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Subtype-specific secretomic characterization of
pulmonary neuroendocrine tumor cells
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Pulmonary neuroendocrine (NE) cancer, including small cell lung cancer (SCLC), is a parti-

cularly aggressive malignancy. The lineage-specific transcription factors Achaete-scute

homolog 1 (ASCL1), NEUROD1 and POU2F3 have been reported to identify the different

subtypes of pulmonary NE cancers. Using a large-scale mass spectrometric approach, here

we perform quantitative secretome analysis in 13 cell lines that signify the different NE lung

cancer subtypes. We quantify 1,626 proteins and identify IGFBP5 as a secreted marker for

ASCL1High SCLC. ASCL1 binds to the E-box elements in IGFBP5 and directly regulates its

transcription. Knockdown of ASCL1 decreases IGFBP5 expression, which, in turn, leads to

hyperactivation of IGF-1R signaling. Pharmacological co-targeting of ASCL1 and IGF-1R results

in markedly synergistic effects in ASCL1High SCLC in vitro and in mouse models. We expect

that this secretome resource will provide the foundation for future mechanistic and biomarker

discovery studies, helping to delineate the molecular underpinnings of pulmonary NE tumors.
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Lung cancer with neuroendocrine features (NE-lung cancer)
is an aggressive type of lung carcinoma that accounts for
about 25% of all lung cancer cases, including all SCLC, a

subset of NSCLC, and typical and atypical carcinoids1,2. The
biology of SCLC is distinct from the more common classic non-
small cell lung cancer (NSCLC, including squamous cell carci-
noma and adenocarcinoma), in that it originates from NE cells
that often secrete low molecular weight polypeptide hormones
and biogenic amines3. Even though representing a minor fraction
of all lung cancer cases, SCLC is one of the most lethal human
malignancies. At diagnosis, patients usually present with highly
advanced, metastatic diseases. Accordingly, only 7% of patients
are alive 5 years following the diagnosis of SCLC1. Based on these
characteristics, SCLC has been identified as one of the two cancer
types (the other is pancreatic ductal adenocarcinoma) to be
included in the Recalcitrant Cancer Research Act (RCRA)4. NE-
NSCLC is a subset of NSCLC tumors (∼10% of NSCLSs), which
has NE features and a gene expression signature similar to that of
SCLC2,5. Like the SCLC, NE-NSCLC is also a highly aggressive
disease with very poor prognosis. These two types of NE-lung
cancer had an unexplained but substantial increase in the United
States in the last 30 years6,7. Approximately 30,000 SCLC cases
are diagnosed annually in the US, which in fact makes it more
common than many other cancers (e.g., myeloma, brain and
esophagus)8.

Clinically, SCLC was previously regarded as a “homogenous”
disease, which led to most SCLC patients being treated similarly
(usually with platinum/etoposide doublet chemotherapy) in the
past three decades1. However, recent studies have indicated that
there is considerable heterogeneity among SCLCs in terms of
expression of lineage-specific oncogenes (e.g., ASCL1, NEUROD1
and POU2F3)5,9–11, histology12, growth characteristics13,
expression of NE cell differentiation markers5,10, MYC family
member activation14, and mechanisms of Notch pathway
inactivation15,16. These findings point to the critical need for
better classification of the different SCLC subtypes, and accord-
ingly more personalized treatment regimens.

Despite the recent progresses in our understanding of the
molecular underpinnings of SCLC, treatment options remain
limited, in part due to the lack of methods for early detection of
this disease. Even though the pathogenesis of SCLC is driven by
the above-mentioned lineage-specific oncogenes, these genes
themselves are poor candidates as diagnostic biomarkers. Secreted
proteins are known to provide an essential communication net-
work between the cancer cells and their adjacent microenviron-
ment. This has been shown to be an essential mechanism that
promotes tumor growth, invasion, or angiogenesis17. Impor-
tantly, secreted proteins originating from the NE tumor can also
enter systemic circulation18, and therefore, represent a rich
resource for potential diagnostic and prognostic markers19.

Proteomic approaches are, arguably, the methods of choice to
study the tumor secretome20. Recent advances in cancer cell
secretome analysis showed the application of the proteomic
approaches for the identification of secreted proteins21,22.
Recently, using an improved approach based on multi-
dimensional HPLC separation combined with high sensitivity
mass spectrometry, we identified many low abundance secreted
proteins from NSCLC cells23. Importantly, many of these pro-
teins are involved in regulating biological processes in the
extracellular space (e.g., those related to metastasis).

To better understand how the secretome is remodeled during
the pathogenesis of NE-lung cancers, and to find potential bio-
markers of NE-lung cancer, we perform quantitative mass spec-
trometric analysis to investigate the secretome of high-grade NE-
lung cancers. Using several well-established cell line models, we
report the secretome of the two major NE-lung cancer subtypes,

i.e., ASCL1High and NEUROD1High. We further show, both at
RNA and protein levels, that the secreted protein IGFBP5 cor-
relates with NE-lung cancer cells expressing ASCL1. Moreover,
IGFBP5 is identified to be a direct transcriptional target of
ASCL1. Because IGFBP5 is a potent inhibitor of IGF-1 signaling,
therapeutically targeting ASCL1 leads to the downregulation of
IGFBP5, which, in turn, causes the hyperactivation of the IGF-1
signaling pathway. Co-targeting of ASCL1 and IGF-1R signaling
leads to marked synergistic growth inhibitory effects in ASCL1-
High SCLC in vitro. We further validate the efficacy of the com-
bination treatment in suppressing tumor growth in vivo using
ASCL1High SCLC xenograft and PDX models. Taken together,
these observations show that the quantitative analysis of the NE-
lung cancer secretome will provide a roadmap to identify
potential biomarkers and therapeutic targets in high-grade NE-
lung cancers.

