum of these sounds).
Although these synthetic noise signals match the spectrum of the
real-world background noise, they lack the higher-order statistical
structure present in the real-world noises. Figure 3b plots two
example of statistic classes that characterize natural sound
textures41–43: the cross-channel correlation matrix (left panels)
and modulation spectrum (right panels). Both classes of statistic
vary across real-world noises, but not the synthetic noises, for
which they instead resemble the statistics of white noise (which
provides a completely unstructured point of reference, Fig. 3b, far
right; see Supplementary Fig. S6 for quantification of these
differences).

The results with the real-world background noise replicated
Experiment 2 (Experiment 3, Condition 1; Fig. 3c): non-primary
areas were substantially more robust to real-world background
noise than primary areas (light blue line in Fig. 3d; two-tailed
paired t test: t22= 7.40, p= 2.10 × 10−7; see Supplementary
Fig. S7 for analyses of subregions of primary auditory cortex).
By contrast, when those same natural sounds were embedded in

synthetic noise, responses in both primary and non-primary areas
were relatively invariant (Experiment 3, Condition 2; Fig. 3e and
red line in Fig. 3d): a two-way ANOVA showed an interaction of
noise type (real-world versus synthetic) by ROI (primary versus
non-primary) (F1,66= 5.39, p= 0.023). We obtained qualitatively
similar results when we examined the robustness of patterns of
responses across voxels to the presence of the two types of
background noise; multi-voxel patterns in non-primary areas
exhibited greater invariance than those in primary areas
(Supplementary Fig. S8). Taken together, these results are
consistent with evidence in nonhuman animals of invariance to
synthetic noise in primary auditory cortex35,37,39 and demon-
strate that primary and non-primary areas may be specifically
distinguished by their invariance to more realistic sources of
background noise.

Cortical invariance is relatively unaffected by inattention.
“Foreground” sounds were selected for their nonstationarity, and
it therefore seemed plausible that they could be more salient and
thus preferentially draw participants’ attention46,47. Because
attentional modulations may be stronger in non-primary com-
pared with primary areas4,17,25, it seemed possible that non-
primary areas could appear more invariant than primary areas
simply because they are more strongly altered by attention. We
examined this possibility in Experiment 4, measuring the invar-
iance of auditory cortical responses while attention was directed
to an auditory task or a visual task. We chose to manipulate
attention across modalities because we had difficulty devising a
task that could verifiably direct attention within the auditory
modality to the foreground sound or background noise.

During the auditory task, participants (n= 21) performed the
same task as in the previous three experiments: detecting
differences in the intensity of successive sound stimuli. During
the visual task, participants performed a demanding one-back
task (Fig. 4a), on a stream of four-by-four grids (each displayed
for ~700 ms with an interstimulus interval of ~100 ms). In each
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grid, six of the sixteen squares were colored; the location of two of
the six colored squares changed from stimulus to stimulus unless
the pattern repeated. Participants had to detect exact repeats, and
report these repeats with a button press within the ~700 ms
display period. Participants performed both tasks well (d-prime
on visual task: mean of 3.3, range of 1.8–4.5; accuracy on auditory
task: mean of 0.92, range of 0.83–0.99). The stimuli presented

during each task condition were identical, as the stream of grids
was displayed both during both tasks. The only difference
between the two conditions was which task the participants were
performing.

As intended and expected48,49, the tasks modulated overall
response magnitudes in auditory and visual cortex. Mean
responses in the auditory cortex were higher during the auditory
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task than the visual task, and mean responses in the visual cortex
were higher during the visual task than the auditory task (Fig. 4b;
two-tailed paired t tests, respectively, t20= 5.76, p= 1.23 × 10−5

and t20= 9.78, p= 4.58 × 10−9; ANOVA: region-by-task interac-
tion: F1,60= 142, p= 1.11 × 10−16). Mean responses in the visual
cortex were more substantially altered by task, perhaps because
eye movements may have systematically differed across tasks, as
participants were not required to fixate in either condition.
Within auditory cortex, there was a trend for mean responses in
non-primary areas to be more affected by the attentional task
than those in primary areas, but the interaction did not reach
significance (Supplementary Fig. S9; ANOVA: F1,60= 3.34, p=
0.0728). Overall, these results indicate that the tasks achieved the
objective of manipulating attention, as indexed by the differential
mean responses across tasks.

