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Cortical reliability amid noise and chaos
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Typical responses of cortical neurons to identical sensory stimuli appear highly variable. It has
thus been proposed that the cortex primarily uses a rate code. However, other studies have
argued for spike-time coding under certain conditions. The potential role of spike-time coding
is directly limited by the internally generated variability of cortical circuits, which remains
largely unexplored. Here, we quantify this internally generated variability using a biophysical
model of rat neocortical microcircuitry with biologically realistic noise sources. We find that
stochastic neurotransmitter release is a critical component of internally generated variability,
causing rapidly diverging, chaotic recurrent network dynamics. Surprisingly, the same non-
linear recurrent network dynamics can transiently overcome the chaos in response to weak
feed-forward thalamocortical inputs, and support reliable spike times with millisecond pre-
cision. Our model shows that the noisy and chaotic network dynamics of recurrent cortical
microcircuitry are compatible with stimulus-evoked, millisecond spike-time reliability, resol-
ving a long-standing debate.
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he typical electrical activity of cortical neurons is highly

variable! 4. While part of this variability could be due to

intrinsic noise sources, a substantial part could also be due
to hidden variables such as unknown input from other parts of
the brain, environmental parameters, or brain state>~”. Moreover,
some neurons in sensory cortices can encode sensory input with
high spike-time precision®-10. Taken together, it is compelling to
assume that intrinsic noise plays a negligible role, and that cor-
tical variability is essentially deterministic!!, encoding hidden or
unobserved variables. This view is also supported by the fact that
neocortical neurons respond to somatic current injections in vitro
with high reliability!2. However, there are two important reasons
to believe that a large part of cortical variability is due to
internally generated noise that carries no signal.

First, all cortical neurons are subject to cellular noise sources,
such as stochastic synaptic transmission and ion-channel noise!3.
These noise sources originate from proteins susceptible to ther-
modynamic fluctuations and are truly intrinsic sources of
noise®!3. In particular, synaptic transmission is based on a
sequence of stochastic molecular events, where the low numbers
of molecules involved do not allow stochastic properties to
average out!4. In tightly controlled slice conditions in vitro, the
probability of vesicle release upon action potential arrival at a
single cortical synapse is low (~50% between thick tufted layer
five pyramidal neurons!?), and estimated to be substantially lower
in vivol® (~10% between same neurons!”). The universal pre-
sence of synaptic noise suggests that cortical neurons respond far
less reliably to presynaptic inputs than to current injections!s.
Furthermore, in vitro, some types of inhibitory neurons exhibit
stochastic firing types!®. That is, they respond highly irregularly
to somatic current injections, due to amplified ion-channel
noise20.

Second, models suggest?!22 and experiments show?? that
cortical networks have chaotic dynamics. This implies, by defi-
nition, that small perturbations, such as those due to intrinsic
cellular noise, are amplified. Thus, extra or missing spikes in the
network, for example, due to failed synaptic transmission, could
fundamentally alter the trajectories of spiking activity in the
network.

In spite of their potential importance, the separate and com-
bined impacts of network dynamics and cellular noise sources on
internally generated cortical neuronal variability remain largely
unexplored, as it is currently impossible to measure all external
inputs to a local population of cortical neurons in vivo. As a
result, we are still unable to quantify how much of the experi-
mentally observed variability is generated internally by the local
circuitry, and how much is generated externally. Here, we
addressed these questions with a recently developed simulation-
based approach, namely a biologically constrained model of a
prototypical neocortical microcircuit in rat somatosensory cortex
(the NMC-model)!”. The model consists of 31,346 neurons,
~8 million connections, and ~36 million synapses (Fig. 1a), and
incorporates several prominent sources of noise such as stochastic
synaptic transmission—including failure of vesicle release and
spontaneous release—and ion-channel noise (Fig. 1b). Each of the
noise sources is constrained to replicate experimentally observed
variability. This bottom-up modeling approach provides control
over all noise sources, as well as external inputs and internal
states.

Through a series of simulation experiments, in which we
selectively enable noise sources and recurrent network dynamics,
we characterize internally generated cortical variability and how it
arises. When cellular noise sources are disabled, we find that the
underlying deterministic network dynamics are chaotic, whereas
when noise sources are enabled, an interplay of stochastic
synaptic transmission and network dynamics determines the rate

by which membrane potentials diverge. Surprisingly, our model
predicts that the recurrent cortical circuitry can transiently
overcome these noisy and chaotic network dynamics in response
to thalamocortical inputs and produce reliable patterns of activity.

Results

Rapid divergence of spontaneous activity. Owing to the pre-
sence of intrinsic noise sources (Fig. 1b), neurons in the NMC-
model are constantly perturbed. Combined with chaotic network
dynamics, this could lead to highly variable activity trajectories.
To assess the variability of activity trajectories, we quantified how
spontaneous neuronal activity diverges from identical initial
conditions. We simulated independent trials of network activity
up to a time £, at which point we saved the full dynamical state of
the simulation (base state). We then resumed the simulation two
times from the base state, i.e., we used identical initial conditions
and histories in each case, but with different sequences of random
numbers. This allowed us to obtain two equally valid probabilistic
network trajectories for t>t, for each base state. We observed
that somatic membrane potentials (V,,) for individual neurons,
and the mean potentials for the population both diverged rapidly
between the two simulations (Fig. 1c).

To quantify the time-course of the divergence, we calculated
the average root-mean-square deviation RMSDy(f) of somatic
membrane potentials of individual neurons between two trials in
time bins of size At starting from f, (see Methods). We observed
that RMSDy(f) diverged rapidly from zero and eventually
converged towards a steady-state value RMSD.., equal to
the RMSDy of independent trials that did not share the same
base state (Fig. 1d, solid black and dashed gray lines). The
divergence was fast, with RMSDv(t) reaching > 50% of its steady-
state value within 20 ms.

While the RMSDy(¢) of the circuit allowed us to accurately track
the overall divergence of the whole circuit, RMSDy(f) of individual
neurons and trials was too noisy for in-depth analysis (Supple-
mentary Fig. 1al, bl). We note that while RMSDy(f) quantifies the
absolute distance between membrane potentials, potentials can still
be correlated independent of this distance. To this end, we
analogously computed the average linear correlation ry(f) of
somatic membrane potentials of individual neurons between two
diverging trials. We found that the mean correlation ry(t) diverged
faster than the absolute distance as measured by RMSDy(#) (Fig. 1d,
blue line), again with a broad distribution across individual neurons
(Supplementary Fig. 1a2, b2).