Results
Comprehensive analysis of the NE-lung cancer secretome. To
comprehensively analyze the secretome of high-grade NE-lung
cancer, we sought to profile the secreted proteins in the condi-
tioned media (CM) from a panel of 13 human lung cancer cell
lines (Fig. 1a). This panel was composed of the following cell lines
that signify the normal/different subtypes of NE-lung cancers: (1)
a human bronchial epithelial cell line HBEC34-KT (immobilized
by overexpressing TERT and CDK4) that is characterized by a
number of properties consistent with untransformed epithelial
cells, including: normal epithelial morphology, expression of
epithelial markers, lacking anchorage-independent growth and
inability to form tumors in vivo24; (2) HCC4018 (an ASCL1High

NE-NSCLC, which is derived from the same patient as of
HBEC34-KT25,26); (3) additional ASCL1High SCLC lines (n= 6,
H2081, H889, H1092, H69, H2107, H128); (4) NEUROD1High

SCLC lines (n= 5, H378, H82, H2171, HCC970, H524). Thus,
our secretomic analysis spanned a normal control and two high-
grade NE-lung cancer subtypes, allowing for comprehensive
understanding of secreted proteins involved in NE-lung cancers.
These cell lines also allow the comparison of the secretome
between cells with the same genomic background (HBEC34-KT
and HCC4018)26, as well as cross-cancer subtypes of SCLC
(ASCL1High and NEUROD1High).

To determine the secreted proteins in these 13 cell lines, cells
were starved in serum-free media (SFM) for 24 h. Then the CM
was harvested and subjected to isobaric-labeling-based tandem
mass tag (TMT) MS analysis. A schematic of the quantitative
secretomic platform is shown in Fig. 1a. One major challenge
associated with secretomic analysis is the low abundance of many
secreted signaling proteins, and hence the potentially large
dynamic range for their detection19. To facilitate deep sequencing
of these secreted proteins, the pooled peptides were subjected to
off-line two-dimensional HPLC separation and were analyzed by
high sensitivity MS and MS/MS experiments23. To allow the
cross-reference analysis of multiple datasets, these TMT experi-
ments were performed under identical cellular conditions. Three
sets of TMT experiments were performed to characterize the
aforementioned 13 cell lines, with HBEC34-KT cells included in
all three TMT sets as a reference standard. From these three TMT
sets, we were able to identify and quantify a total of 6616 proteins
(false discovery rate= 0.45%), among which 1626 proteins were
commonly identified and quantified across the 13 cell lines
(Supplementary Data 1–3). The biological replicate samples in
one TMT set (HBEC34-KT, HCC4018, and H2081, Supplemen-
tary Data 1) showed high correlation in protein expression levels
(Supplementary Fig. 2b–d), validating the reproducibility of our
quantitative mass spectrometric experiments.
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To more comprehensively evaluate the dataset, we analyzed
these 1626 commonly identified proteins in Gene Ontology (GO)
database. GO cellular component analysis showed that 66.8% of
proteins were mapped to the extracellular or membrane region,
including compartments such as extracellular region (P= 4.72 ×
10−300, Fisher’s exact test), cell–cell adherens junction (P=
2.04 × 10−78), membrane (P= 4.07 × 10−60), and extracellular
matrix (P= 3.58 × 10−57) (Fig. 1b, Supplementary Fig. 1d, e),
confirming the specificity of secretomic analyses. In line with this,
further GO analysis indicated that these proteins were involved in
biological processes related to the extracellular matrix biology,
including cell adhesion (P= 1.8 × 10−63), antigen processing and
presentation (P= 1.7 × 10−21), extracellular structure organiza-
tion (P= 2.2 × 10−11), and molecular functions like actin
filament binding (P= 1.3 × 10−10) (Fig. 1c, d). These results
validated our method of secretome-focused proteomics and
suggested that our dataset is enriched with secreted proteins
with physiological functions. Of note, we detected a negligible
amount of lactate dehydrogenase (LDH) activity in the CM of all
the cell lines used in the secretome analysis (Supplementary
Fig. 1f), indicating that the proteins that are non-specifically
released from cells as a result of apoptosis constitute a minor part
of the overall proteins identified in our secretome analysis.

Comparison of the secretome between NE-lung cancer and
NSCLC. Previously, we performed quantitative proteomic ana-
lysis of the secretome of classic NSCLC cells23. Specifically, we
identified and quantified 2713 secreted proteins from two iso-
genic NSCLC cell lines (NCI-H1993 and NCI-H2073), as well as

an immortalized human bronchial epithelial cell line (HBEC3-
KT). To get a deeper understanding of the current NE-lung
cancer secretome dataset and its difference from the classic
NSCLC secretome, we performed cross-reference analysis of the
HBEC34-KT-HCC4018-H2081 secretome dataset with our pre-
vious NSCLC secretome dataset. The results indicated that there
was a substantial overlap in the two datasets, with 1491 proteins
commonly identified by both studies (Supplementary Fig. 2a,
Supplementary data 4). At the same time, there were also 552
proteins that appeared to be selectively secreted by NE-lung
cancer cells (Supplementary Fig. 2a). Further GO biological
process analysis showed that these 552 proteins were enriched in
the biological processes that are linked to neuron development,
including neuron projection development (P= 6.7 × 10−6, Fish-
er’s exact test), axonogenesis (P= 1.5 × 10−5), neuron differ-
entiation (P= 2.3 × 10−4), neuron projection morphogenesis (P
= 5.7 × 10−5), and synapse organization (P= 6.6 × 10−5) (Sup-
plementary Fig. 2b).

