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Phase stabilization by electronic entropy
in plutonium
N. Harrison1, J.B. Betts1, M.R. Wartenbe1, F.F. Balakirev 1, S. Richmond 2, M. Jaime1 & P.H. Tobash2

Plutonium metal undergoes an anomalously large 25% collapse in volume from its largest

volume δ phase (δ-Pu) to its low temperature α phase, yet the underlying thermodynamic

mechanism has largely remained a mystery. Here we use magnetostriction measurements to

isolate a previously hidden yet substantial electronic contribution to the entropy of δ-Pu,

which we show to be crucial for the stabilization of this phase. The entropy originates from

two competing instabilities of the 5f-electron shell, which we show to drive the volume of Pu

in opposing directions, depending on the temperature and volume. Using calorimetry mea-

surements, we establish a robust thermodynamic connection between the two excitation

energies, the atomic volume, and the previously reported excess entropy of δ-Pu at elevated

temperatures.
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Located at the discontinuity in atomic volume between light
and heavy actinides, elemental plutonium (Pu) has an
unusually rich phase diagram that includes seven distinct

solid state phases and an anomalously large 25% collapse in
volume from its δ phase to its low temperature α phase via a
series of structural transitions1–3. Despite considerable advances
in our understanding of the interplay between the atomic volume
and strong electronic correlations within each of the various
structural phases of Pu and other actinides4–15, the thermo-
dynamic mechanism responsible for driving the volume collapse
has continued to remain a mystery. Clues to the emergence of
additional degrees of freedom at elevated temperatures are pro-
vided by calorimetry experiments16–19, which find the high
temperature heat capacity of Pu and neighboring actinides to
significantly exceed the Dulong-Petit value of conventional
solids20. Although electronic degrees of freedom and anharmonic
phonons are expected to contribute to the entropy in Pu6,7,
thermodynamic experiments have thus far been unable to isolate
a contribution that is sufficiently large to account for the observed
stabilization of the δ phase over the α phase at elevated
temperatures18,19.

Owing to the direct coupling of a magnetic field to magnetic
moments, magnetostriction measurements provide a powerful
method for isolating the electronic contribution to the lattice
thermodynamics21. Although the magnetostriction is vanishingly
small in conventional non-magnetic metals, it has been shown to
become anomalously large in the vicinity of an f-electron shell
instability22–26, whereby a thermodynamically accessible difference
in energy exists between electronic configurations of the f-electron
atomic shell comprising different numbers of f-electrons. Because
magnetic fields do not couple directly to phonons, magnetic field-
dependent changes in the phonon contribution occur only in
response to a change in the volume that is driven electronically,
causing such changes to be a weak higher order effect.

Here we show magnetostriction measurements to uncover the
crucial role played by a large electronic entropy originating from
the unstable f-electron shells22 of Pu in stabilizing the δ phase
against volume collapse. We find that in contrast to valence
fluctuating rare earths, which typically have a single f-electron
shell instability whose excitations drive the volume in a single
direction in temperature and magnetic field22,27,28, Ga-stabilized
δ-Pu exhibits two such instabilities whose excitations drive the
volume in opposite directions while producing an abundance of
electronic entropy at elevated temperatures. The two instabilities
imply a near degeneracy between several different configurations
of the 5f atomic shell29–33, giving rise to a considerably richer
behavior than found in rare earth metals. We use heat capacity
measurements to establish a robust thermodynamic connection
between the two excitation energies, the atomic volume, and the
previously reported excess entropy of δ-Pu at elevated tempera-
tures17–19. Virtual valence fluctuations5,8,34, by contrast, in which
fluctuations between nearly degenerate f-electron shell config-
urations persist down to zero temperature, due for example to
mixing, appear to have little impact on the thermodynamic sta-
bilization of the δ phase. This is in spite of virtual valence fluc-
tuations having previously been suggested to explain some of the
low temperature properties of Ga-stabilized δ-Pu17,35

Results
Magnetostriction measurements. We are able to infer the exis-
tence of two instabilities in Pu by way of magnetostriction
measurements owing to Ga substitution affording the stabiliza-
tion of the δ phase over a broad span in temperatures and over a
range of different volumes36,37. In pure Pu, by contrast, δ-Pu is
stable only over a narrow range of high temperatures—collapsing

into significantly lower volume structures upon reducing the
temperature. We perform magnetostriction measurements on
Ga-stabilized δ-plutonium using an optical fiber Bragg grating
technique38, which we have adapted for use on encapsulated
radiologically toxic materials (see Methods).

Figure 1a, b show measurements of the longitudinal
magnetostriction (dilation and contraction along the direction
of the magnetic field) of Ga-stabilized polycrystalline pluto-
nium samples of composition δ-Pu1−xGax with x = 2% and 7%.
We find that the magnitude of the electronically driven
quadratic-in-magnetic field coefficient of the magnetostriction
of δ-Pu (see Fig. 1c, and Supplementary Fig. 1) falls within the
range of values observed in materials with unstable f-electron
shells22–26. However, rather than exhibiting a steep upturn at
low temperatures22,23, as expected for a dominant role played
by virtual (or zero point) fluctuations involving a low lying
magnetic configuration5,8,34,39, the magnetostriction of δ-Pu is
observed to vanish at low temperatures. Its behavior closely
resembles that of a scenario in which the f-electrons condense
into a non-magnetic atomic shell configuration26,40, revealing
the electronic excitations to states with different magnetic
configurations to be of a predominantly thermally activated
nature.