To better evaluate the difference between ry/(f) and RMSDy (1),
we defined the similarity sppmsp(f) of the microcircuit activity as
the normalized difference between diverging and steady-state
RMSDy(f) (and similarly s.(f) for ry(f)). When similarity
srmsp(f) =1, membrane potential traces are identical; when
srmsp(f) = 0 membrane potentials have reached their steady-state
distance RMSD... Similarly, when s.(f) = 1, membrane potentials
have a perfect linear relationship; when s.(tf) =0, they reached
their steady-state correlation r.. Comparing s.(t) and spymsp(f),
we observed that ry(f) diverged approximately twice as fast as
RMSDy(t) (Fig. lel vs. 1e2). More precisely, an exponential fit to
the first 40 milliseconds revealed divergence time constants of
TrMmsp = 22.7 +0.5ms and 7, =11.5+ 0.2 ms (+ 68% confidence
interval of fit). These were conserved for different bins sizes At in
the range of 1 ms to 50 ms (Supplementary Fig. 2bl, 2). However,
a simple exponential decay does not provide an adequate
description of the whole time-course of the similarity, as the
time constant changes continuously, especially in the first several
milliseconds (Supplementary Fig. 2a). A small but statistically
significant difference (p < 0.025; one-sided ¢-test) between diver-
ging and independent activity persisted for around 400 ms for
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Fig. 1 Rapid divergence of spontaneous activity. a Morphologically detailed model of a neocortical microcircuit (NMC); depicted are 100 randomly selected
neurons, out of 31,346 in total (~0.3%). Neurons are colored according to their layer. b Examples of simulated noise sources in the NMC-model: stochastic
synaptic transmission, including (a) vesicle release failure and (b) spontaneous vesicle release (“miniature PSPs") at all 36 million synapses; (c)
probabilistic opening and closing of voltage-gated potassium channels in irregularly spiking inhibitory neurons (1137 out of 31,346 neurons); (d) a constant
depolarizing current with a weak white noise component (O'Z < ) injected into the somata of all neurons. € The membrane potential of four sample
neurons (and population mean of all 31,346 neurons) during a network simulation of spontaneous activity. At t, the state of the microcircuit is saved, and
then resumed twice with identical initial conditions, but with different random seeds for all noise sources. d Root-mean square deviation (RMSDy(t)) and
correlation (ry(t)) of the somatic membrane potentials between pairs of resumed simulations diverging from identical initial conditions (mean of all
neurons and 40 saved base states £ 95% confidence interval). The dashed lines depict the steady-state RMSDy, and ry between independent simulations
(i.e., resumed from different base states). e The similarity of the system (sgmsp and s,) defined as the difference between the diverging and steady-state
RMSDy, and ry, normalized to lie between 1 (identical) and O (fully diverged) (mean £ 95% confidence interval). Exponential fit of sgmsp and s, for t — tg <
40 ms (estimated time constant £ 68% confidence interval of fit). f1 Mean spike count and variance of spike count of 40 independent trials of 1000 ms
duration for all neurons in the microcircuit, plotted separately for excitatory neurons (red) and inhibitory neurons (blue). The dashed lines indicate the
expected values for a Poisson process. Black lines indicate minimum variance due to the fact that the spike count has to be an integer. f2 Distribution of
Fano factors (variance divided by mean spike count) corresponding to f1

RMSDy (Supplementary Fig. 2cl) and around 200ms for ry  Poisson-like spike-count variability is not generated internally

(Supplementary Fig. 2¢2). within a microcircuit, and shows that rapidly diverging activity
We have shown that spontaneous activity in the NMC-model does not automatically lead to large spike-count fluctuations,

is highly variable, with rapidly diverging spontaneous activity likely as a result of spike frequency adaptation’* and synaptic

trajectories both in terms of membrane potentials, and conse- adaptation mechanisms2°.

quently spike times (see Fig. 1c and Supplementary Fig. 3a). The

rap.id .t.ime?scal.e of fiivergence. could imply that spike-count Robust divergence across dynamical states and circuit scale. In
variability is high, akin to a Poisson process. However, the Fano  a4dition to the microscopic divergence of individual somatic
factor (variance of spike counts divided by mean spike count) membrane voltages, macroscopic fluctuations in population
was far lower than for a Poisson process (Fano factor = 1)!8 for spiking activity (Fig. 2al), and population firing rate (Supple-
most neurons, especially for larger firing rates (Fig. 1f and mentary Fig. 3a) also diverged rapidly for t>t,. The nature of
Supplementary Fig. 4). Consequently, our model predicts that hege global fluctuations depends on the balance between

NATURE COMMUNICATIONS | (2019)10:3792 | https://doi.org/10.1038/s41467-019-11633-8 | www.nature.com/naturecommunications 3


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

al Spogtaneous activity (in vivo-like; just subcritical) a2 Sporznaneous activity (supercritical)
+ +-
([Ca**], = 1.25 mM) o 317346 neurons ([Ca®*], = 1.30 mM) e
30k : o : i : 3 '
1o |
— | —
N N
@ T, : z
S 0 g S . 2
3 3 o > o
2 =) o I =)
z 4, & =2 I 10 £
i ! i
1 ! F5
|
0 0 - — 0
-400 -200 0 200 400
t—t, (ms) t—t, (ms)
a3 b1 b2 b3 . ‘
1.0 Subcritical g 00759 ------ Micro. - meso. __.-==""
[Ca®],=1.10mM —— A ) ¢ 0.050 ] T
08 120mM  —— s 10 1 S 0025 J fooeeee 4
Oy T 5
06 125mM  —--- ! 8 08! Microcirauit >0 >50 ; 100 > 150 >200
> 1.30 mM F o - m
= 04 Supercritical %‘,.‘ 0.6 MES;%SW (o] . (um)
\ — 2 04 S 030
\ 200 um N by
0.2 02 2
’ & 025
0.0 0.0
0 25 50 75 100 125 150 0 50 100 150
O PP PP PP PR
t= 1o (ms) t—t, (ms) LOOEPPL PO

In-degree (N,

Fig. 2 Robust divergence across dynamical states and circuit scale. a1 Population raster plot and population peristimulus time histogram (PSTH) for all
31,346 neurons in the microcircuit, during spontaneous activity. Neurons are ordered according to cortical depth, with deep layers at the bottom and upper
layers at the top. Each row represents the spikes of one neuron. For visibility, raster lines extend over dozens of rows for each neuron. For t <t,, the top and
bottom raster plots show the same simulation, whereas for t > t,, the raster plots depict two simulations resuming from identical initial conditions at to, but
using different random number seeds. a2 Same as a, but for supercritical activity. a3 rn, across dynamical regimes (20 saved base states, mean = 95%
confidence interval; same as Fig. 1d for [Ca2*], =1.25 mM. b1 The microcircuit (center, blue), surrounded by six other microcircuits (gray), forming a
continuous mesocircuit of ~220,000 neurons, with no boundary effects between the circuits. b2 ry for the center microcircuit when simulated without
surrounding circuits (black), and of the center microcircuit when simulated as a mesocircuit (orange) (microcircuit: 40 saved base states; mesocircuit:
20 saved base states; mean £ 95% confidence interval). b3 Quantifying edge effects. Difference of r, between the same neurons in the microcircuit and the
mesocircuit at 10-20 ms, plotted according to distance from horizontal center (mean + 95% confidence interval). ¢ Similarity s, at 10-20 ms for subsets of
neurons grouped by in-degree (bin size: 50; mean £ 95% confidence interval)

excitatory and inhibitory activity (EI-balance) in the network?2®.
In the NMC-model, the El-balance is determined by the inte-
grated anatomical and physiological data, and can be modulated
by changes in extracellular calcium concentration ([CaZT],)
through its effect on synaptic vesicle release probabilities!®17,