We then compared the cortical invariance during the two tasks.
During the auditory task, non-primary areas were again
substantially more robust than primary areas (Fig. 4c; a two-
tailed paired t test comparing mean invariance across ROIs: t20=
5.87, p= 9.53 × 10−6; green line in Fig. 4d). However, a similar
pattern of robustness was observed during the visual task (Fig. 4e;
a two-tailed paired t test comparing mean invariance across ROIs:
t20= 4.74, p= 1.25 × 10−4; purple line in Fig. 4d). Moreover, the
auditory task did not significantly alter the robustness in primary
or non-primary areas: an ANOVA revealed a main effect of
region (primary/non-primary: F1,60= 48.3, p= 3.05 × 10−9), but

neither the task main effect nor a task-by-region interaction was
significant (respectively: F1,60= 1.64, p= 0.21 and F1,60= 1.59,
p= 0.21). Taken together, the results from Experiment 4 suggest
that while attention alters the mean responses in the auditory
cortex, it does not account for the increase in invariance between
primary and non-primary auditory cortex. The increased
invariance of non-primary auditory cortex to background noises
thus appears to be robust to inattention.

Discussion
Taking advantage of the large-scale coverage afforded by fMRI,
we found that non-primary auditory cortex was substantially
more invariant to real-world background noise than primary
auditory cortex. This increase in invariance was not specific to
speech or music processing—it occurred for other real-world
sounds as well, suggesting that it may be a generic property of
non-primary representations of sound. This primary/non-pri-
mary difference was weaker for simpler, synthetic noise that
lacked the structure typical of many natural sounds. Lastly, this
difference in invariance was robust to inattention, suggesting that
attention does not account for the effect. These results demon-
strate that noise invariance may be a generic functional signature
of non-primary auditory cortex, illustrating a representational
consequence of the putative hierarchical organization in auditory
cortex that has relevance to perception and to behavior.
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Listening in noise is a core problem of real-world hearing, and
there has been long-standing interest in how auditory cortex
robustly encodes sounds in the presence of background
noise15,17–19,21,35–37,39,50. Our work makes three contributions.

First, we demonstrate robustness to real-world sources of sta-
tionary noise, and in the process reveal differentiation between
regions of the auditory cortex. Previous work was primarily
restricted to simpler, synthetic noise15,18,19,35–37,39, which lack
the structure of many natural background noises40,41. We found
that primary areas were relatively invariant to such simpler,
synthetic noise, consistent with this previous work. However, we
also found that primary responses were not particularly invariant
to more realistic sources of background noise (textures). Invar-
iance to those more realistic sources of noise arose only in non-
primary auditory cortex, later in the putative cortical hierarchy.

Second, prior work on problems of auditory invariance more
generally has largely been focused on speech. Although there are
many prior reports that parts of non-primary auditory cortex are
invariant to sources of acoustic variability in speech2,15,16,18,19,21,
little has been known about the invariance of non-primary cor-
tical responses to non-speech sounds. We show that non-primary
processing of a wide variety of real-world sounds is robust to
background noise.

Third, we show that noise robustness is present even when
attention is directed elsewhere. Non-primary cortical responses
have been observed to be modulated by attention to one speech
stream over another17,29, illustrating one way in which cortical
responses can achieve invariance to behaviorally irrelevant
sounds. It has remained unclear whether robustness to temporally
stationary noise might be explained in this way, particularly given
that nonstationary sounds might preferentially draw selective
attention46,47. The effects we report here are relatively unaffected
by inattention and thus suggest a form of noise robustness largely
distinct from the attentional selection of task-relevant signals. The
invariance observed here may be more akin to previously
reported aspects of sound segregation that are also robust to
inattention51,52 and/or to engineering algorithms that remove
stationary noise from signals33,34. However, because we
manipulated attention across modalities, rather than within
audition, we cannot exclude the possibility that residual atten-
tional resources are captured more by nonstationary sounds, and
that this may contribute to the effects we observed.