We also analyzed the expression of the 1491 proteins that are
commonly present in the CM from both NSCLC and NE- lung
cancer cells. Pairwise Pearson’s correlation analysis of the protein
expression was performed for the six cell lines (i.e., HBEC3-KT,
H2073, H1993, HBEC34-KT, HCC4018, and H2081). The results
showed that the two normal cells (HBEC3-KT and HBEC34-KT)
from two independent datasets displayed a highly similar
secretome profile with a Pearson’s correlation coefficient of 0.99
(Supplementary Table 1). Using the two normal HBEC cell lines
as the internal standard, we performed cross-reference analysis of
the secretome profiles of the classic NSCLC and NE-lung cancer
cells. Intriguingly, the two isogenic NSCLC cells (H2073 and
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H1993) formed a cluster, and so did the two NE-lung cancer cells
(HCC4018 and H2081) (Supplementary Fig. 2b). However, these
three clusters were distinct from each other. GO biological
process analysis indicated that proteins over-secreted in H2073
and H1993 CM were enriched in regulation of cell motion (P=
5.4 × 10−5), regulation of cell migration (P= 1.1 × 10−3),
and response to wounding (P= 3.4 × 10−3). On the other
hand, proteins over-secreted in HCC4018 were linked to
endocytosis (P= 0.014) and membrane invagination (P= 0.014)
(Supplementary Fig. 2d). These data revealed the differences in
protein secretion between classic NSCLC and NE-lung cancer,
providing a potential link between the specific secretome of NE-
lung cancer and its distinct biology compared to classic NSCLC.

Generation of a NE-lung cancer-specific secretome signature.
In addition to defining the biological differences between NSCLC
and NE-lung cancer at the secretome level, our TMT approach
provides insights into the potential secreted biomarkers for high-
grade NE-lung cancer in general, and furthermore, for the
ASCL1High and NEUROD1High subtypes. To prioritize our can-
didates, a combination of statistical and biological filtering was
used, including: (1) presence in the human plasma-proteome
database (HUPO)27, (2) differential expression between these two
subtypes of NE-lung cancer, and (3) unsupervised clustering
analysis using previously published transcriptome datasets
(Fig. 2a).

Although the majority of the identified proteins in the NE-lung
cancer secretome were mapped to the extracellular region or
membrane in GO analysis, the secretome dataset was further
refined by cross-examination against the publicly available
HUPO27 to identify proteins that have been detected in human
plasma samples. To achieve this, we queried the 1626 proteins
in the NE-lung cancer secretome dataset against HUPO
(https://www.hupo.org/plasma-proteome-project), which yielded
1232 secreted proteins that could serve as potential biomarkers.

As HBEC34-KT cells were included in all TMT sets as a
reference standard, the secretomic protein expression profile of
each NE-lung cancer cell line was normalized to that of the
HBEC34-KT cells (fold change, FC), in order to identify the
proteins that are commonly upregulated or downregulated in the
secretome of NE-lung cancer. We generated the upregulated NE-
lung cancer-specific secretome signatures (NE-LCSS) by con-
sidering the proteins that: (1) are upregulated (average fold
change for all NE-lung cancer cell lines) by at least 1.5-fold
compared to the control HBEC34-KT cell line, and (2) are not
differentially present in the secretome between the ASCL1High

and NEUROD1High subtypes (log2 AveFCASCL1/AveFCNEUROD1

< 0.2). The downregulated NE-LCSS was generated similarly.
This analysis yielded a list of 76 proteins, including 58
upregulated and 18 downregulated proteins that shared the
similar expression pattern in the secretome across the 13 NE-
lung cancer lines compared to the normal control HBEC34-KT
cells (Fig. 2b). Of note, some of these proteins have been reported
as biomarkers for tumors with NE features, including CHGA,
CHGB, and SCG328. The identification of these known NE
markers in the upregulated NE-LCSS demonstrated the validity
of our approach.

We then analyzed the interaction networks of NE-LCSS to
understand how these diverse sets of proteins are functionally
interconnected. By using the STRING database29, we found these
proteins formed well-linked networks that clustered into
connected nodes based on protein families or biological processes.
Specifically, we found several enriched biological processes that
are related to neuron development, including brain development,
neuron projection development, and axon guidance (Fig. 2c, d),

suggesting a potential functional link between these aberrantly
secreted proteins and the pathogenesis of NE-lung cancer.

Generation of a subtype-specific LCSS for NE-lung cancer. The
basic helix–loop–helix (bHLH) transcription factors ASCL1 and
NEUROD1 are considered as the master regulator for a large
fraction of the NE-lung cancers30. Based on the expression of
these two transcription factors, NE-lung cancers can be divided
into the ASCL1High, NEUROD1High, and double-negative sub-
types. ASCL1High NE-lung cancers share many similarities with
NEUROD1High SCLC in terms of histologic structures and
immunohistochemical staining characteristics. However, it has
also been shown that ASCL1 and NEUROD1 function as inde-
pendent lineage-specific oncogenes that drive distinct gene
expression programs, and thereby influence the pathogenesis,
prognosis, and therapeutic responses of each individual SCLC
case. The transcriptome of NE-lung cancers that is regulated by
ASCL1 or NEUROD1 has been well studied5,10,16,31. However,
the secretome program that signifies the ASCL1High and NEU-
ROD1High NE-lung cancer subtypes has so far remained poorly
defined.