In the state analyzed here ([Ca?t], = 1.25mM), the micro-
circuit is in a just subcritical?” state of asynchronous spontaneous
activity, where it reproduces spontaneous and evoked network
dynamics observed in vivol”. While this asynchronous state
might be important for efficient coding?82%, the exact El-balance
in vivo is difficult to determine, and is likely to reconfigure
dynamically as a function of the state of arousal and attentiveness
of the animal®). We therefore investigated the relationship
between the time-course of divergence and different dynamical
regimes, from subcritical asynchronous activity to supercritical
synchronous activity (Fig. 2a2). We observed that the rapid
divergence of electrical activity was approximately conserved
across these different dynamical states (Fig. 2a3).

We further found that the divergence timescale was nearly
saturated at the scale of the microcircuit, with only small changes
compared to simulating a larger circuit (Fig. 2bl, 2). Only
neurons at the periphery of the microcircuit diverged faster due to
additional synaptic inputs (Fig. 2b3), as the number of synaptic
inputs directly shapes the divergence (Fig. 2¢) (see Supplementary
Note 1, Supplementary Fig. 3b).

We note that RMSDy(t) and ry(f) are generally highly
correlated (Supplementary Fig. 5a, abcd). In what follows, we
hence present the divergence in terms of ry(t), except when there
is a qualitative difference.

Noise amplified by chaos determines divergence. We have
demonstrated a high level of variability, which is robust across
dynamical states and nearly saturated at the scale of the micro-
circuit. Next, we studied how the interaction of cellular noise
sources and recurrent network dynamics shapes this emergent
variability. To this end, we performed two complementary sets of
simulation experiments. In the first set, we sought insights into
the role of network dynamics without noise sources, probing the
sensitivity of a completely deterministic version of the model to a
weak, momentary perturbation. In the second, we studied the
opposite case of variability due to cellular noise sources without
amplification by the network.

To implement the first set of simulations, we disabled
stochasticity of cellular noise sources, including synaptic
transmission, by using a fixed sequence of random numbers,
which made the random outcome deterministic. This enabled us
to observe amplification of perturbations through the network
without the effect of continuously varying cellular noise sources.
As the sole source of perturbation, we injected a single extra spike
into one of the neurons in the microcircuit. We observed that the
network diverged rapidly (Fig. 3al, dashed line), though more
slowly than with noise sources enabled (Fig. 3al, solid line). In
fact, even a miniscule current injection, which shifted the
majority of spike times by < 0.05ms, eventually led to a
divergence of membrane potentials similar to the divergence
observed in the full model with noise sources (Fig. 3al, dotted
line). The slightly higher steady-state correlation r. in the
deterministic simulation was due to identical spontaneous release
of neurotransmitter, identical ion-channel opening probabilities,
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Fig. 3 Noise amplified by chaos determines divergence. a1 Time-course of correlation ry after resuming at to from identical conditions with different forms
of perturbation. Full cellular noise as before, solid line (abcd); no cellular noise, but perturbing with a single extra spike in one neuron, dashed line (f); a
miniscule step-pulse perturbation in all neurons, dotted line (e). (abcd: 40 saved base states; e, f: 20 saved base states; mean + 95% confidence interval).
a2 Steady-state root-mean square deviation RMSD,, and correlation r, for stochastic (abcd) and deterministic simulations (e, f) as defined in a1 (mean =
95% confidence interval in black; individual base states in purple dots). b1 As in a2, but for decoupled, replayed simulations. (20 saved base states). b2
Similarity sgmsp and s, at 10-20 ms with all noise sources enabled, for network and decoupled simulations (mean + 95% confidence interval). €1 Decoupled
replay paradigm. Presynaptic spike trains from a network simulation are saved and then replayed to the synapses of each neuron in a decoupled simulation,
thereby removing variability due to feedback network dynamics. €2 Overview of sources of noise and perturbations. d Decoupled replay simulations (see
c1) for a representative L4 PC neuron, with somatic membrane potential differences between the two trials only due to cellular noise sources (ab[c]d), a
single extra presynaptic spike (f) or a miniscule step-pulse perturbation (e). [c] indicates that for some neuron types in the NMC-model, such as L4 PCs, no

stochastic ion channels are present

and the small, but identical, noisy component of the depolarizing
current injection. However, the relative difference in RMSD.. was
much smaller than the difference in r., between the deterministic
and the stochastic simulations (Fig. 3a2, top vs. bottom). That is,
any perturbation to the system eventually led to similarly large
steady-state fluctuations. We conclude that the underlying
dynamics of the circuit are chaotic, in the sense that small
perturbations, such as one injected spike, lead to completely
different activity trajectories.

It is important to note that when using a fixed random seed to
make the stochastic version of the Tsodyks-Markram synapse
model deterministic!”31, any extra or missing presynaptic spike
can change the outcome for the next spike by advancing the
sequence of random numbers. To avoid this difficulty, we ran
equivalent simulations using the deterministic version of the
Tsodyks—Markram synapse model. In these simulations, extra

spikes and small perturbations produced qualitatively similar
divergence time courses (Supplementary Fig. 6a vs. 6b, dark green
and pink lines).

We have shown that the network amplifies extra spikes or even
small perturbations of membrane potentials. This leads to chaotic
divergence of activity with similar steady-state variability, but
different time courses. It remained to be seen whether this high
level of variability requires network amplification or whether it
could be generated by the noise sources alone.

To address this question, we implemented a second set of
simulations to study the case of ongoing noise sources without
network propagation. In these decoupled replay simulations, in
contrast to regular network simulations, synaptic mechanisms
were activated by spikes at fixed times, recorded in an earlier
simulation experiment (Fig. 3c1). In this way, the network was no
longer able to amplify neuronal variability and neuronal
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variability was entirely due either to cellular noise sources or
perturbations (Fig. 3d). We found with all noise sources turned
on, somatic membrane potentials still diverged rapidly, as
quantified by the similarity s, at 10-20 ms (Fig. 3b2) (we found
Sr,10-20 ms t0 be a good predictor of the relative order of s, at any
time). However, steady-state r.. was higher and RMSD., was
lower than in the network simulations (Fig. 3bl vs. 3a2). When
the decoupled replay paradigm was used with the deterministic
version of the model, single extra spikes and brief current
injections only evoked small, transient perturbations (Fig. 3d2, 3).
It follows that the high level of variability observed in network
simulations was due to rapid perturbations of activity from
cellular noise sources that were amplified by chaotic network
dynamics.