When excitations to different electronic configurations occur in f-
electron systems (e.g. from E0 to E1 in Fig. 2a, b), the excited
configuration usually has a different number of f-electrons confined
to the atomic core, causing it to have a different equilibrium atomic
volume (V1) and magnetic moment (see Methods)22,28. The initial
positive increase of the magnetostriction with temperature indicates
that the dominant thermal excitations occur between a non-
magnetic configuration and a different configuration with both a
larger equilibrium atomic size and a larger magnetic moment, as is
the case in the majority of f-electron systems (see e.g. the illustrated
case of Ce in Fig. 2a)22,23,25,26. However, rather than continuing the
same positive sign indefinitely, the sign of the quadratic coefficient
of the magnetostriction in δ-Pu turns negative beyond ≈200K (see
Fig. 1c). A negative sign indicates the onset of thermal excitations
into a higher energy electronic configuration with a larger magnetic
moment, but whose equilibrium atomic size (V2) is now
significantly smaller than that of the other configurations—as
frequently encountered in intermediate valence compounds of Yb
(see Fig. 2b)22,23,25,26. The highly non-monotonic temperature-
dependence of the magnetostriction in δ-Pu is indicative of at least
three different f-electron configurations (E0, E1, and E2) being
relevant (shown schematically in Fig. 2c).

Our magnetostriction measurements of δ-Pu are corroborated
by thermal expansion measurements41, which, while lacking
information on magnetic moments of the f-electrons, convey
more direct information concerning the change in atomic volume
between different configurations. Low temperature thermal
expansion measurements (Supplementary Fig. 2a, b) find the
electronic contribution to the thermal expansion from itinerant
carriers to be overwhelmed by phonons at temperatures above
~10 K, as has also been suggested on the basis of heat capacity
measurements17. A low temperature thermal expansion domi-
nated by phonons is further validated by the published
temperature-dependent lattice constant data41 (replotted in
Fig. 1d). On considering the thermal expansivity curves (shown
in Fig. 1e), which are obtained from a temperature derivative of a
smooth curve fit to the lattice constant data, it becomes evident
that not until T ≳ 50 K does a notable departure from the phonon
contribution (magenta curve in Fig. 1e) become apparent. The
non-phonon contribution to the thermal expansion therefore
mirrors the form of the magnetostriction, revealing excitations
between electronic configurations to be an equally impactful in
both thermodynamic quantities.
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Modeling of the free energy. We proceed to establish validity of a
multiconfigurational picture by first showing that the magnetos-
triction and thermal expansion in Ga-stabilized δ-Pu are fully
consistent with a model for the statistical thermodynamics of a
multiple level system22,28, and then, in the following section, by

showing that the model accurately predicts the temperature and
volume-dependence of heat capacity data. When two or more
different electronic configurations with different energies coexist
at a given value of the atomic volume V (shown schematically in
Fig. 2), their relative occupations can be described by a partition
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Fig. 1 Magnetostriction and thermal expansion of Ga-stabilized δ-Pu (δ-Pu1−xGax). a Longitudinal magnetostriction Δl/l (gray lines) of x = 2% versus B2 at
several different temperatures together with quadratic fits (blue lines), where B is the magnetic field. b Longitudinal magnetostriction (gray lines) of x = 7%
versus B2 at several different temperatures together with quadratic fits (red lines). c Longitudinal magnetostriction coefficient s|| versus temperature for x =
2% (blue circles) and x = 7% (red diamonds). Error bars refer to the standard error of the mean, estimated by way of multiple sweeps. Open squares are
the magnetovolume coefficient associated with each of the allotropic phase transitions in pure Pu, as described in the Results section. d Lattice parameter a
versus T for x = 0% (gray squares), 2% (blue circles), 4% (green up triangles), and 6% (violet down triangles) from ref. 41. e The thermal expansivity,
obtained by applying αl = aT=0(∂a/∂T) to the fitted lines in d. The phonon contribution calculated for a Debye temperature of θD = 100 K17 is shown for
comparison (magenta). The global fit to the data in c and d is discussed in the text and Methods, and is displayed using lines of the same color as the data
points. Dashed lines indicate extrapolations
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Fig. 2 Schematic volume-dependent energies of different electronic configurations. a Schematic volume V-dependent energies E for two configurations of
Ce and its compounds, in which E0 (blue line) has nf = 0 4f-electrons confined to the atomic core and E1 (red line) has nf = 1 4f-electron confined to the
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two excitation energies E�1 and E�2 (indicated using dotted lines; see Methods). The number of 5f-electrons confined to the atomic core in each case remains
to be determined
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function Zel, which produces an electronic contribution to the
free energy of the form

Fel ¼ �kBTN lnZel: ð1Þ
Thermodynamic quantities, such as the quadratic-in-field

magnetostriction coefficient s||, thermal expansion coefficient αl
and heat capacity CV, are then given by second derivatives�
ηsjj � sν ¼ � κ0