With the fold change value (FC) we obtained for the secretome
of each cell line, we used Limma32 to perform a direct
comparison of the proteins present in the secretome of the
ASCL1High NE-lung cancer cell lines (n= 7) versus the
NEUROD1High NE-lung cancer cell lines (n= 5). This analysis
identified a total of 65 proteins that were differentially present in
the secretome between the two NE-Lung cancer subtypes (Padj <
0.05, Benjamini–Hochberg correction) (Fig. 3a). We then
performed unsupervised hierarchical clustering and the results
showed that these 65 proteins were able to clearly separate the
ASCL1High group from the NEUROD1High group (Fig. 3b),
forming the ASCL1/NEUROD1 lung cancer secretome signature
(AS/ND-LCSS).

Next, we asked whether the observed AS/ND-LCSS was driven
by these lineage-specific transcription factors in the ASCL1High

and NEUROD1High cancer subtypes. We extracted the mRNA
expression data of AS/ND-LCSS genes and also ASCL1 and
NEUROD1 from the previously published genome-wide micro-
array dataset in 39 NE-lung cancer cell lines5 (60 AS/ND-LCSS
genes were found in these microarray data). The panel of 39 cell
lines included 27 ASCL1High and 12 NEUROD1High lines. We
used unsupervised hierarchical clustering to capture the unique
feature of the expression of these 60 genes in these cell lines
(Supplementary Fig. 3a). Specifically, clustering cell lines based on
their AS/ND-LCSS expression profiles revealed the similarity
among the ASCL1High cells (i.e., HCC4018 and the 26 ASCL1High

SCLC lines), suggesting ASCL1High NE-NSCLC and SCLC shared
a more similar secreted gene expression phenotype. The 12
NEUROD1High cell lines were also grouped together based on the
expression of these 60 AS/ND-LCSS genes (Supplementary
Fig. 3a). These data suggest that AS/ND-LCSS are able to
separate the ASCL1High cell lines from the NEUROD1High lines
in a larger panel of human lung cancer cell lines.

To further validate the relevance of the discovered AS/ND-
LCSS, we analyzed two published transcriptome datasets obtained
from human SCLC samples16,33. Consistent with our results
obtained in cell lines, clustering analysis using the same AS/ND-
LCSS further supported the separation of the human SCLC
cohort into two subtypes, although a more moderate degree of
separation was observed, likely due to the heterogeneity of SCLC
patient samples (Fig. 3, Supplementary Fig. 3b). After reviewing
these data, two genes (IGFBP5, B4GALT1) and one gene
(ANXA6) were found to be consistently clustered with ASCL1
and NEUROD1, respectively (Supplementary Fig. 3c). In one
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cohort of 79 SCLC tumors16, significant elevation of IGFBP5
(Fig. 3e) and B4GALT1 (Fig. 3f) was found in ASCL1High SCLC
samples relative to ASCL1Low samples (Fig. 3d). We also found
the similar results in another cohort of 23 human SCLC tumors33

(Fig. 3g–i). Collectively, these data validated the physiological
relevance of IGFBP5 and B4GALT1 as specific secreted protein
markers for ASCL1High NE-lung cancers.

IGFBP5 is a secreted marker for ASCL1High NE-lung cancer.
To further analyze the co-expression pattern between the AS/ND-
LCSS and ASCL1/NEUORD1, we performed unsupervised hier-
archical clustering on pairwise Pearson correlations for these
genes in three different transcriptome datasets (SCLC cell line
microarray5, 2013 Sato SCLC33, and 2015 George SCLC16). The
results showed that IGFBP5 was consistently found to be among
the top four genes that best correlated with ASCL1 in all three

transcriptome datasets (Fig. 4a, Supplementary Fig. 4a-c). Fur-
thermore, we harvested the CM and cell lysates from a panel of
lung cancer cell lines used in the TMT analysis, and performed
immunoblotting analyses. Intriguingly, our results showed that
IGFBP5 was highly and specifically secreted in the CM of the
ASCL1High NE-NSCLC and SCLC cells. In contrast, it was barely
detectable in the CM from the NEUROD1High SCLC cells or
HBEC34-KT cells (Fig. 4b).

We also validated our results using an in vivo model of
ASCL1High SCLC. Most human ASCL1High SCLC tumors harbor
TP53 and Rb1 mutations. Genetically engineered mouse models
with somatic deletion of TP53 and Rb1 in lung are able to
recapitulate many clinical manifestations of ASCL1High SCLC,
including the extrapulmonary metastases34,35. The tumors from
Rb1/Tp53/Rbl2 triple-knockout (TCKO) mouse model express
high levels of ASCL1. In addition, the histopathology of the
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metastatic mouse tumors also closely resembles human ASCL1-
High SCLC10. Using an ELISA assay, we also found that IGFBP5
levels in the serum of mice with SCLC tumors were significantly
higher than that in the control mice (Supplementary Fig. 4d).
Taken together, these data showed the physiological relevance of
IGFBP5 as a secreted biomarker for ASCL1High SCLC in mouse
models.

IGFBP5 is a transcriptional target of ASCL1. As ASCL1 is a
transcription factor, we wondered if the robust correlation
between the expression of IGFBP5 and ASCL1 could result from
IGFBP5 being a direct transcription target of ASCL1. To test this
possibility, we knocked down ASCL1 in H2081 cells by using two
independent shRNAs. Immunoblotting analysis indicated that
depletion of ASCL1 markedly lowered IGFBP5 levels in both CM
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and lysates of H2081 cells (Fig. 4c). These data indicate that
ASCL1 is necessary for IGFBP5 expression. To examine whether
ASCL1 is sufficient to drive the expression of IGFBP5, we over-
expressed ASCL1, NEUROD1, and GFP in HEK293T cells, and
analyzed IGFBP5 expression by real-time PCR. ASCL1 over-
expression significantly increased IGFBP5mRNA levels in a dose-
dependent manner, while expression of GFP or NEUROD1 had
no effects on IGFBP5 mRNA levels (Fig. 4d). We also harvested
the CM and cell lysates from HEK293T cells transfected with
these three plasmids. Immunoblotting analyses indicated that
ASCL1, but not GFP or NEUROD1, strongly promoted the
upregulation of IGFBP5 in the CM (Fig. 4e).