The results suggest several lines of future work. Most notably,
the mechanisms underlying noise robustness are natural targets
for computational models3,35,47,53. Because the observed noise
invariance was present during inattention, it seems unlikely that
attentional mechanisms underlie the robustness we study here.
Alternatively, could noise invariance be explained by tuning to
different rates and scales of spectrotemporal modulation? Because
modulation tuning is prominent in primary auditory cortex54–58,
and because stationary and nonstationary sounds have distinct
modulation spectra (Supplementary Fig. S1), invariance to noise
could result from such noise falling “out of band”36 with respect
to this tuning. Consistent with this general idea, mean responses
were overall higher to foreground sounds than background
sounds, and the ratio between responses was higher in non-
primary auditory cortex (Supplementary Fig. S10). Modeling
could clarify whether the difference in invariance for synthetic
and more realistic noise sources could be explained in this way.
However, given that modulation tuning accounts for little of the
neural responses outside primary auditory cortex in humans57,
and given that modulation spectra of real-world sounds vary
considerably from sound to sound41 (Fig. 3b), it seems unlikely
that the increase in noise invariance between primary and non-
primary cortex could be entirely explained with modulation fil-
tering. Instead, one appealing candidate mechanism for non-

primary noise invariance is some form of adaptation21,35,47,59,60

that could attenuate the representation of stationary sound
components, generating noise-robust representations.

It could also be revealing to use our methods to assess noise
robustness in atypical listeners, who exhibit difficulties with lis-
tening in noise. For example, examining whether individuals with
auditory processing disorder exhibit typical patterns of cortical
robustness may help clarify whether the disorder is sensory in
nature or whether it is instead a consequence of abnormal
executive function61,62. Moreover, given the increasing interest in
auditory deficits that are not revealed in a conventional
audiogram63,64 (so-called “hidden” hearing loss), it could be
fruitful to examine whether such deficits also manifest themselves
in diminished cortical noise robustness. Lastly, the experimental
design we employ here—measuring the similarity between brain
responses to the same source signals in different conditions—
could be used to study other kinds of invariances in the auditory
system (e.g., intensity65, reverberation66, etc.) and in other sen-
sory systems, where similar invariant recognition challenges arise.

Methods
Participants. Each participant for each experiment completed both: (1) a 2 h scan
session and (2) a separate behavioral session, in which an audiogram was measured
to ensure normal hearing (we required mean pure tone detection thresholds below
15 dB HL for each ear across all frequencies tested: 125, 250, 500, 750, 1000, 1500,
2000, 3000, 4000, 6000, and 8000 Hz). All participants provided informed consent,
the work complied with all relevant ethical regulations, and the Massachusetts
Institute of Technology Committee on the Use of Humans as Experimental Sub-
jects (COUHES) approved all experiments. Participant demographics were as
follows:

Experiment 1: 11 participants (3 female); mean age: 25.5 years (range 20–30)
Experiment 2: 12 participants (8 female); mean age: 27.2 years (range: 22–32)
Experiment 3: 23 participants (12 female); mean age: 24.7 years (range: 19–36)
Experiment 4: 21 participants (13 female); mean age: 25.6 years (range: 19–37).
Some participants partook in multiple experiments, yielding a total of 45 unique

participants: 30 participated only in one experiment, nine participated in two
experiments (one of which was author A.K.), five participated in three experiments,
and one participated in all four.

One additional participant took part in Experiment 1, but was excluded because
of high audiometric thresholds for one ear (35 dB HL). Four additional participants
took part in Experiment 3, but were excluded: three did not complete the scanning
session; the fourth completed the scanning session but had poor behavioral
performance (mean performance on two alternative-forced choice in-scanner task:
48%; for other participants, mean performance: 90%, range: 85–97%). Five
additional participants took part in Experiment 4: one was excluded because of
their audiogram (> 15 dB HL for each ear), two others were excluded because they
did not complete the scanning session, and two were excluded for poor behavioral
performance (less than 80% correct on the auditory task; for other participants,
mean performance: 92%, range: 85–99%).