B
∂2F
∂ν∂B, 3αl � αν ¼ �κ0

∂2F
∂ν∂T and Cp � CV ¼

�T ∂2F
∂T2

���
V

�
of the total free energy F(T, B, x) = Fel + Fph, where

Fph is the contribution from phonons (see Methods)41,42.
We perform a simultaneous fit of F(T, B, x) to sjjðT; xÞ �

1
ηB2 ½νelðT;B; xÞ � νelðT; 0; xÞ� and aðT; xÞ � a0ðxÞ �
a0ðxÞ
3 νðT; 0; xÞ ¼ a0ðxÞ

3 ½νphðT; 0; xÞ þ νelðT; 0; xÞ� in Fig. 1c, d

using νðT;B; xÞ � �K�1
0

∂FðT;B;xÞ
∂ν

���
p
(see Methods), where K0 is

the bulk modulus of the ground state configuration, B = 15 T in
Fig. 1a, b, a0(x) is the lowest temperature value of a for each Ga
concentration x and we assume η = 3 (see Methods)23. The
electronic contribution

νelðT;BÞ �
1
Z�
el

X
i¼0;1;2

X
σ¼± 1

2

ν�i e
�kBE

�
i
þ2σμ�

i
B

kBT ð2Þ

to the volume dilation ν(T, B) is derived in Methods, where

Z�
el ¼

X
i¼0;1;2

X
σ¼± 1

2

e�
kBE

�
i
þ2σμ�

i
B

kBT ð3Þ

is the effective partition function (see also Supplementary Note 1).
The phonon contribution νph(T) is obtained by numerical
differentiation of Fph (given in Methods). During fitting, the
excitation energies E�

i (illustrated in Fig. 2c), the effective
magnetic moments μ�i (assuming σ ¼ ± 1

2 pseudospins) and
effective equilibrium volume dilations or contractions ν�i for the
different configurations i are allowed to have independent values
for x = 2% and x = 7% Ga concentrations; for other values of x,
we assume E�

i , μ
�
i and ν�i to interpolate linearly as a function of x

(or extrapolate linearly in the case of x = 0 in Fig. 3). Meanwhile,
following the experimental finding that the Debye temperatures
characterizing the heat capacities of x = 2% and x = 7% Ga-
stabilized δ-Pu (see Supplementary Fig. 3) and x = 5% Al-
stabilized δ-Pu17 have very similar values of ΘD≈ 100 K, we
assume νph(T) to be independent of x, enabling us to reduce the
number of fitting parameters. The results of the fitting are shown
in Fig. 3 and Table 1. Adding confidence to this procedure, E�

1
and E�

2 are found to remain robust on restricting the fit only to
s||(T, x) or, alternatively, on expanding the fit to include the
magnetic susceptibility; the latter requiring substantially more
parameters (see Supplementary Note 2 and Supplementary
Tables 1 and 2 and Supplementary Fig. 4).

Heat capacity measurements. We proceed to show that the
above form for F(T, B, x), having been fit to s||(T, x) and a(T, x),
successfully predicts a third thermodynamic quantity; namely the
heat capacity. On computing the heat capacity in Fig. 4a, we find
multicofigurational excitations to add ~5 Jmol−1K−1 to the heat
capacity at T ≳ 100 K, bringing it into close agreement with the
published experimental curve17. Multiconfigurational electronic
excitations therefore produce the largest contribution to the
heat capacity and entropy after phonons (see Fig. 4a, b), with
the characteristic energy E�

1 dominating at temperatures
between ≈100 and 300 K and E�

2 coming in at higher tempera-
tures (see Fig. 2c). Importantly, the entropy associated with the
electronic excitations (see Fig. 4b) is more than sufficient to
account for the ≈0.8 × R ln 2 excess entropy previously identified
as favoring the stabilization of δ-Pu over α-Pu at high tempera-
tures (where R = kBNA and NA is Avogadro’s number)18,19.

A particularly striking finding is that the excitation energies E�
1

and E�
2 change rapidly as a function of the Ga content x (plotted

in Fig. 3), and in opposite directions. One predicted consequence
of their rapid change with x is that the heat capacity is expected to
become strongly dependent on the Ga composition (see Fig. 4),
thus providing a means for the extreme dependences of E�

1 and E�
2

on x to be robustly verified by experiment. To confirm that the
extreme sensitivity of E�

1 and E�
2 to x and V is a genuine effect, we

calculate the heat capacity as a function of T at different values of
x (see Fig. 4c) and compare it against an independent set of x-
dependent heat capacity measurements (raw data contained in
Supplementary Fig. 3). On taking the difference between the
calculated heat capacity for x = 2 and 7% (from Fig. 4c), we find
that it indeed accurately predicts the difference in heat capacity
observed experimentally (shown in Fig. 4d), including both the
absolute magnitude of the difference and the existence of a sign
change in the difference at ≈130 K. Since the primary effect of Ga
substitution is to reduce the volume V of δ-Pu (the ground state
atomic volume of δ-Pu1−xGax being shown on the lower
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Fig. 3 Schematic energies and volumes of Pu. Excitation energies E�1
(magenta circles) and E�2 (red circles) for δ-Pu1−xGax for x = 2 and 7%
(upper x axis) according to Table 1 (circles), with the lines of the same color
indicating interpolations (or extrapolations for x = 0) assumed during
fitting (see Methods). The lower horizontal axis shows the approximate
atomic volume VT = 0 of the ground state (T = 0). Shaded regions illustrate
the relative volume changes accompanying the excitations. The open
square corresponds to the resonance energy observed in neutron scattering
measurements39, where the error bar indicates its approximate width