To examine whether IGFBP5 is a direct transcriptional target
of ASCL1, we co-expressed a pLenti-V5-ASCL1 plasmid together
with a series of pGL4 luciferase reporter constructs containing
inserts representing different regions of the IGFBP5 gene in
HEK293T cells (Fig. 4f). We found that co-transfection of ASCL1
with one pGL4 construct (pGL4-P5-luc) that corresponded to a
300 bp (from+3.2 kb to+3.5 kb) fragment downstream of the
IGFBP5 transcription start site (TSS) led to a fourfold increase in
luciferase activity (Fig. 4g). Consistent with these results, previous
ChIP-seq data in an ASCL1High cell line (H889) also showed that
ASCL1 but not NEUROD1 binds to the+3325–+3453 region of
the IGFBP5 gene10 (Supplementary Fig. 4e). These data suggested
that there could be potential ASCL1-responsive elements in this
region of the IGFBP5 gene. It was reported that ASCL1 binds to
DNA sequences containing the E-box motif (CANNTG)10,36. We
analyzed the DNA sequence of pGL4-P5-luc, and found two such
E-box motifs (Supplementary Fig. 4f). We found that deletion of
either E-box1 or E-box2 in P5 lowered the ability of ASCL1 to
activate transcription through this region using the luciferase
reporter assay (Fig. 4h). When both E-boxes were mutated, no
activation of IGFBP5 transcription was detected. These results
suggest that these two E-box motifs are critical for ASCL1-
dependent transcription regulation of IGFBP5. Taken together,
these data support a model whereby IGFBP5 is a direct
transcriptional target of ASCL1.

JQ-1 and IGF-1R inhibitor combination in ASCL1High SCLC.
It has been shown that ASCL1, the lineage-specific transcription
factor for high-grade NE-lung cancer, is required for the survival
of these tumors both in vitro5,9 and in the lung in vivo10. These
findings point to targeting ASCL1 and/or its critical downstream
genes may serve as a viable strategy for the treatment of ASCL1-
dependent NE-lung cancers. The BET (bromodomain and extra-
terminal) inhibitors have been shown to disrupt the interaction
between BRD4 and the ASCL1 enhancer, resulting in the down-
regulation of ASCL1, and subsequent growth inhibition of SCLC
cells37. Because ASCL1 directly regulates the transcription of
IGFBP5, we sought to determine the effect of BET inhibitors on
IGFBP5 expression.

We treated H2081 cells with JQ-1, and then harvested the CM
and cell lysates. Consistent with the previous findings37,

immunoblotting experiments showed that ASCL1 expression
was markedly reduced by JQ-1 treatment (Fig. 5a). Remarkably,
IGFBP5 levels in the CM were also strongly decreased after the
treatment of JQ-1 (Fig. 5a). In contrast, JQ-1 treatment had no
effect on IGFBP3 abundances in the CM (Fig. 5a). Treatment
with another BET inhibitor iBET-762 showed similar effects
(Fig. 5a). Moreover, overexpression of a Myc-tagged ASCL1 could
rescue JQ-1-induced cell apoptosis and IGFBP5 downregulation
(Fig. 5b), indicating the regulation of IGFBP5 expression by JQ-1
is ASCL1-dependent.

Insulin-like growth factor-binding proteins (IGFBPs) are a
family of secreted proteins that bind, with high affinity, to
circulating IGF-1. We previously showed that by binding to IGF-
1, IGFBP5 sequesters it from interacting with IGF-1R and
potently blocks both the signaling and functional outputs of this
growth factor38. We reasoned that JQ-1- treatment might release
the cell autonomous inhibition of IGF-1 signaling by IGFBP5.
This might drive the survival of the JQ-1-treated cells to be
dependent on IGF-1 signaling, which, in turn, could confer their
sensitivity to IGF-1R inhibitors under these ASCL1-repressed
conditions. To test this hypothesis, we collected the CM from
H2081 cells treated with either DMSO or JQ-1. Then the CM was
mixed with IGF-1, which was used to stimulate IGF-1 signaling in
the recipient cells. As shown in Fig. 5c, although IGF-1 treatment
activates IGF-1R in the control group, the degree of IGF-1R
activation is dramatically increased when cells were treated with
IGF-1 mixed with the CM from JQ-1-treated cells. These data are
consistent with a model whereby the presence of IGFBP5 in the
media inhibits IGF-1 signaling, and ASCL1 downregulation
releases this inhibitory mechanism, which then sensitizes these
cells to IGF-1 stimulation.