Synaptic noise dominates divergence. To understand the con-
tribution of individual noise sources in this interplay of noise and
recurrent network dynamics, we designed a series of simulation
experiments where we selectively disabled specific subsets of noise
sources. We observed that disabling all noise sources except
synaptic failure produced a time-course for ry(f) and steady-state
divergence r., that was similar to observations with all noise
sources combined (Fig. 4al, black and green lines). On the other
hand, disabling all but ion-channel noise or all but the noisy
current injection led to much slower divergence (Fig. 4al, orange
and purple lines). As before, we quantified the speed of diver-
gence by the similarity s, at 10-20 ms after #, (s;,10_20ms) (Fig. 4a3,
cyan). Our results suggest that simulations with synaptic failure
give rise to rapid divergence, whereas steady-state r., and RMSD.,
depend on noise sources only weakly (Fig. 4a2). We conclude that
in the NMC-model, the time-course of divergence depends on
synaptic noise, a combination of synaptic failure and spontaneous
release.

Ion-channel noise is overshadowed by synaptic noise. Synaptic
noise in the NMC-model is modeled at every single synapse,
while ion-channel noise is limited to irregular firing e-types!”1°.
Irregular e-types are defined by high-intrinsic spike-time varia-
bility in response to constant current injections in vitro, even in
the absence of synaptic noise. In the NMC-model, irregular
spiking is modeled with a subset of stochastic ion channels, in
accordance with in vitro findings on the source of the irregular
spiking patterns observed in cortical interneurons?’. In contrast,
regular firing e-types do not require noisy ion channels to
replicate in vitro spiking behavior. To better understand the
interplay of ion-channel noise and synaptic noise, we focused our
next analysis solely on irregular firing e-types. We observed that
irregular firing e-types diverged significantly faster than the whole
population (Fig. 4a3, orange vs. cyan). However, synaptic noise
still dominated over ion-channel noise. Enabling ion-channel
noise in addition to synaptic noise led to only marginal gains in
divergence rate; when ion-channel noise was enabled on its own,
divergence was significantly slower (Fig. 4a3, orange, ab vs. abcd
and c¢). This suggests that in in vivo conditions, noise from sto-
chastic ion-channels is overshadowed by synaptic noise.

Synaptic noise acts as a threshold for other noise sources.
Several smaller noise sources are not included in our model (see
Discussion). To understand how additional noise sources of
various magnitudes could influence divergence, we quantified the
somatic voltage fluctuations due to the previously used combi-
nations of cellular noise using the decoupled replay paradigm, i.e.,
with network propagation removed (RMSD..g4e.) (Fig. 4b; see
Fig. 4c1-3 for representative examples). We found that the rate of
divergence in a network simulation, Spysp,10—20ms 1S inversely

proportional to RMSD., 4. (Fig. 4a3; see also Supplementary
Fig. 7 for an extensive comparison of noise sources across
simulation paradigms). In the NMC-model, synaptic noise leads
to the largest RMSD., 4. and determines the rate of divergence.

How strong would missing cellular noise sources have to be to
increase network variability beyond the level due to synaptic
noise? To answer this question, we studied how the magnitude of
a generic white noise depolarizing current (Fig. 4d1) affects the
time-course of divergence. We found that this magnitude,

RMSD%

00,de
beyond synaptic noise (Fig. 4d2), and we therefore predict that
synaptic noise is the most important cellular noise source (see
Supplementary Note 2 and Supplementary Fig. 8).

> needs to be larger than ~1 mV to impact divergence

Rapid divergence of evoked reliable activity. In the NMC-
model, thalamic inputs can evoke responses with varying degrees
of reliability!7-32. What then are the roles of synaptic noise and
chaotic network dynamics during these evoked responses? To
answer this question, we simulated electrical activity in response
to a naturalistic thalamocortical stimulus (Fig. 5al), consisting of
spike trains recorded in the ventral posteromedial nucleus (VPM)
during replayed whisker deflection in vivo33. These spike trains
were then applied to different feed-forward VPM fibers in the
model to achieve a biologically inspired, time-varying synchro-
nicity among inputs (Fig. 5a3). To avoid introducing external
variability on top of the internally generated microcircuit varia-
bility, presynaptic inputs were kept identical across trials, but with
thalamocortical synapses subject to the same synaptic noise as
cortical synapses. Since this condition excludes variability in the
system up to and including the thalamus, it can be considered an
intermediate stage between the decoupled replay and regular
network simulations. The simulations allowed us to identify an
upper bound on the reliability of thalamocortical responses. Mean
ry(t) during evoked activity was stronger than during sponta-
neous activity, moving between ~0.1 and ~0.4 (Fig. 5a2), indi-
cating that external input increases neuronal reliability.

To characterize the nature of chaotic network dynamics during
this evoked, reliable activity, we again resumed from identical
initial conditions, with t, at various times relative to the stimulus
onset at t=0ms (Fig. 5b, for t, =100ms). The population
spiking activity across pairs of trials after resuming appeared
almost identical, even for time intervals much larger than the
divergence time characterized above (Fig. 5b). At first glance, it
would appear that the input had fully overcome the chaotic
divergence. However, quantification of variability by time-course
of divergence of membrane potentials, r(f), showed that it
dropped rapidly towards the independent trial average (Fig. 5cl,
top). When we resumed from identical initial conditions at
different times, for example, at the onset of evoked activity
(Fig. 5c1, middle) or before onset (Fig. 5cl, bottom), ry(f)
dropped in the same way, subsequently converging to the average
for independent trials. Indeed, s.(f), the normalized difference
between the resumed and independent ry(f) showed a pattern of
divergence remarkably similar to the divergence observed in
simulations of spontaneous activity (Fig. 5c2). Resuming from a
base state at the peak of evoked activity, spmsp(f) drops even
faster (Supplementary Fig. 9a). A simpler stimulus, designed to
imitate a whisker flick-type experiment!’, yielded comparable
results (Supplementary Fig. 9b, c). Hence, any neuronal activity,
whether spontaneous and unpredictable, or evoked and reliable, is
subject to similar divergent network dynamics.

Evoked reliable activity amid noise and chaos. At first glance,
our observations of evoked reliable activity and chaotic diver-
gence of membrane potentials seem to be contradictory. To better
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stimulus (spontaneous activity) on 40 as before

understand how the reliable responses emerge, we quantified the
respective contribution of network propagation and cellular noise
sources to variability. As before, we compared network simula-
tions with decoupled replay simulations (Fig. 6a3). Unsurpris-
ingly, ry(t) was much larger in the decoupled simulations
(Fig. 6al, black) than in the network simulations (Fig. 6al, red;
same as Fig. 5a2). However, the difference between the two was
always smaller during evoked activity (Fig. 6a2, after 0 ms) than
during spontaneous activity (Fig. 6a2, before 0 ms). This suggests
that network dynamics play a reduced role in generating varia-
bility during evoked activity.