Stationarity measures: selection of real-world background noise. Sound
properties were measured from a cochleagram, a time–frequency decomposition of
a sound that mimics aspects of cochlear processing. A cochleagram is similar to a
spectrogram, but with frequency resolution modeled after the human cochlea, and
with a compressive nonlinearity applied to the amplitude in each time–frequency
bin. Each sound pressure waveform was passed through a bank of 211 filters (203
bandpass filters along with four highpass and four lowpass to allow for perfect
reconstruction). Filters were zero phase with a frequency response equal to the
positive portion of a single period of a cosine function. The center frequencies
ranged from 30Hz to 7860 Hz. The filters were evenly spaced on an Equivalent
Rectangular Bandwidth (ERB)N scale, approximately replicating the bandwidths and
frequency dependence believed to characterize human cochlear filters67. Adjacent
filters overlapped in frequency by 87.5%. The envelope of the subband from each
filter was computed as the magnitude of the analytic signal (via the Hilbert trans-
form). To simulate basilar membrane compression, these envelopes were raised to
the power of 0.3. Compressed envelopes were downsampled to 400Hz.

We divided the cochleagram into nonoverlapping adjacent time segments, and
measured the following sets of statistics in each segment: (i) the mean of each
frequency channel (capturing the spectrum); (ii) the correlation across different
frequency channels (capturing co-modulation); and (iii) the power in a set of
temporal modulation filters applied to the envelopes (capturing rates of amplitude
modulation). The filters used to measure modulation power also had half-cosine
frequency responses, with frequencies equally space on a log scale (twenty filters,
spanning 0.5 to 200 Hz) and a quality factor of 2 (for 3 dB bandwidths). These
properties are broadly consistent with previous models of human modulation
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filtering68 and with neurophysiology data from nonhuman animals69. For the
stationarity measure described below, we only included power from modulation
filters whose center frequency completed at least one cycle in each segment (e.g.,
for the 100-millisecond segments we excluded all filters with center frequencies less
than 10 Hz).

For each temporal segment of each cochleagram, we therefore had three
variables of interest:

1. μ, a 211-length vector of the mean of the envelope in each frequency channel
2. Σ, a (211,211) matrix of the correlation of the envelopes across frequency

channels
3. Γ, a (211,20) matrix of the modulation powers at twenty rates for each

cochlear channel

We computed each of these variables of interest in each temporal segment. We
then took the standard deviation of these variables across temporal segments,
resulting in the following:

1. σμ, a 211-length vector of the standard deviation across temporal segments of
the mean in each frequency channel

2. σΣ, a (211,211) matrix of the standard deviation across temporal segments of
correlation of the envelopes across pairs of frequency channels

3. σΓ, a (211,20) matrix of the standard deviation across temporal segments of
the modulation power of each frequency channel at each modulation rate

To summarize the temporal stationarity of these three classes of statistics
(envelope means, envelope correlations, and envelope modulation power), we
simply took the mean of each of these standard deviation variables (σμ, σΣ, and σΓ)
which resulted in three scalar quantities: λμ, λΣ, and λΓ.

We computed each of these quantities (λμ, λΣ, and λΓ) for each of 447 sound
clips in a diverse library of natural sounds. We z-scored each statistic separately
across the 447 clips: λzμ, λz Σ, and λz Γ to put them on a common scale.

To capture the stationarity at different temporal scales, we computed these three
quantities (λzμ, λz Σ, and λz Γ) using temporal segments of three different lengths:
50, 100, and 200 ms. To yield a single summary measure of a sound’s stationarity
across different statistics and temporal scales (a stationarity score, δ), we averaged
these nine quantities for each sounds (λzμ, λz Σ, and λz Γ, computed from the three
different segment lengths).

We selected the most and least stationary sound clips under this stationarity
score, δ. We excluded some clips in order to increase the diversity of the
foreground and background sets (e.g., to avoid too many instances of fire or water
in the background set). We also excluded clips if they had long silent periods at the
beginning or end—the stationarity metric we employ scores such clips as highly
nonstationary irrespective of the stationarity of the sound source.