To test whether the enhanced IGF-1R signaling promotes
the survival of these JQ-1 treated cells, we evaluated the growth
inhibitory effect of JQ-1, BMS-754807 (a potent inhibitor of
IGF-1R), and the combination of JQ-1 with BMS-754807 on
SCLC cell lines. Using cleaved PARP1 and cellular ATP levels
as the readout, we found a dose-dependent, synergistic effect in
ASCL1High SCLC cells (H2081), when these cells were treated
with both JQ-1 and BMS-754807 (Fig. 5d, e and Supplementary
Fig. 5a,b). In contrast, JQ-1 treatment had no effect on the
expression of NEUROD1 levels in NEUROD1High SCLC cells
(i.e., H524 cells) (Supplementary Fig. 5c). Accordingly,
although H524 cells are partially sensitive to IGF-1R inhibi-
tors, the combination of JQ-1 and BMS-754807 did not lead to
enhanced killing of these cells (Supplementary Fig. 5d). Then
we assessed the drug combination in an expanded panel of
SCLC cell lines (Fig. 5f). Consistent with our previous findings,
JQ-1/BMS-754807 combination treatment induced robust
cell death in all tested ASCL1High SCLC cells, but not
NEUROD1High cells (Fig. 5f). Taken together, these results
suggest that bromodomain inhibitors decrease ASCL1 expres-
sion and downregulate its downstream target gene, IGFBP5.
The release of this inhibitory loop results in enhanced IGF-1R

Fig. 3 Generation of an LCSS for the ASCL1High and NEUROD1High NE-Lung cancer subtypes. a The volcano plot showing the indicated fold changes and
P-values derived from t-test statistic. Proteins differentially present in the secretome between ASCL1High and NEUROD1High cells with an adjust P-value
(FDR) < 0.05 are highlighted in pink and light blue, respectively. b The relative fold changes of the 65 significantly regulated secreted proteins in the
secretome of 12 cell lines were grouped by unsupervised hierarchical clustering. c Transcriptomic clustering of 69 human SCLC tumors16 based on the AS/
ND-LCSS gene expression markers (the pink bar indicates the AS-LCSS genes that are clustered with ASCL1, whereas the blue bar indicates the ND-LCSS
genes that are clustered with NEUROD1). d–f Expression levels (FPKM) of ASCL1 (d), IGFBP5 (e), and B4GALT1 (f) in ASCL1High (n= 54) and ASCL1Low

(n= 25) SCLC patient samples16. g–i Expression of ASCL1 (g), IGFBP5 (h), and B4GALT1 (i) in ASCL1High (n= 12) and ASCL1Low (n= 11) SCLC patient
samples33. MAS5 intensity value averages of all probes for each gene in ASCL1High and ASCL1Low samples are indicated. Unpaired, two-tailed, Welch
correction t-test results are indicated alongside the violin plots. The horizontal lines indicate the median and quartiles. Source data are provided as a Source
Data file
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CM, ASCL1, and NEUROD1 in the lysates of the indicated cell lines (HBEC34-KT and NE-lung cancer cell lines). Molecular weight is indicated as Mr (k).
c Immunoblotting analyses of the IGFBP5 levels in the CM and lysates of H2081 cells transduced with the indicated shRNAs. d, e RT-PCR (n= 9, 3
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expression constructs. f Schematic for the various IGFBP5 luciferase reporter constructs. g Luciferase activity analysis of HEK293T cells transfected with
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signaling and sensitizes these ASCL1High SCLC cells to IGF-1R
inhibitors.

We next examined the in vivo anti-tumor efficacy of this
combination treatment in the H2081 xenograft model. Consistent
with our in vitro observations, monotherapy with either JQ-1 or
BMS-754807 had modest effects on tumor growth (Fig. 5g, h) and
cell apoptosis (Supplementary Fig. 5e). Importantly, JQ-1/ BMS-
754807 combination treatment significantly inhibited tumor
growth, potentially through enhanced cell death (Fig. 5g, h,
Supplementary Fig. 5e). The therapeutic effects of JQ-1/BMS-
754807 combination treatment were further demonstrated in a

patient-derived xenograft model of ASCL1High SCLC (Fig. 5i, j).
Collectively, these data showed the clinical relevance of the
combination therapeutic strategies for ASCL1High SCLC.

Discussion
During the process of oncogenic transformation, cancer cells not
only adopt several cell autonomous hallmarks (e.g., deregulation
of proliferative pathways and evasion of apoptosis), they also
actively secrete a variety of biomolecules to communicate with
and to engage their neighboring cells to create a specific tissue
microenvironment39. Protein secretion is particularly relevant to
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the etiology of SCLC, and accumulated evidence has pointed to
the indispensable role played by the deregulated secretome in
almost every aspect of the oncogenesis of pulmonary NE tumors1.
Specifically, it is thought that SCLC originates from the trans-
formation of the pulmonary NE cells (PNECs). The function of
PNECs is to serve as airway chemoreceptors, and they respond to
stimuli (e.g., hypoxia) by degranulation and exocytosis of a large
variety of bioactive molecules, including amines and neuropep-
tides/proteins. Many of these proteins with growth factor-like
properties are linked to not only normal lung development, but
also tumorigenesis of SCLC40,41. Furthermore, excessive secretion
of neuropeptides and hormones by pulmonary NE tumors could
lead to many paraneoplastic syndromes, including the syndrome
of inappropriate anti diuretic hormone secretion (SIADH) and
Cushing syndrome42. If improperly treated, these paraneoplastic
syndromes could also lead to considerable morbidity and mor-
tality. A comprehensive characterization of the secretome asso-
ciated with SCLC may therefore facilitate the understanding of
the biology of pulmonary NE tumors. Equally important, secreted
proteins may represent a class of systemic biomarkers for early
diagnosis and monitoring of drug response for this devastating
disease. In this study, we performed large-scale, unbiased quan-
titative proteomic analyses of the secretome from cells derived
from both the ASCL1High and NEUROD1High subtype of pul-
monary NE tumors. It is important to note that ASCL1 and
NEUROD1 have been reported to be overexpressed in ~70% and
~10–20% of the SCLC cases, respectively1,11,30,31,43 ASCL1 is
required to establish the lineage of pulmonary NE cells and is
necessary for the continued survival of SCLCs and NE-NSCLC in
cell cultures. In ASCL1High SCLC and NE-NSCLC, knockdown of
ASCL1 induces cell death, suggesting the role of ASCL1 for tumor
cell survival5. In GEMM mouse models of SCLC, it was found
that ASCL1 is present in mouse pulmonary NE cells, and is
required for SCLC tumor formation10. More importantly, ASCL1
is expressed in most human SCLC tumors and cell lines and its
expression is tightly linked to NE differentiation, highlighting the
importance of identifying the secreted biomarker for
ASCL1High SCLC.