Indeed, when we focused on individual neurons (Fig. 6b), we
saw that that the difference between network and decoupled r/(f)
collapsed to zero at times (Fig. 6¢). This is in stark contrast to
spontaneous activity, where there is always a large difference
between network and decoupled ry(t) (Supplementary Fig. 10a,
cl). Hence, it appears that, in response to a stimulus, membrane
potential variability due to network dynamics can intermittently
be completely overcome, with remaining variability being solely
due to cellular noise—at least for a sub-population of neurons in
the network.

Spike-time reliability amid noise and chaos. How does the
decreased membrane potential variability relate to spike-time
reliability? Spike-timing is determined by a non-linear transfor-
mation of the somatic membrane potential. First, we observed that
during spontaneous activity, the increase in membrane potential
reliability in a decoupled replay does not directly translate into an
increase in spike-time reliability (Supplementary Fig. 10b, c2). In
fact, we found a small negative correlation (Supplementary Fig. 10b,

c3). However, during evoked activity, we observed from our
example neurons that there are periods of reliable spiking where
network variability can go to zero (Fig. 6¢ vs. 6d, top).

So far, we have analyzed the variability of spiking activity of
neurons in terms of the Fano factor of their spike count (Fig. 1,
see above). This measure quantifies average variability over
relatively long time-windows and therefore cannot quantify the
transient periods of reliability we observed. Therefore, we used a
correlation-based measure of spike-time reliability, rspike34, to
compare simulations with and without network dynamics for a
population of neurons during evoked activity (Fig. 6d, el).
Contrary to the Fano factor, this measure is affected by the
precise timing of spikes in smaller time windows. We observed
that removing network dynamics only moderately increased
spike-time reliability (Fig. 6el, red vs. solid black line). In fact,
increases in reliability were small for all neurons (Fig. 6e2, solid
black line). In stark contrast to the spontaneous case (Supple-
mentary Fig. 10c2), a small population of neurons in the evoked
network simulations achieved close to perfect spike-time
reliabilities (Fig. 6el). As expected, most of the noise effects
could be explained by synaptic noise alone (Fig. 6el, 2, dotted
black line).

We conclude that during spontaneous activity, the reliability of
spike generation across timescales is directly, and severely
constrained by synaptic noise, even without amplification
through network dynamics. However, external stimuli can
sparsely and transiently overcome chaotic network dynamics
for sub-populations of neurons, with a residual variability—
caused by synaptic noise—that is much smaller than during
spontaneous activity.
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High reliability requires recurrent cortical connectivity. It is
conceivable that the spike-time reliability we observed was simply
a result of direct feed-forward thalamic input®. Indeed, when we
looked at changes in reliability without network dynamics, the
strongest increase in reliability was in neurons at the bottom of
layer six that receive comparatively little direct VPM input
(Fig. 6€3). On the other hand, the VPM input was weak com-
pared to the recurrent connectivity, making up only 7% of the
connections onto neurons in layer 4, 4% for layer 5, and <3% for
layer 6. To test whether the intermittent suppression of chaotic

dynamics is simply an effect of the feed-forward input, we
compared simulations of single cells with network simulations.
To this end, we designed a new simulation paradigm similar to
our previous decoupled replay, where each neuron received a
combination of replayed presynaptic inputs from a simulation of
spontaneous activity and from the direct feed-forward VPM input
it received in the evoked network simulations (Fig. 7al). That is,
each neuron receives input as in a spontaneous activity trial
through its recurrent synaptic contacts, and input as in an evoked
trial through its feed-forward synaptic contacts.
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In this mixed replay paradigm, the population response was
much weaker (Fig. 7a2). While in simulations of evoked activity,
all neurons showed higher reliability than in simulations of
spontaneous activity (Fig. 7b1), in the mixed replay, the only cells
that showed increased reliability were those close to the VPM
synapses (Fig. 7b2). Furthermore, the only neurons to display
similar reliability, with and without recurrent network propaga-
tion, were a small group in layer 4 (Fig. 7c). Taken together, these
findings suggest that feed-forward VPM input alone is not
enough to make the majority of neurons spike reliably.

To test this hypothesis, we compared the reliability between the
two simulation paradigms to the number of presynaptic VPM
fibers innervating each neuron (Fig. 7d1-3). We can see that
neurons in layer 4 that receive little direct VPM input responded
more reliably with the network enabled than neurons that receive
a lot of VPM input in the mixed replay case (Fig. 7d1). Neurons
in layers 5 and 6 were more reliable in mixed replay when they
had more presynaptic VPM connections. However, this reliability
increases drastically when network dynamics are enabled
(Fig. 7d2, 3). We conclude that the reliable spiking observed in
response to VPM inputs is propagated and amplified by recurrent
cortical connectivity.

High reliability emerges near a critical El-balance. What
mechanisms allow the recurrent cortical circuitry to respond so
reliably? We have shown above that dynamics in the NMC-model

10

depend on the balance between excitatory and inhibitory activity
(EI-balance). This balance can be altered by the extracellular
calcium concentration ([Ca27],), which differentially modulates
the effective strength of excitatory and inhibitory synapses. At
[CaZt],~1.25mM, the circuit is in a state where it exhibits
several properties of in vivo dynamics!” (Figs. 8a2 and 2al). For
lower [Ca®*],, activity becomes more and more asynchronous
(Fig. 8al), for higher [Ca2t],, activity reaches a critical point and
abruptly transitions to synchronous, regenerative (supercritical)
behavior (Figs. 8a3 and 2a2).

To understand how this affects spike-time reliability, we
repeated 30 trials of the thalamic stimulus at eight different levels
of [Ca?t], (Fig. 8a, b). As we go from asynchronous to
synchronous dynamics, the response properties visibly change
(Fig. 8a) and spiking becomes more reliable (Fig. 8c). As we
approach the state at [Ca2t],=1.25mM, reliability increases
sharply (Fig. 8c), whereas the overall El-balance increases
gradually (Fig. 8d). As we transition to supercritical regenerative,
synchronous behavior the reliability begins to plateau. At the
same time, the population response becomes erratic, with all-or-
nothing network bursts (Fig. 8b and Supplementary Fig. 11). We
previously showed that stimulus discriminatory power breaks
down in this supercritical regime, as it does far into the
asynchronous regime!”.

We conclude that spike-time reliability in the microcircuit is
adaptive: any neuromodulator that differentially targets inhibitory
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Fig. 8 High reliability emerges near a critical El-balance. a1-3 Raster plot of spike times of the same three example neurons as in Fig. 6d, during 30
independent trials of evoked activity, for three different extracellular calcium concentrations ([Ca2+], = 1.15, 1.25, 1.35 mM). b Population firing rates for all
30 trials for eight different extracellular calcium concentrations. Loss of stimulus discriminatory power away from [Ca2*], =1.25mM as observed by
Markram et al.””. ¢ Mean reliability of 2024 pyramidal neurons from layers 4, 5, and 6 during the evoked response vs. extracellular calcium concentration
(mean of 30 trials £ 95% confidence interval). d Total population firing rates for excitatory and inhibitory subpopulations in the whole microcircuit during

the evoked response

and excitatory synapses could adapt the response reliability in the
microcircuit according to computational tasks by fine-tuning the
global El-balance.