Experimental stimuli: foreground sounds and background noise. The 11 par-
ticipants in Experiment 1 heard 90 sounds. All 11 heard 30 foreground sounds in
isolation, and 30 mixtures of the foreground sounds with real-world background
noise. The first four participants additionally heard 30 mixtures of foreground
sounds and spectrally matched noise, while the last 7 subjects additionally heard
the 30 real-world background noise in isolation. Upon recognizing that more
sounds could be fit into a 2-h scan session, we expanded the stimulus sets of
Experiments 2 and 3 to include 105 sounds. In Experiment 2, each participant
heard 35 foreground sounds in isolation (none of which were speech nor music), 35
real-world background noises in isolation, and 35 mixtures of a foreground sound
and a background noise. In Experiment 3, each participant heard the same 35
foreground sounds as in Experiment 2 (i.e., none of which were speech nor music),
35 mixtures of a foreground sound and a real-world background noise, and 35
mixtures of the foreground sounds and spectrally shaped Gaussian noise (each of
which was matched to have the same long-term average spectrum as a real-world
background noise). In Experiment 4, each participant heard 108 stimuli total:
54 stimuli during both the auditory and visual tasks, 27 foreground sounds in
isolation and 27 mixtures of a foreground sound and a real-world background
noise. For each subject, the 27 sounds and noises were a different random subset of
the 35 foregrounds and 35 backgrounds used in Experiment 2 and 3 (again, none of
which were speech nor music). The total number of stimuli for each subject in
Experiment 4 (54) was lower the previous experiments (respectively, 90, 105, and
105), because we doubled the number of presentations of each exemplar, as we had
two different task conditions (one visual and one auditory, as described below).

In order to maximize the diversity of pairings between foregrounds and
backgrounds, in all four experiments the pairings were randomized across
participants—each participant heard each foreground and each background once
in a mixture, but one participant might hear a person screaming mixed with
a disposal, while another may hear a person screaming mixed with polite applause.
The SNR (ratio of power of the foreground versus the background noise) for the
four experiments were, respectively: −6 dB, 0 dB, 0 dB, and 0 dB. To encourage
attention to each stimulus, participants in Experiments 1, 2, and 3, as well as in the
auditory task in Experiment 4, performed a sound intensity discrimination task on
the stimuli (described in more detail below).

Experimental stimuli: spectrally matched noise. We generated the spectrally
shaped Gaussian noise by computing the Fourier amplitude spectrum for each real-

world background noise, generating random phases by taking the Fourier trans-
form of a Gaussian vector of the same length as the background noise, and
replacing the original phases with these random phases. We generated a new time-
domain signal by taking the inverse Fourier transform.

Experimental stimuli: visual task in Experiment 4. The visual task in Experiment
4 was a one-back task. Participants were presented a series of 4 × 4 grids, each with
six squares filled in. Each grid was on the screen for 695 ms, followed by a 122 ms
interstimulus interval during which a circle in the center of the screen was shaded
green if participants had given a correct response for the previous stimulus and red
if not. Four stimuli were presented successively during each TR (which was 3.27 s
in Experiment 4). The location of two of the colored squares changed from sti-
mulus to stimulus unless the pattern repeated. Repeats occurred 30% of the time.
Participants had to report these repeats with a button press during the presentation
of the stimulus (i.e., within 695 ms). To become familiarized with the task, parti-
cipants performed a practice run of the visual task before the scan.

During all runs of Experiment 4, participants were presented with both the
stream of visual grids and the auditory stimuli (i.e., the visual and auditory stimuli
were presented during both the visual and auditory task). The only difference
between the stimuli that were presented to the subjects during the two tasks is that
the participants did not receive feedback during the auditory task runs (the central
visual circle simply turned green or red randomly; turning red with
probability 0.1).

fMRI stimulus presentation. Sounds were presented using a mini-block design
(Supplementary Fig. S2). Each mini-block consisted of three presentations of the
identical sound clip. After each presentation, a single fMRI volume was collected,
such that sounds were not presented simultaneously with the scanner noise
(“sparse scanning”). Foreground sounds were 2-s long, and were presented with
200ms of silence before and after each sound. Background noises were 2.4 -s long.
Mixtures were 2.4 -s long, with the foreground starting 200 ms after the start of the
background and ending 200 ms before the end of the background. Foregrounds
and backgrounds had asynchronous onsets because common onsets are a well-
established cue to perceptually group sounds70, which we sought to avoid. In
Experiments 1, 2, and 3, each block was 8.88 s (three repetitions of a 2.96 s TR); in
Experiment 4, each block was 9.81 s (three repetitions of a 3.27 s TR). This three-
presentation block design was selected based on pilot experiments that showed that
given the same amount of overall scan time, a three-presentation block gave more
reliable BOLD responses than an event-related design or a design with additional
repetitions (e.g., with five presentations per block).