Comprehensive analysis of secreted proteins, however, is
challenged by a number of technical difficulties. Many extra-
cellular proteins are signaling molecules that are present at low
levels. These proteins could be easily masked by more abundant
proteins, which results in the extraordinary dynamic range
(defined by the ratio between the most and least abundant protein
in a sample) of the secretome. We recently developed a high
sensitivity mass spectrometry platform that is tailored to the
analysis of the secretome. This platform combines multi-
dimensional HPLC with high sensitivity mass spectrometry to
allow comprehensive analysis of proteins secreted from NSCLC

cells23. In the current study, we were able to identify and quantify
1626 proteins in the CM from 13 cell lines representing normal
lung and NE-pulmonary tumor. The basic helix–loop–helix
(bHLH) transcription factor ASCL1 is considered a master reg-
ulator for a majority of NE-lung cancers, while
NEUROD1 signifies a smaller subset with intermediate neu-
roendocrine characteristics30. Thus, ASCL1 and NEUROD1
expression has been used to divide NE-lung cancers into
ASCL1High, NEUROD1High, or double-negative subtypes. The
transcriptome of NE-lung cancers driven by ASCL1 or NEU-
ROD1 has been well studied5,10,16,31. Our study comprehensively
analyzed the secretome of various SCLC cell lines including both
ASCL1High and NEUROD1High subtypes, suggesting the lineage-
specific transcription factors ASCL1High and NEUROD1High also
drive distinct secretome. Appreciation of the heterogeneity of
SCLC tumor subtypes is driving efforts to define subtype-specific
markers to select patient populations for clinical trials and pre-
cision treatment. This SCLC secretome dataset could be a
resource for specific biomarkers for these two major subtypes of
NE-lung cancers.

To prioritize our candidates, a combination of statistical and
biological filtering was used, including: presence in the HUPO27,
the differential protein level in these two subtypes of NE-lung
cancer secretome, and unsupervised clustering analysis using
previous published transcriptome datasets. After the compre-
hensive analysis, two genes (IGFBP5 and B4GALT1) and one gene
(ANXA6) were found consistently clustered with ASCL1 and
NEUROD1, respectively. Using a series of biochemical experi-
ments, we demonstrated that IGFBP5 is a direct transcriptional
target of ASCL1. On the contrary, B4GALT1 expression is not
regulated by ASCL110, suggesting ASCL1 regulates the SCLC-
specific secretome through both transcription-depend and
-independent mechanisms.

Because ASCL1 is necessary for the survival and proliferation
of ASCL1High NE-lung cancer, targeting ASCL1 is a promising
strategy to kill ASCL1High SCLC. It has been reported ASCL1High

SCLC cells are highly sensitive to BET inhibitors (e.g., JQ-1).
These compounds inhibit ASCL1 expression by disrupting the
interaction between BRD4 and the ASCL1 enhancer37. In keeping
with these results, we found that JQ-1 decreased the expression of
ASCL1, but not NEUROD1. Accordingly, it also decreased
IGFBP5 in the CM of ASCL1High SCLC cell lines. Recently we
found that IGFBP5 is a secreted protein that binds to IGF-1 and
prevents it from engaging with IGF-1R. In doing so, it potently
blocks both the signaling and functional outputs of IGF-138.
Based on these findings11,38, our results raise an intriguing
hypothesis that, despite the pro-survival effects of ASCL1, it also
orchestrates an IGFBP5-depdenent inhibitory mechanism to
restrain IGF-1R signaling. Reduced IGFBP5 secretion after JQ-1

Fig. 5 JQ-1 treatment sensitizes ASCL1High SCLC cells to IGF-1R inhibitors. a Immunoblotting analyses of IGFBP5 and IGFBP3 levels in the CM of
H2081 cells treated with DMSO, JQ-1 (1 µM for 48 h) and iBET-762 (2 µM for 48 h). b Immunoblotting analyses of indicated antibodies in H2081 cells
transfected with empty vector or Myc-ASCL1 for 40 h, then treated with DMSO or JQ-1 (1 µM for 48 h). c Immunoblotting analysis of IGF-1-induced IGF-1R
activation in H2081 treated as indicated. Serum-free CM was collected from H2081 cells treated with DMSO or JQ-1 (1 µM for 48 h). The CM samples
were mixed with IGF-1 (20 ngml−1), and then incubated with serum-starved H2081 cells (designated as “recipient cells”) for 10 min at 37 °C (IGF-1+). CM
that was not mixed with IGF-1 is indicated as “IGF-1−”. For site-specific phosphorylation, p-IGF-1R(Tyr1135/1136) levels were analyzed. GAPDH served as
the loading control. d Immunoblotting analysis of ASCL1 and PARP cleavage in H2081 cells treated with DMSO, JQ-1 (1 µM), BMS-754807 (1 µM), and JQ-1
+BMS-754807 (1 µM each) for 48 h, respectively. e Cell viability analysis of H2081 cells treated with JQ-1 or JQ-1+BMS-754807 at the indicated
concentrations for 72 h (n= 4). Unpaired two-tailed t-test. ***P < 0.001, n.s not significant. f Heatmap illustrating the cell viability analyses of the various
NE-lung cancer cells treated with DMSO, JQ-1 (1 µM), BMS-754807 (1 µM), and combo (JQ-1+ BMS-754807 1 µM each) (72-h treatment). ASCL1High and
NEUROD1High lines were marked as indicated. g, i Tumor sizes in an H2081 xenograft model (g, n= 9–10 per group) and an ASCL1High PDX model (i, n=
10 per group) model. The mice were treated with the indicated compounds. Two-way analysis of variance (ANOVA), ***P < 0.001. h, j Final tumor weights
measured from the H2081 (n= 8) (h) and PDX (n= 7) (j) models. Unpaired two-tailed t-test, **P < 0.01, ***P < 0.001. Error bars represent mean ±
standard error of mean (s.e.m.). Source data are provided as a Source Data file
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treatment could result in enhanced IGF-1 signaling, serving as a
compensatory mechanism for maintaining cell survival and
proliferation under these ASCL1-suppressed conditions. We
therefore tested the combination treatment in various SCLC cell
lines and found the synergistic effect of JQ-1 and BMS-754807 (a
potent inhibitor of IGF-1R), specifically in ASCL1High SCLC cells.
Moreover, we also validated this combination treatment using
two in vivo models (i.e., xenograft and PDX models). Such efforts
might pave the way for the further evaluation of such combina-
tion therapies for ASCL1High NE-lung cancer patients.