Discussion

In the present study, we used a biologically constrained model of a
prototypical neocortical microcircuit!” to estimate the internally
generated variability of local neocortical activity (Figs. 1-4) and
explored the implications for reliable stimulus encoding (Figs. 5-8).
We found that cortical circuitry supports millisecond-precision
spike-time reliability amid highly variable, chaotic network
activity. This resolves a long-standing question: Is the cortex too
noisy for the precise timing of a spike to matter®1221:23? put
simply, if spiking is unreliable, information must be coded by
firing rates estimated in populations of neurons?!:23, whereas if it
is reliable, precise spike timing of single neurons could contain
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significant information®12. Here, we demonstrated that cortical
circuitry naturally supports both regimes.

The experimental manipulations required to untangle the noise
sources in the brain, and evaluate their impact on spike reliability,
are impossible to perform in vitro or in vivo. Using the NMC-
model, we were able to perform a series of simulation-based
manipulations where we systematically added and removed noise
sources to quantify their impacts. These manipulations yielded
several novel insights.

First, we found that spontaneous activity in cortical circuitry is
intrinsically variable in terms of rapidly diverging activity tra-
jectories, both at the single neuron and population level (Figs. 1
and 2). While some of the effects of cellular noise sources on
variability —had been studied in single biophysical
Hodgkin-Huxley type neuron models?%-3>-37, this is the first
estimate of internally generated variability in an integrated, bio-
logically constrained model of a cortical circuit.

11


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

Our second insight was that stochastic synaptic transmission is
amplified by chaotic network dynamics to drive a rapid chaotic
divergence of the network, resulting in the above-mentioned
variability (Figs. 3 and 4). Chaotic network dynamics without
synaptic noise have been extensively studied?!=2>, and it has been
suggested that synaptic noise can generate high neural variability
in postsynaptic neurons>® and recurrent networks!8.

In spite of this rapid divergence of activity, variability in terms
of spike counts was below the expected value for Poisson-like
spiking!8 (Fig. 1f). Our model predicts that Poisson-like spike-
count variability in vivo is not internally generated, but rather
reflects non-local inputs (see Supplementary Discussion, Sup-
plementary Figs. 12 and 13), in line with recent in vivo experi-
ments>®. The relatively stable spike counts during the chaotic,
divergent spontaneous activity likely arise from a combination of
spike frequency adaptation mechanisms?44041 and synaptic fil-
tering??. This is in contrast to previous findings, which suggested
that synaptic noise and recurrent network dynamics lead to
Poisson-like spike-count variability!8.

The third insight was that comparatively weak thalamocortical
input could switch the network to a highly reliable spiking regime
(Figs. 5 and 6). This confirms results of deterministic models*? in
the presence of cellular noise and weak thalamic inputs, and
explains how patterns of activity generated by cortical circuitry in
response to sensory stimuli can often have millisecond spike-time
precision#344,

The fourth insight is the mechanism for this dichotomous
behavior. We determined that the recurrent network architecture
causes both the amplification of synaptic noise during sponta-
neous activity, and the reliable response in the presence of input
(Fig. 7). The critical role of the recurrent network stands in
contrast to previous modeling work, which showed that relatively
few synchronous thalamic inputs maximize reliability in single
neurons in cat visual cortex3>. However, this study likely over-
estimated synaptic reliability—synaptic release probabilities are
lower in vivo than in vitro, both in general!® and in this specific
pathway?>. We found that the reliability of the response strongly
depended on the overall EI-balance in the network (Fig. 8). The
response reliability rapidly increases towards a just subcritical
dynamical state where the microcircuit reproduces several in vivo
findings and neurons have maximum discriminatory power to
different stimulil”.

The exact mechanism for this triggering of reliable spiking, and
the means by which signals are reliably propagated through the
circuitry amid variable activity remain a subject for future
investigation. In a first step towards a characterization, we found
that synchronous inputs that arrive within several milliseconds
are well suited to elicit reliable responses (Supplementary Fig. 14),
in line with previous predictions for single cells>>. One possible
explanation for the propagation of reliable activity is that certain
connectivity motifs could amplify reliability through redundant
connectivity, such as common neighbor motifs*® and high-
dimensional cliques that shape spike correlations between neu-
rons>2. In fact, we found that neurons with high in-degrees were
more reliable (Supplementary Fig. 15a), and that neurons are less
reliable the fewer higher-dimensional cliques3? they are part of (at
similar in-degree, Supplementary Fig. 15b). Dendritic non-
linearities, such as N-methyl-p-aspartate (NMDA)-mediated
plateau potentials evoked by clustered synaptic inputs onto the
dendritic tree could also play an important role*”43,

While the NMC-model is one of the most detailed models of
neocortical circuitry to date, several biological details are lacking.
Multivesicular release might decrease synaptic variability
(see Supplementary Discussion and Supplementary Fig. 16)4%>0.
In terms of noise sources, the most important lacking detail is
ion-channel noise!33%°1, which could increase variability of spike

timing by up to several milliseconds in long axons®? (see Sup-
plementary Discussion). There are other internal mechanisms not
yet included in the NMC-model such as gap junctions, intra-
circuit neuromodulation®® or active information transfer from
glia to neurons®*°, whose contributions to variability within
cortical circuits are as yet poorly understood. However, for these
mechanisms to contribute significantly as additional noise sources
beyond synaptic noise, they would have to cause somatic mem-
brane potential fluctuations on the order of 1 mV (Fig. 4).

This study provides a data-constrained biophysical framework
that supports theories of cortical coding along a spectrum—from
population firing rates to reliable individual spike times. This
study does not claim that cortex generally employs codes that rely
on individual spike times, only that it is principally capable of
such codes. Even a highly reliable cortex might be variable due to
computational strategies that are intrinsically variable, such as
sub-optimal inference’®, or due to overcomplete representation of
inputs, with distributions of spike patterns encoding the same
stimulus®’. Encoding strategies might further be adjusted
according to computational needs by fine-tuning of the network
near criticality®8, for example, due to neuromodulation that shifts
the balance between excitation and inhibition and with it spike-
time reliability.