Table 1 Fitting parameters

Quantity x = 2% Ga x = 7% Ga All x Units

ð1þ ν�1 ÞV0 24.66 ± 0.02 24.37 ± 0.11 Å3

E�1 265 ± 10 476 ± 18 K
μ�1 1.7 ± 0.3 1.3 ± 0.3 μB
ð1þ ν�2ÞV0 21.29 ± 0.01 23.71 ± 0.08 Å3

E�2 1450 ± 90 810 ± 80 K
μ�2 2.9 ± 1.0 3.8 ± 1.4 μB
γ 0.50 ± 0.04 –

Values of the various parameters obtained on performing a least squares fit, including errors
(estimated from their covariance). The corresponding parameters of the ground state of
E�0 ¼ μ�0 ¼ 0, while V0 = 24.57 and 23.87 Å3 for x = 2 and 7%, respectively (estimated from
diffraction measurements)41
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horizontal axis of Fig. 3)36, we attribute the opposite variations of
E�
1 and E�

2 with x to their sensitivity to volume, illustrated in
Fig. 2c.

Discussion
We have therefore uncovered two previously hidden electronic
energy scales giving rise to significant entropy in excess of the
Dulong-Petit value20 of ≈25 Jmol−1K−1 at temperatures above
the Debye temperature in plutonium. The strong variations of E�

1
and E�

2 with x shed light on the long unresolved questions2 of why
the volume collapse occurs and why it is inhibited by Ga sub-
stitution36. A likely energetic motivation for the volume collapse
at low temperatures is provided by the steep decline in E�

2 with
decreasing volume (see Fig. 3a), which suggests an equilibrium
volume (V2) for E2, similar to that found by density functional
theory12, that is lower in energy than that of E0 in Fig. 2c. In
practice, the volume collapse (which takes place via a series of
steps in pure Pu)2,37 is accompanied by additional translational
symmetry breaking into the α phase (or α′ phase in the alloys),
which give rise to an energy barrier between the different volume
phases19. In pure δ-Pu, E�

2 is too high (≈1700 K according to an
extrapolation to x = 0% in Fig. 3) to supply sufficient entropy to
δ-Pu for it to remain stable over an extended range of tempera-
tures, resulting in its ultimate collapse into the α phase. Con-
versely, in heavily substituted δ-Pu1−xGax, E�

1 and E�
2 are both

sufficiently low to afford the δ phase in the alloy a significantly
elevated entropy relative to that in pure plutonium, as evidenced
by the higher electronic heat capacity above ≈130 K of heavily
Ga-stabilized δ plutonium relative to its Ga-reduced counterpart.
The additional entropy associated with the rapid descent of E�

x

with increasing x thus provides δ-Pu1−xGax with some degree of
protection against collapsing into the α phase (see Methods)19,37.

The strong interplay between the excitation energies and V is
further demonstrated by the similarity in behavior of the mag-
netostriction to the transitional magnetovolume coefficient
associated with each of the crystallographic phase transitions in
plutonium35. We estimate the transitional magnetovolume coef-
ficient, smv

jj � μ0κ0
6 Δχ=Δν (open squares in Fig. 1c), of pure Pu

from the ratio of the previously measured jump Δχ in the sus-
ceptibility to the jump Δν in volume dilation (plotted in Sup-
plementary Fig. 5) at each of the phase transitions2. We find the
magnetovolume and magnetostriction coefficients to be of similar
magnitude and to exhibit similar positive-to-negative trends with
increasing temperature, implying that E�

1 and E�
2 respond simi-

larly to reductions in V caused by phase transitions as they do to
reductions in V caused by Ga substitution.

Our findings shed light on the electronic structure of pluto-
nium and its relation to other actinides and to rare earths. While
energy scales of comparable magnitude to the larger excitation
energy (E�

2 in Fig. 3a) have been inferred from neutron scatter-
ing experiments (for x = 3.5%39 plotted in Fig. 3a) and from fits
made solely to the thermal expansion41, their origins have
remained controversial39,43 and their volume-dependences have
remained unknown. Electronic structure calculations have shown
that Pu is able to exist in a larger number of near degenerate
configurations than most other f-electron systems29,31,33,44,45,
(see e.g. Supplementary Fig. 6) with each having a different
number of 5f-electrons confined or localized within the atomic
core and different values of the equilibrium atomic volume,
thereby providing a likely origin for E0, E1, and E2 (shown
schematically in Fig. 2c). The negative magnetostriction accom-
panying the negative thermal expansion at elevated temperatures
implies that E2 corresponds to an electronic configuration with
fewer 5f-electrons confined to the atomic core but with a sub-
stantially larger effective magnetic moment; raising the interesting
possibility of a very strong magnetic field being utilized to induce
a volume collapse in δ-Pu.