For Experiments 1, 2, and 3, blocks were grouped into runs (each run was ~6.5
min), with either thirty (Experiment 1) or 35 (Experiment 2 and 3) stimulus blocks
presented in each run. Across three consecutive runs, all stimulus blocks were
presented once. Each participant had 12 runs total across a single 2-h scanning
session, and thus each stimulus block was presented four times. The order of
stimuli was randomized across each set of three runs. For Experiment 4,
27 stimulus blocks were presented in each run (each run was ~6 -min long), and all
stimuli were presented once across two consecutive runs. The order of the stimuli
was randomized across each set of two runs. Each participant had 16 runs in
Experiment 4, and thus each auditory stimulus was presented eight times (four
times during the visual task and four times during the auditory task). The task was
swapped every two runs (i.e., two runs auditory task, two runs visual task, etc.). The
task that participants performed first was alternated across subjects.

To enable estimation of the baseline response, silent “null” blocks were included
(~20% of TRs), which were the same duration as the stimulus blocks and were
randomly interleaved throughout each run. In Experiment 4, neither the visual nor
the auditory stimulus was displayed during these silent blocks.

In each block, one of the three presentations was 7 dB lower in level than the
other two (the lower-intensity presentation was never the first sound). Participants
were instructed to press a button when they heard the lower-intensity stimulus.
Participants were instructed to keep their eyes open during the auditory task in all
experiments (Experiment 1, 2, 3, and 4). Sounds were presented through MR-
compatible earphones (Sensimetrics S14) at 72 dB SPL (65 dB SPL for the quieter
sounds). Stimulus presentation code made use of MATLAB and PsychToolbox.

fMRI acquisition. MR data were collected on a 3T Siemens Trio scanner with a 32-
channel head coil at the Athinoula A. Martinos Imaging Center of the McGovern
Institute for Brain Research at MIT. T1-weighted anatomical images were collected
in each participant (1 -mm isotropic voxels) for alignment and cortical surface
reconstruction. In Experiments 1, 2, and 3, each functional volume consisted of
21 slices oriented parallel to the superior temporal plane, covering the portion of
the temporal lobe superior to and including the superior temporal sulcus. Repe-
tition time (TR) was 2.96 s (although acquisition time was only 560 ms), echo time
(TE) was 30ms, and flip angle was 90°. In Experiment 4, we expanded the number
of slices from 21 to 33, so that we could be sure to acquire the entire occipital lobe
in all subjects in order to record BOLD responses in visual cortical areas (i.e., to
evaluate mean responses in the visual cortex during the two tasks as we report in
Fig. 4b). As a result, the acquisition time was increased to 870 ms, and thus the TR
was increased to 3.27 s. All other acquisition parameters were kept the same as they
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were in Experiment 1, 2, and 3. For each run in all four experiments, the four initial
volumes were discarded to allow homogenization of the magnetic field. In-plane
resolution was 2 × 2 mm (96 × 96 matrix), and slice thickness was 2.8 mm with a
10% gap, yielding an effective voxel size of 2 × 2 × 3.08 mm.

A simultaneous multislicing (SMS) factor of three was used to expedite the time
of acquisition. The factor of three was selected via pilot experiments comparing
protocols with different SMS factors (both higher and lower). In these pilots, we
sought to maximize the degree to which responses measured from the auditory
cortex were reliable across presentations of the same stimulus and differentiated
across presentations of different stimuli. We measured the correlation between
multi-voxel response patterns to different sounds, as well as to the same sound
presented multiple times. We computed the “separability” of the voxel patterns as
the difference between the mean test-retest correlation (i.e., reliability) of the
pattern and the mean of the correlation between patterns evoked by different pairs
of stimuli. An SMS factor of three maximized this quantity of separability.
Responses measured with higher SMS factors were more similar across
presentations of the same stimuli, but were also were more similar across
presentations of different stimuli, presumably due to the increase in smoothing
induced by higher SMS factors.