Methods

Model of neocortical microcircuitry (NMC-model). Simulations of electrical
activity were performed on a previously published model of a neocortical micro-
circuit based on data from two-week old rats. Reconstruction and simulation
methods are described extensively by Markram et al.l”. In our study, we used a
microcircuit consisting of 31,346 biophysical Hodgkin-Huxley NEURON models
and around 7.8 million connections forming roughly 36.4 million synapses.
Synaptic connectivity between 55 distinct morphological types of neurons (m-
types) was predicted algorithmically by integrating anatomical data, such as layer-
dependent cell type densities, morphologies, and bouton densities, to generate a
wiring diagram®® with highly heterogeneous connectivity>6%-61. Consequently, the
NMC-model exhibits a naturally emerging structural and functional EI-balance®,
without relying on assumptions about the exact level of coupling between excita-
tory and inhibitory currents. The densities of ion channels on morphologically
detailed neuron models were optimized to reproduce the behavior of different
electrical neuron types (e-types) as recorded in vitro®2,

The NMC-model contains three types of biological noise sources, all of which
are required to replicate neuronal responses to paired recordings and current
injections in vitro. Each of the 36 million synapses in the model incorporates
stochastic models of vesicle release with biologically constrained variability, which
display both failure of vesicle release (a) and spontaneous release (b). The neuron
types that exhibit irregular firing behavior (1137 neurons) also contain models of
stochastic potassium channels (c), which induce irregular firing in response to
constant current injections in vitro. A fourth, tunable noise source consisted of a
noisy current (d) injected at the soma of each of the 31,346 neurons in the model,
used to account for other putative sources of depolarization in vivo. We maintained
the magnitude of this generic noise far below the magnitude of the experimentally
constrained noise sources, using it later for sensitivity analysis (variance of 0.001%
of the mean injected current per neuron, unless stated otherwise). In our initial
experiments, all noise sources are thus intrinsic to the microcircuit, with all
variability generated internally.

We also used a larger mesocircuit comprising seven microcircuits (mean of 36.5
million synapses per circuit), with no boundaries between the peripheral circuits
and the original microcircuit in the center. Simulations were run on a BlueGene/Q
supercomputer (BlueBrain IV) and an HPE SGI 8600 supercomputer (BlueBrain
V). NEURON®3 models and the connectome are available online at bbp.epfl.ch/
nmc-portal®4,

Simulation of spontaneous activity. Neurons were depolarized with a somatic
current injection, with currents expressed as a percent of first spike threshold for
each neuron, to mimic, for example, the effect of depolarization due to missing
neuromodulators. Release probabilities for all synapses were modulated according to
the extracellular calcium concentration found in vivo, leading to substantially lower
reliability than in vitro!®. As described by Markram et al.!7, the Usg parameter for
synaptic transmission was modulated differentially as a function of extracellular
calcium concentration ([Ca2*],). Excitatory synapses are more strongly affected by
[Ca?*], changes than inhibitory synapses, whereby an increase in the concentration
of [Ca?*], shifts the EI-balance of the network in favor of excitation. It was pre-
viously shown that such changes in [Ca?*t], induce a sharp transition in network
activity, from asynchronous to regenerative synchronous activity. This transition
occurs around a critical point just above [Ca**], = 1.25 mM, with activity below
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this point being subcritical and activity above this point being supercritical. With
mean injected currents at around 100% of first spike threshold and [Ca2*], at 1.25
mM, the microcircuit exhibits spontaneous activity that reproduces several prop-
erties of in vivo spontaneous and evoked activity!”.

Simulation of evoked activity. The microcircuit is innervated by 310 (virtual)
thalamic fibers!”. In vivo spike train recordings from 30 VPM neurons were
randomly assigned to the 310 fibers, to achieve varying degrees of naturalistic
synchronous thalamic inputs. Spike trains were recorded during replayed whisker
motion in anesthetized rats®3. Full methods are described in Reimann et al.32. A
variable version of the naturalistic input used in vivo spike train recordings of the
same 30 VPM neurons during 30 trials of the same replayed whisker motion33.
Another stimulus consisted of synchronous spikes at the 60 central thalamic fibers,
with all 60 virtual thalamic neurons firing simultaneously, to approximate a
whisker “flick” (as in Markram et al.17).

Save-resume. After running a simulation for some amount of biological time, the
final states of all variables in the system were written to disk using NEURON’s
SaveState class. For large-scale simulations, this required the various processes to
coordinate how much data each needed to write, so that each rank could then seek
the appropriate file offset and together write in parallel without interfering with the
others. After restoring a simulation, the user could specify new random seeds (see
below).

Random numbers. In our simulations, we used random number generators
(RNGs) to model all stochastic processes: noisy current injection, stochastic ion
channels, probabilistic release of neurotransmitters and generation of spontaneous
release events. Each synapse had two RNGs. One was used to determine vesicle
release on the arrival of an action potential. The other determined the spontaneous
release signal. Similarly, each stochastic K™-channel model had an RNG deter-
mining voltage-dependent opening and closing times. Finally, the white noise
process underlying the noisy depolarization was determined by one RNG per
neuron. By using different random seeds to initialize the RNGs, we obtained dif-
ferent sequences of random numbers, and consequently different but equally valid
simulation outcomes. In earlier versions of the NEURON microcircuit simulation
software, the user was given only a single random seed parameter with which to
alter the random number streams generated by all RNGs. We added the option to
separately change random seeds for RNGs for a specific type of stochastic com-
ponent. For example, “lonChannelSeed <value>” allows the specification of a seed,
which is only given to the RNGs used by ion-channel instances.

Stochastic synapses. The synapse models including parameters are described in
detail in Markram et al.!7, and the models used can be found online at bbp.epfl.ch/
nmc-portal. The model is based on two previous models?>%°. In short, each
synapse has a pool of readily releasable vesicles of size 7., which are in one of two
states: recovered or depleted. Upon action potential arrival at the synapse, each
recovered vesicle stochastically releases with dynamic probability U(t). The prob-
ability of vesicle release U(t) is dynamic, to implement synaptic facilitation, and is
governed by an event-based equation:

t—tgyn

U(t) = U(tsyn> e The + USE . (1 - U(tsyn) e rfzn>¢ (1)

where Ugg, is the release probability of a synapse that has not been activated in a
long time, t, is the time of arrival of the last presynaptic spike at the synapse, and
Trac i the facilitation time constant. For each released vesicle, postsynaptic AMPAR
and NMDAR models are activated with a conductance gmay/ferp Where gmay is the
maximal postsynaptic conductance. After successful vesicle release, the vesicle
location is in a depleted state in which it has no vesicle to release. The transition
from the depleted state back to the recovered state is governed by a Poisson
process, according to a survival function:

Py () = & (7o) Ta, )
where Pg,(t) is the probability of remaining in the depleted state in the interval
[tsyn> t], and T4 is the depression time constant. The univesicular case (71, = 1) is
modeled, unless stated otherwise.

A second stochastic process is used to generate event times for spontaneous
“miniature” postsynaptic potentials. Spontaneous release is modeled as an
independent Poisson process with a rate Ag,on; at each synapse. When the synapse
receives the signal for a spontaneous release event, it is treated as a presynaptic
action potential.