Finally, we estimate the magnitude of the virtual valence
fluctuations in δ-Pu, which we have found to have little to no
role in its thermodynamic stabilization. On incorporating
the valence fluctuation temperature Tfl phenomenologically into
F(T, B, x)22,28, we find that Tfl ≲ 50 K ≪ E�

1 <E�
2 (see Methods,

and also Supplementary Note 2 and Supplementary Table 1),
thereby justifying our ability to neglect Tfl during fitting. How-
ever, our experimentally determined upper limit for Tfl is at least
an order of magnitude smaller than the effective Kondo tem-
perature of ~103 K for δ-Pu suggested by contemporary electronic
structure methods5,8,34. In the present model, Tfl ~ 103 K would
mostly prevent the temperature and magnetic field from being
able to change the occupancies of the different electronic con-
figurations for the entire solid state regime T ≲ 103 K, rendering
s|| and the electronic contribution to αl small and largely
temperature-independent over the entire range. A smaller energy
scale for Tfl can be more easily reconciled with the conventional
linear-in-T Sommerfeld contribution that persists to only ~20 K
in heat capacity experiments17, which justifies our being able to
neglect its contribution to the entropy at higher temperatures.

Our finding of a small Tfl energy scale implies that the virtual
valence temperature and excitation energies of Pu’s largest
volume phase, δ-Pu, are similar in magnitude to those (Tfl ≈ 40 K
and E* ≈−700 K)28 of the largest volume phase of cerium, γ-Ce27.
Possible explanations for the similar magnitudes are that the
degree of overlap of the f-electron wave functions is similarly
weak in the largest volume phases of both Ce and Pu27,28, or that
both are similarly close to being of integer valence. In Ce, Tfl only
becomes significantly larger upon undergoing a considerable
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collapse in volume into the α-Ce phase, suggesting that this is
likely also to be the case when Pu undergoes a volume collapse
into the α phase. Despite the entropy associated with a small Tfl
being similarly important for the stabilization of both δ-Pu and γ-
Ce at elevated temperatures (and also the high temperature phase
of YbInCu4)46–49, these systems have differences in the arrange-
ment of their electronic configurations that cause their behaviors
to differ. In γ-Ce, the high-temperature phase is stabilized by the
large entropy contribution of a lowest energy magnetic 4f-shell
configuration (hence the negative value of E*)28, with the exci-
tations between this magnetic configuration and a higher energy
non-magnetic configuration being of lesser importance. In δ-Pu,
by contrast, the lowest energy 5f-electron shell configuration
appears to be non-magnetic35 (see Table 1), with the large con-
tribution to the entropy instead originating from excitations to
multiple higher energy configurations with magnetic moments.

Methods
Magnetostriction measurements. Variations Δl|| in the sample length l|| along the
direction of the magnetic field are measured either upon sweeping the temperature
at zero magnetic field or on sweeping the magnetic field up to 15T and back to
zero at fixed temperature, for both polarities of the magnetic field. The measure-
ments are made using the fiber Bragg grating method38, in which we record the
spectral information on the light reflected by 1- and 2-mm-long Bragg gratings
inscribed in the core of a 125-μm telecom-type optical fiber by means of a swept
wavelength Hyperion Interrogator manufactured by Micron Optics. A flat face of a
sample is attached to a single grating on its own fiber using cyanoacrylate glue. One
or two empty gratings on the same fiber provide a means for compensating for the
temperature-dependence of the diffraction index of the fiber in the absence of a
sample.

Multiple fibers are fed through stainless steel capillary tubes into a brass can
that forms the body of the sample primary encapsulation. Using this method,
multiple samples can be co-encapsulated, while a steel hepa filter enables 4He gas
or liquid to circulate. The fibers holding the samples are anchored to a metallic
block for thermalization, made of non-magnetic stainless steel in the case of
samples 1 and 2 and copper in the case of samples 3 and 4. Thermometers are also
anchored to the metallic block inside the can. The brass can is then mounted on the
end of a probe inside a secondary containment containing either vacuum or 4He,
which can be pumped through a high through-put hepa filter situated on the
pumping line. The secondary containment, which has its own thermometer, is then
placed inside a variable temperature insert (VTI) that itself goes inside the bore of a
15T superconducting magnet.

The temperature is controlled via the VTI by using a heater and also, when
necessary, using a secondary heater on the secondary containment. Using this
arrangement, the temperature can be stabilized to ≈50 mK, with a small thermal
drift occurring over timescales of order several hours. To eliminate the effect of
thermal drift during magnetostriction measurements, up and down sweeps of the
magnetic field are averaged and the temperature adjusted accordingly. Negative
and positive sweeps of the magnetic fields are also compared to ensure
reproducibility of the result.

Magnetostriction measurements are obtained on four different samples (see
Supplementary Fig. 1). A higher signal-to-noise ratio is observed in the case of
samples 1 and 2, which we therefore use for performing fits. Samples 3 and 4 are
found to have magnetostriction coefficients that are consistent with the fits to
samples 1 and 2. Error bars (s.e.m.) are estimated after repeating the
magnetostriction measurements at the same temperature, often with a different
polarity of the magnetic field.