fMRI analysis: preprocessing and response estimation. Functional volumes
were preprocessed with FreeSurfer’s FSFAST and in-house MATLAB scripts.
Volumes were corrected for motion and skull-stripped. Each run was aligned to the
anatomical volume using FSL’s FLIRT and FreeSurfer’s BBRegister. These pre-
processed functional volumes were then resampled to the reconstructed cortical
surface. The value for each point on the surface was computed as the average of the
(linearly interpolated) value at six points across the cortical ribbon: the pial
boundary, the white matter boundary, and four evenly spaced locations between
the two. In order to improve SNR, responses were smoothed on the surface with a
3 mm full-width-at-half-maximum (FWHM) 2D Gaussian kernel for the ROI
analyses and with a 5 -mm kernel for the group summary maps. All analyses were
done in this surface space. The elements in this surface space are sometimes
referred to as vertices, but for ease of discussion we refer to them as voxels
throughout this paper. We used a general linear model (GLM) to estimate the
response to each of the stimuli, employing a separate boxcar regressor for each
stimulus. We had 90 such regressors for Experiment 1, 105 for Experiments 2 and
3, and 108 for Experiment 4 (the 27 isolated foreground sounds and the 27 mix-
tures separately estimated in the visual and the auditory task). These boxcars were
convolved with a hemodynamic response function, which was assumed, as is often
standard, to be a gamma function (d= 2.25; t= 1.25). Nuisance regressors inclu-
ded a linear and a quadratic regressor to account for drift and three additional
regressors to help account for the residual effects of participant motion (the top
three PCs of the six translation and rotation motion correction degrees of
freedom).

fMRI analysis: voxel-wise invariance index. To measure the robustness of each
voxel’s response to the presence of background noise, we computed the Pearson
correlation between the voxel’s response to the foreground sounds and to the same
foregrounds embedded in background noise (i.e., the mixtures). Different voxels
have different levels of measurement noise (e.g., due to distance from the mea-
surement coils), and thus to enable comparisons across voxels we corrected for this
measurement noise by employing the correction for attenuation44. Our invariance
index is the square of this corrected correlation coefficient: an estimate of the
(squared) correlation coefficient of that voxel’s response to foregrounds and
foregrounds embedded in noise that would be measured in the limit of
infinite data.

To employ this correction, we measured the response to foregrounds and
mixtures separately in even- and odd-numbered presentations (i.e., we averaged
responses to the second and fourth and to the first and third presentations in a
scanning session). We computed the correlation between responses to foregrounds
and mixtures for the even and odd presentations, and took the average of these two
correlation coefficients. We averaged the correlation coefficients after applying the
Fisher r-to-z transform, and then we returned this mean value the original domain
by applying the inverse Fisher z-to-r transform. We averaged in this z-space,
because the sampling distribution of correlation coefficients is skewed; averaging in
z-space reduces the bias of the estimates of the true mean. We then measured the
reliability of the response to the foregrounds and the reliability of the response to
the mixtures, by computing the Pearson correlation between the responses to even
and odd presentations of the foregrounds and mixtures, respectively. We then
applied the correction for attenuation, dividing the correlation of the response to
the foregrounds and mixtures by the geometric mean (square root of the product)
of the reliability of the responses:

Rcorrected ¼
meanz r vevenfg ; voddmix

� �
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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odd
mix

� �r

Where meanz denotes the average computer after the Fisher r-to-z transform, the r
denotes a function that computes the Pearson correlation coefficient, and v is a d-
length vector of the voxel’s response to either the foregrounds sounds (“fg”) or the

mixtures of foreground sounds and background noise (“mix”) from either the even
or odd presentations. We square this correlation coefficient to yield a measure of
variance explained, which is our invariance index, I:

I ¼ R2
corrected

We only included voxels in our analyses that both: (1) met a liberal criterion of
sound responsiveness (uncorrected p < 0.001, one-sample t test, sound response
greater than silence), and (2) exhibited reliable responses both for the foregrounds
in isolation and for the mixtures. The reliability criterion used throughout this
paper was a Pearson correlation coefficient of 0.2, but similar results were seen
when the criterion was made more lenient or conservative (a criterion of 0.01 or
0.40, respectively). See Supplementary Fig. S3 for maps of average reliability. All
analyses, including the computation of noise robustness, were performed in
individual participants. For the summary maps, we transformed the individual
participant maps to Freesurfer’s fsaverage space and averaged the robustness
measure for each voxel across all participants for whom that voxel met the
inclusion criteria (i.e., with a sufficiently reliable response). We did so for all voxels
where at least three participants exhibited reliable responses.

fMRI analysis: regions of interest. For regions of interest (ROI) analyses, we used
a primary ROI defined as TE 1.1 and 1.010 and a non-primary ROI defined as the
anterior and posterior superior temporal gyrus parcels from Freesurfer.

fMRI analysis: multi-voxel pattern-based invariance measures. In addition to
examining the robustness of responses of individual voxels across sounds, we also
examined the robustness of the response pattern across voxels to a given fore-
ground sound. If the response in a region is robust to the presence of a background
noise, then the pattern across voxels within that region should be similar when a
sound is presented in isolation or embedded in background noise. We analyzed the
data from Experiment 3 and performed a pattern-based decoding analysis, using a
nearest neighbor classifier with Pearson correlation as the distance metric. We
demeaned each voxel within an ROI (i.e., subtracted its mean response across
sounds, as is standard in multi-voxel pattern analysis). We then correlated the
response across voxels to the ith foreground in isolation with the response to each
of the foreground–background mixtures. If the maximal correlation was with the
mixture containing the i th foreground, we declared the classification correct;
otherwise we declared it incorrect. We performed this analysis in the primary and
non-primary ROIs separately, doing so in each participant for both the real-world
and synthetic background noises. The results are shown in Supplementary
Fig. S8A.

One potential pitfall of such a decoding analysis is that it could be contaminated
by reliability differences between the ROIs. As an alternative, we compared the
pattern of activity across voxels in the two ROIs to a given sound in isolation with
the pattern evoked by the same sound embedded in noise. For consistency with the
voxel-wise invariance metric that we use throughout the paper, we used the
correlation between the two response patterns as the measure of similarity.
Critically, we normalized the correlation by maximum possible value given the
reliabilities of the two response patterns (analogous to the voxel-wise metric). As
with the voxel-wise invariance metric, if the pattern of responses across voxels is
robust to the presence of background noise, the resulting correlation coefficient
should be high. The results are shown in Supplementary Fig. S8B.

fMRI analysis: mean percent signal change in ROIs. For the mean response
plots in Experiment 4 (Fig. 4b), we selected all voxels that responded significantly
to either the visual or auditory stimulus (p < 0.001, uncorrected, stimulus versus
silence) and that were in the relevant region of interest. The auditory cortex ROI
was the union of the primary and non-primary auditory cortical ROI used above.
The visual cortex ROI was the PALS atlas occipital lobe parcel. For the mean
responses to different auditory stimuli (Supplementary Figs. S5, S9, and S10), we
used the same primary and non-primary ROIs as used in the main text, and again
selected voxels based on their responsiveness to sounds (p < 0.001, uncorrected
sounds versus silence).

Sample sizes. Pilot versions of Experiment 1 indicated that the effect size of the
difference in the mean of the invariance metric across voxels in each ROI was large.
Indeed, there was a 90% chance of rejecting the null hypothesis that each parti-
cipant’s mean invariance in each ROI was are equal with just two participants, as
evaluated with a paired two-tailed t test with a p-value criterion (alpha) of 0.05.
However, we also wanted to examine the invariance metric in maps across all of
auditory cortex, and we wanted those maps to be reliable. Using pilot data (from
the first four participants in Experiment 1), we estimated the split-half reliability of
the maps (i.e., the correlation of the two maps derived from splits of the participant
set) as a function of the number of participants using the Spearman–Brown cor-
rection. The predicted reliability ranged between r= 0.36 (n= 2) to r= 0.89 (n=
30). We chose a sample size of twelve participants, which yielded a projected
reliability of r > 0.75, which we considered reasonable.
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Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.
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