Deterministic synapse model. The deterministic synapse model is implemented
as previously described?”. In this formulation, Usg() is interpreted as the fraction
of consumed resources, rather than a release probability. Each release event acti-
vates a fraction of postsynaptic conductance proportional to Usg(t) - R(t), where R
(t) is the fraction of vesicles in the recovered state. These two state variables are

governed by the following equations?>:

4R (1-R)
P Uge - R-O(t — tyy), (3)
AU Usg
Z-SE_ _ TSE 1-(1— L8(t —
o= U (12 Ug) 8 1y, 0

where 7, and g, are the recovery and facilitation relaxation time constants, Usg
is a dynamic variable that increases by an amount determined by Ul for each
presynaptic spike (note that Ul is equivalent to Usg in the stochastic model), and
toyn is the time of arrival of presynaptic spikes at the synapse. The deterministic
models implemented in this way are equivalent to their stochastic (multivesicular)
counterparts in the limit as 71, — oo.

Stochastic ion channels. In some interneuron models, a potassium channel type
with a stochastic implementation was added using previously described

methods!7-20-36:66 to model ion-channel noise. The full model is available online at
bbp.epfl.ch/nmc-portal. In brief, instead of a mean field model, the equations used
explicitly track the number of channels in a certain state and allow these numbers
to evolve stochastically, according to a binomial distribution, with the probability
of transition between states computed according to the deterministic rate functions

« and S
o
Open = Closed

B

Single spike injection. We injected single spikes in 20 different layer 4 pyramidal
neurons by replaying (see below) an additional spike event in one neuron per
simulation. Thus, there were no shifted or missing spikes, as may occur when
injecting a spike in vivo. The spike was injected 0.1 ms after resuming the simu-
lation from identical initial conditions.

Step-pulse perturbation. We applied a microscopic current step-pulse to all
neurons at their soma 0.1 ms after resuming the simulation (duration: 0.1 ms,
amplitude: 1 pA). The current was chosen to have an almost negligible effect on
individual neurons, and was near the limit of the NEURON integrator. On average,
108 + 8 neurons out of 31,346 neurons had any changes in their spike times (mean
of 19 trials + STD). The majority of the shifted spikes were shifted by <0.05 ms
(59.1%: <0.05; 33.1%: <1 ms; 5.5%: <20 ms; 1.8%: <100 s; 0.5%: <1s). Finally, 3 +2
neurons had extra or missing spikes. The median first occurrence of an extra or
missing spike was at 257 ms (min: 11 ms, max: 946 ms after resuming).

Decoupled replay. When resuming a simulation at t,, we decoupled all connec-
tions by setting the connection weights to zero, ensuring that action potentials
would be delivered to the synapses of postsynaptic neurons. At the same time, we
started replaying action potential times from a previous resumed simulation,
activating the synapses of postsynaptic neurons as if the presynaptic neuron had
fired an action potential, but actually replaying presynaptic action potentials from
the previous simulation. For computational reasons, spikes that had not been
delivered at the save time f,, were not delivered in the decoupled replay (meaning
that a couple of presynaptic spikes per neuron may have been lost, leading to a
slight underestimation of divergence).

RMSD and correlation. For each neuron #, we calculated the root-mean-square
deviation RMSDy/(#, k; t) of its somatic membrane potential between two trials in
time bins of size At starting from f:

t+At/2
Vi (ks ') = Voo (n, b ) Pdt' At (5)

t—At/2

RMSDy, (1, k; t) =

where V,,1(n, k; t) and V,,,»(n, k; t) denote the time series of somatic membrane
potentials of neuron # in the two respective trials resuming from the same base
state k. We consequently defined the mean root-mean-square deviation of the
microcircuit RMSDy /() as the mean of RMSDy(n, k; t) over all base states (K = 40)
and neurons (N = 31,346).

We analogously computed the linear correlation of somatic membrane
potentials between two trials in time bins of size At, starting from ¢, (averaging over
t' in each time bin of size At):

COV(Vm’l(n’k;t,)’VmZ(”vk?t/)) p M <t At
U(Vm‘l(n’k:’t/))'“(Vm.,z<n,k;t’))’ TR sty

All analysis was performed using custom scripts written in Python 2.7 using the
NumPy, matplolib, and SciPy libraries. Scripts were executed on a Linux cluster
connected to the same IBM GPFS file system that the simulation output was

rv(”a k; t) = (6)

| (2019)10:3792 | https://doi.org/10.1038/s41467-019-11633-8 | www.nature.com/naturecommunications 13


http://bbp.epfl.ch/nmc-portal
http://bbp.epfl.ch/nmc-portal
http://bbp.epfl.ch/nmc-portal
www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

written to. Root-mean-square deviation RMSDy and correlation ry were
implemented with NumPy.

Similarity. The similarity measure s(f) was defined as the normalized difference
between diverging ry(f) (or RMSDv(t)), and steady-state ry/(f) (or RMSDy/(#)). The
steady-state value was defined as the continuous ry ghyme(f) computed by shuffling
the soma voltages between simulation trials, so that instead of 40 deviating pairs of
trajectories, we compared 40 independent pairs of trajectories. Alternatively, we
defined it as the mean stationary, fully deviated r., for £>1000 ms after resuming
from identical initial conditions.

Firing rate. Firing rate was defined as the average number of spikes in a time
interval of size At, divided by At (At =10 ms, unless stated otherwise).

Neuron selection. We selected all excitatory neurons in layers 4, 5, and 6 that
belonged to the 30 minicolumns (out of 310 in total) in the center of microcircuit
(n=2024). The analysis was restricted to neurons that spiked at least once in each
of the compared simulation paradigms.

Spike-time reliability. Spike-time reliability was measured using a correlation-
based measure first proposed by Schreiber et al.34. Briefly, the spike times of each
neuron in each trial were convolved with a Gaussian kernel of width o, =5 ms to
yield filtered signals s(n, k; t) for each neuron # and each trial k (At; =1 ms). The
spike-time reliability for each neuron was then defined as the mean inner product
between pairs of signals divided by their magnitude:

Toike() = ke Z ‘fn”kkt[‘ Ts"nlltt j» (K= 30; independent trials). Decoupled replay:
there are M = 5 replays of each of the K= 30 trials, and thus

(k)5 (1)
KMM 1 ZE\S (nks;t)]-[sp (nEL)["

Tspike \ 1 (n)

Errors and statistical tests. Error bars and shaded areas indicate 95%-confidence
intervals (CI), unless stated otherwise. t-based CIs (n = 20; or n = 40 if stated) were
computed using scipy.stats.sem and scipy.stats.t.ppf to compute p-values from the
CIs (one-sided). Errors for fit parameters, obtained with scipy.optimize.curve_fit,
are given as the square-root of the variance of the parameter estimate.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

NEURON models, microcircuit information, and the connectome are available for

download at https://bbp.epfl.ch/nmc-portal/downloads. The integrated microcircuit
model is available upon reasonable request. Output spike times and output somatic
membrane potentials are available upon reasonable request.

Code availability

Software used for visualization of neurons in Fig. 1 is available at https://github.com/
BlueBrain/RTNeuron. The NEURON simulation environment is available at https://
www.neuron.yale.edu/neuron/. The custom-written Python analysis and figure
generation scripts are available at https://github.com/maxnolte/deciphering_variability.
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