Sample preparation details. All of the samples have an isotopic composition of
0.02% 238Pu, 93.6% 239Pu, 5.9%240Pu, 0.44% 241Pu, and 0.04% 242Pu with regards
to Pu50. Prior to our measurements on the δ-Pu1−xGax, the x = 2% material had
aged 11 years since casting whereas the x = 7% material had aged 7 years since
casting. The gallium concentration does not vary significantly from sample to
sample, but does tend to congregate in the center of grains. We employ a thermal
treatment, which includes a vacuum homogenization process, that makes the Ga
uniform through the sample and also partially ‘resets’ the effects of aging. The
thermal treatment eliminates stresses and some accumulated impurities (notably
H), but does not remove the radiolytically generated impurities like U, Am, and He.
In the case of δ-Pu0.98Ga0.02, the samples are processed at 450 °C under vacuum
for ≈100 hours to achieve homogenization, while in the case of δ-Pu0.93Ga0.07, the
sample are processed at 525 °C under vacuum for ≈ 50 hours to achieve homo-
genization. This process produces polycrystalline material that is low in H and has
reduced Fe. Typical impurities, such as Al and Fe are at the 100 parts per
million level.

Several polycrystalline samples with x = 2% and 7% are prepared in the form of
plates of a few millimeters with masses ranging between 16 and 40mg. Samples 1

and 2, measured in the main text, have Ga compositions of 2 and 7% with masses of
16.2mg and 30.7 mg, respectively and dimensions on the order of ~1 mm× 4mm
with a thickness of 150 μm. The samples are lightly polished prior to gluing onto
the fibers in order to remove any possible surface oxidation. The glue also has the
effect of protecting the measured flat surfaces of the samples against oxidation
during their loading into the VTI.

For the x = 2% sample, the sample length is observed to drift slowly in time
when the temperature is set close to ≈150 K as a consequence of the partial and
gradual transformation of the δ phase into the α′ phase of plutonium, where the α′
phase in Ga substituted Pu has the same structure as the α phase in pure Pu.
The total change experienced during the course of the stabilization at ≈ 150 K is
Δl/l ≈−0.15%, which, given the smaller atomic volume of α-Pu, corresponds to
2.3% of the sample (by volume) in contact with the fiber transforming. No similar
transformation is observed on measuring the x = 7% sample.

Thermodynamics. The coefficients of thermal expansion and volume magnetos-
triction are given by24

∂ν

∂T
¼ αν ¼ �K�1

0
∂2F
∂ν∂T

and sνB ¼ λν ¼ �K�1
0

∂2F
∂ν∂B

; ð4Þ

respectively, where F is the free energy, T is temperature, B is the magnetic field, K0

is the bulk modulus and ν = (ΔV/V0) is the volume expansion (or contraction). In
the absence of broken time reversal symmetry (e.g., as for a ferromagnetic and
some types of non-collinear antiferromagnetic ground state)51, λν(B) is linear in
magnetic field, in which case the volume increases quadratically with field with the
coefficient sν = λν/B.

We assume the free energy to be the sum F = Fel + Fph of electronic and
phonon contributions. The phonon contribution is given by41,42

Fph ¼ NkBT
8
9
ΘDð1þ νÞ�γ

T
þ 3 ln 1� e�

ΘD ð1þνÞ�γ

T

h i
� D

ΘDð1þ νÞ�γ

T

� �� �
ð5Þ

where N is the atomic density (inverse of the unit cell volume), D(x) is the Debye
function and γ ≈ 0.552.

For systems with multiple electronic configurations that have the potential to
coexist53, we assume that each configuration i has its own unique energy Ei(ν) that
depends on ν in the manner illustrated in Fig. 2, and as predicted to be the case in
plutonium29,33. The multiconfigurational partition function in Eq. (1) can then be
written in the form

Zel ¼
X
i¼0;1;2

X
σ¼± 1

2

e�
kBEi ðνÞþ2σμ�

i
B

kBT : ð6Þ

Note that the summation is made over configurations that have different
functional forms for Ei(ν), but are always at the same volume V. Vi refers to the
‘equilibrium volume’ at which a given configuration would be located, were it to
have the lowest energy at T = 0.

The multiple configurations consist of states in which different numbers nf of
f-electrons are confined to the atomic core, or different crystal electric field levels
in which the same number of f-electrons are confined to the atomic core22,28.
However, the latter are typically more closely spaced in energy and volume. To
minimize the number of fitting parameters, we assume an effective moment μ�i ,
which refers either to that of the lowest crystal electric field level or an average over
two or more occupied levels for a given value of nf. The Van Vleck contribution can
also add to μ�i , as this is known to vary as a function of nf.

Numerical simulations and fitting procedure. To facilitate fitting to experimental
data22,28, we first differentiate F with respect to the ν to obtain

νðT;BÞ �
Z
0

T

ανðT ′′;BÞdT ′′ ¼ �K�1
0

∂F
∂ν

jp; ð7Þ

where, here, K0 refers the bulk modulus of the ground state configuration. For the
phonon contribution, we proceed to calculate its contribution (ν) numerically,
while for the electronic contribution, differentiation yields the conveniently trivial
result given in Eqs (2) and (3). Since the overall extent of the volume expansion in
Fig. 1d is v ≲ 0.6% for x = 2% and v ≲ 2% for x = 6% samples, we have simplified
the fitting procedure by setting ν to zero on the right-hand-side of Eq. (2) after
differentiating. Following through with this approximation amounts to neglect of a
possible 4 K temperature-dependent shift in Ei for x = 2% and a possible 30 K shift
for x = 7%. The changes in Ei with T are significantly less than the experimental
uncertainty for x = 2% and comparable to the experimental uncertainty for x = 7%
(typical error bars listed in Table 1). By comparison, volume changes induced by a
magnetic field are only of order 1 ppm. Setting ν = 0 on the right-hand-side
simplifies the fitting procedure by allowing us to adopt effective parameters: ν�i ¼
NkBK

�1
0 ´ ∂Ei

∂ν and E�
i ¼ Eiðν ¼ 0Þ in Eqs (2) and (3).

Provided V is sufficiently close to the minimum of a Ei(ν) curve at V = Vi in
Fig. 2, one can then use a parabolic approximation:

EiðνÞ ¼ Ei;0 þ
1
2
Kiðν � νiÞ2=kBN; ð8Þ

where Ki is the bulk modulus of the configuration and νi = (Vi − V0)/V0 is the
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relative volume dilation at which it has its lowest energy. In this case, ν�i ¼ νi
Ki
K0

� �
.

It is important to emphasize, however, that the volume dilation parameter ν�i
obtained from fitting is not the actual volume dilation associated with the
equilibrium volume of a given valence state, but, rather, a renormalized volume
dilation parameter, which limits our ability to make accurate estimates of the
equilibrium volume of each of the excited valence states in δ-Pu. However, this has
no discernible impact on the calculations of the heat capacity and entropy.

Since δ-Pu is both cubic and polycrystalline, 1 ≲ η ≲ 3 23, although its
precise value has no bearing on the entropy or heat capacity. The leading order
quadratic form of the magnetostriction generally arises from the cancellation of
the odd terms in the partition function upon summing the spin up and down
pseudospin components. On substituting different values of Bmax in the
magnetostriction coefficient numerical simulations, we find no significant deviation
from a conventional quadratic form in the model.

A least squares fit is performed simultaneously to both the quadratic
magnetostriction coefficient and the thermal expansion volume of δ-Pu1−xGax,
with the minimization being made with respect to the product of the sum of the
squares of both quantities. During fitting, we assume a fixed Debye temperature of
ΘD = 100 K17, but leave γ as a free parameter. All fitted parameters are listed in
Table 1. As a demonstration of self consistency of the fitted model, the activation
energy E�

2 of the upper excited electronic configuration and the magnitude of the
change in its characteristic volume are both found to increase on reducing the
amount of Ga (see Table 1). Conversely, the activation energy E�

1 of the lower
excited valence configuration and the magnitude of the change in its characteristic
volume are both found to decrease on reducing the amount of Ga.

Virtual valence fluctuations. It has been shown that virtual valence fluctuations

can be phenomenologically modeled22,28 by introducing an effective T ′ ¼ ðTm þ
Tm
fl Þ

1
m that is substituted in place of T in the electronic contribution to the free

energy, and thermodynamic derivatives thereof. Here, Tfl is the virtual valence
fluctuation temperature, or Kondo temperature, while m = 1 or 2. In typical rare
earth intermediate valence systems, there are only two relevant configurations that
need to be taken into consideration (e.g. Fig. 2a, b). On substituting T′ in place of T
in our fits to s|| and a in Fig. 1, we find that Tfl → 0, rendering it not useful as a
fitting parameter. However, provided m = 2, reasonable looking fits to the data can
still be obtained using fixed values of Tfl ≲ 50 K, thus providing an upper bound for
Tfl in δ-Pu.

Heat capacity measurements. Heat capacity measurements (raw data in Sup-
plementary Fig. 3) are made on samples of δ-Pu1−xGax of mass ≈ 5.5 mg and ≈ 4.1
mg for x = 2 and 7%, respectively, with small samples being chosen to minimize
the effect of self heating. The measurements are made in a standard Quantum
Design physical properties measurement system (PPMS), with the same addendum
(and a similar amount of grease) being used each time. While the addendum,
inclusive of Apiezon N grease, is measured each time prior to sample mounting, a
small difference in the amount of grease for each sample introduces an additional
experimental uncertainty. It should be noted, however, that the heat capacity of
Apiezon N grease consists of a sharp peak at T ≈ 300 K54, which is quite different
from the form of the difference C2% − C7% in Fig. 4d.

The differences in Pu and Ga content in each of the samples also introduces a
systematic error in the difference, and the extent to which this difference can be
attributed to the electronic contribution. Since the contribution to the heat capacity
from phonons universally saturates at the Dulong-Petit value of ≈ 25 Jmol−1K−1

regardless of the Pu content, the subtracted quantity in Fig. 4d is free from any
significant phonon contribution above ≈ 50 K. The accuracy of the remaining
≈5 Jmol−1K−1 electronic contribution in each sample is affected by Δx = 5%
differences in Pu and Ga content, therefore making the systematic error in making
the subtraction 5% × 5 Jmol−1K−1 = 0.25 Jmol−1K−1. However, this is significantly
less than the measurement error bar in Fig. 4d.

Relevance of fitting results to the electronic structure. The observed changes in
magnetostriction with increasing temperature indicate that the magnetic moment
appears to be smallest for the ground state configuration (see Methods), suggesting
its possible correspondence to nf = 4 or 5 5f-electrons confined to the atomic
core29,33,55. Both of these configurations have the potential for orbital compensa-
tion to produce small moments31,56 compatible with the absence of magnetic
ordering35. Partial occupancy of both nf = 4 and 5 has further been suggested on
the basis of neutron scattering structure factor measurements39, although such
measurements are performed at a temperature of T = 293 K that is sufficiently high
for both to be thermally occupied.

Energy level schematics. Cohesion in metals is generally expected to give rise to
an energy E versus linear dimension of the form57

E ¼ a0 �
a1
a
þ a2
a2

� �
; ð9Þ

where, here, a ¼ ð4VÞ13 refers to the lattice parameter and a0, a1 and a2 are con-
stants. For the schematics in Fig. 2a–c, the E versus V curves are assumed to have

this form. We perform a fit of Eq. (9) to the calculated energy for δ-Pu of Svane
et al.33, confirming that Eq. (9) is approximately valid for electronic structure
calculations of plutonium (see Supplementary Fig. 6). The minima occur at
amin ¼ 2a2

a1
, with the bulk modulus at a = amin being given by

K ¼ ∂2E
∂ν2a¼amin

¼ 1
72N ða81=a72Þ. In Fig. 2c, the E versus V schematic has been calcu-

lated using Eq. (9) so that E2− E0 and E1− E0 are consistent with E�
1 and E�

2 in
Fig. 2d, respectively. Only the bulk modulus K0 (at a = amin) associated with E0 has
been measured directly. For E1 and E2, we have arbitrarily assumed K1 = 40 GPa
and K2 = 50 GPa for E1 and E2, respectively.

The rapid fall of E�
2 with decreasing volume suggests its minimum is located at a

volume and energy that is significantly lower than that of E0, which is consistent
with E0 being representative of a metastable configuration separated from a
lower energy configuration by an energy barrier36,37. The volumes of α and α′
are comparable to the equilibrium volume of E2 in Fig. 2c, suggesting that
the structural transformation to α may be a secondary effect associated with
the volume collapse. For the volume collapse to occur, the net energy gain
associated with the transition needs to be equal to or greater than the energy
losses associated with what are essentially displacive structural transitions from δ to
α (α′). In Pu1−xGax, the transitions from δ to α (α′) always occurs for x ≲ 2%.

Effect of Ga on the relative α and δ phase stability. The energies E�
1 and E�

2 in
Fig. 2a primarily determine how the entropic contribution −TS to the free energy
of δ-Pu1−xGax changes in response to temperature and composition x. A
dominant role played by the entropy is suggested by the similarity of the rate
∂E�

2=∂x � �125K per% at which E�
2 descends with increasing Ga concentration x

to the rate ∂T=∂x � �100 K per% at which the transition exhibiting the largest
volume reduction and largest enthalpy descends in temperature with x. In pure
Pu, the largest volume reduction and 75% of the total enthalpy on transforming
between δ and α occurs at the β to α transition, located at ≈398 K58 (the δ phase
itself is stabilized at ≈593 K). In Pu1−xGax and for x = 1%, a direct δ to α′
transformation takes place on cooling at ~230 K, while for x = 2%, a similar
transformation occurs at ~150 K36. The smallness of the volume fraction trans-
forming in the case of x = 2% (see sample preparation details) suggests that the
transformation occurs very sluggishly at ambient pressure, with the temperature
of T = 150 K being barely sufficient to overcome the energy barrier separating δ
and α′ phases.

In order to determine whether a phase transformation occurs between
δ-Pu1−xGax and α′-Pu1−xGax (or α-Pu in the case of x = 0), it is also necessary to
know the difference in internal energy E between these two phases in the limit
T→ 0. In the case of δ-Pu1−xGax, its internal energy is given by the minimum of
E0 in Fig. 2c. In the case of α, one possibility is that its internal energy as a
function of volume resembles E2(V) in Fig. 2c; this should be considered with
caution, however, since E2 is constructed on the basis of several assumptions: the
value of the bulk modulus, the validity of Eq. (9) and equivalency between x and
volume.

It has been shown experimentally that whereas the volume of δ-Pu1−xGax
decreases with increasing x, the volume of α′-Pu1−xGax increases with increasing
x36. E0(V) must therefore move to smaller volumes with increasing x, while the
internal energy versus volume curve for α′-Pu1−xGax [perhaps resembling
E2(V)] must move to larger volumes. The difference in internal energy between
the δ-Pu1−xGax and α′-Pu1−xGax phases is therefore likely to decrease with
increasing x, thereby reducing the energetic favorability of the α′ over the
δ phase.

The reduction in internal energy between the δ and α′ phases with increasing x
can be understood by the following argument: the movement in the minima of
E0(V), E1(V), and E2(V) with increasing x must ultimately take place via gradual
changes in the parameters a0, a1, and a2 in Eq. (9) with increasing x. Since the
differences between E0(V), E1(V) and E2(V) for the δ and α′ (or α) phase are
determined primarily by differences in the electronic configurations of the 5f-
electron shell, these differences become diluted as Pu within the lattice is
substituted with Ga. They must ultimately vanish at x = 1.

Valence fluctuations are another factor that will affect the phase stability of
the α (α′) phase. While valence fluctuations are insignificant in the δ phase, they
are likely to become very significant in the α phase due to an increase in the
overlap of f-electron wave functions. In Ce, for example, the valence fluctuation
temperature is reported to reach between 2000 and 5000 K (depending on the
applied pressure) within its smallest volume α phase27,28. Increased dynamical
instability of the δ-phase lattice with increasing x is another possible factor
affecting phase stability59, although the energies involved appear to be small
compared to E�

1 and E�
2 .

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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