It has been recently demonstrated that POU2F3 is a tran-
scription factor that signifies a group of SCLC tumors that lack
the expression of traditional NE markers11. By performing a
kinase-focused CRISPR screen, it was found that the survival of
these POU2F3-positive SCLC cells is dependent on IGF-1R or its
downstream PI3K signaling pathways. POU2F3High lines are
consistently more sensitive to IGF-1R inhibitors than NEU-
ROD1High or ASCL1High SCLC lines. Interestingly, compared to
ASCL1High SCLC cells, IGFBP5 expression is much lower in these
POU2F3High cells, which might explain their addiction to IGF-1R
signaling, and therefore intrinsic sensitivity to IGF-1R inhibitors.
Despite the different SCLC subtypes and contexts, these data
point to a central role of IGF-1R signaling in regulating the
survival and proliferation of ASCL1High and POU2F3High SCLC
cells, which warrants further studies to explore therapeutic stra-
tegies targeting this important pathway in these two subtypes
of SCLC.

In summary, we performed comprehensive mass spectrometric
analyses of the secretome of ASCL1High and NEUROD1High

pulmonary NE tumor cells. Compared to the NSCLC secretome,
these NE-lung cancer cells secrete a number of proteins that are
uniquely linked to the biology of this very interesting group of
lung cancer. In particular, we identified IGFBP5 as a secreted
protein that is specifically regulated by the lineage-specific tran-
scription factor ASCL1. Furthermore, we showed that JQ-1-
mediated ASCL1 suppression paradoxically leads to the de-
repression of IGF-1R signaling, which, in turn, renders these cells
sensitive to combination treatment of JQ-1 and IGF-1R inhibitors
(Fig. 6). Besides the identification of IGFBP5 as a potential bio-
marker for ASCL1High SCLC, and its role as a mediator of its
adaptive response to bromodomain inhibitors, we expect that the

datasets contain many previously unrecognized secreted targets of
ASCL1 and NEUROD1 that will serve as an invaluable resource
for future biomarker discovery, as well as for hypothesis-driven
research that helps dissect the complex molecular underpinnings
that drive the oncogenesis of pulmonary NE tumors.

Methods
Materials. IGF-1R (#3027, CST, dilution 1:1000), p-IGF-1R (Y1135/1136) (#3024,
CST, dilution 1:1000), IGFBP5 (p-19, Santa Cruz, dilution 1:750), V5 (A190-120A,
Bethyl Laboratories, Inc., dilution 1:2000), Myc-Tag (9B11) (#2276, CST, dilution
1:2000), GAPDH (sc-32233, Santa Cruz, dilution 1:5000), NEUROD1 (ab60704,
Abcam, dilution 1:1000), IGFBP3 (09–180, EMD Millipore, dilution 1:1000),
Cleaved Caspase-3 (Asp175) (#9661s, CST, dilution 1:200), cleaved PARP (Asp214)
(#9546s, CST, dilution 1:1000) were obtained from commercial sources. ASCL1 (J.
E.J. lab TX518, dilution 1:5000) antibody was generated as described44. Keratino-
cyte-SFM, Bovine Pituitary Extract (BPE) and Epidermal Growth Factor (EGF)
were purchased from Life Technologies. RPMI-1640 and Fetal Bovine Serum (FBS)
were purchased from Sigma-Aldrich. LDH cytotoxicity assay kit was obtained from
Pierce (Life technologies).

Plasmids. The cDNAs for GFP, human ASCL1 and NEUROD1 were obtained
from Invitrogen, amplified by PCR, and cloned into the pLenti6.3/V5-DEST des-
tination vector using Gateway Recombination (Thermo). Lentiviral plasmids (Δ8.9
and VSVG) were kind gifts from A. Kung (Dana Farber Cancer Institute, USA) and
D. Baltimore (California Institute of Technology, USA). The sequences for those
plasmids are shown in Supplementary Table 2.

Mammalian lentiviral shRNAs. Lentiviral small hairpin RNA (shRNA) targeting
ASCL1 in pLKO.1 expression vectors (Clone ID: NM_004316.1-1023s1c1 and
NM_004316.3-955s21c1) were obtained from Sigma (The shRNA sequences are
listed in Supplementary Table 2). To generate the lentiviruses, shRNA plasmids
were co-transfected into HEK293TD cells along with packaging (Δ8.9) and
envelope (VSVG) expression plasmids using the Lipofectamine 2000 reagent
(Invitrogen). Two days after transfection, viral supernatants were collected and
filtered. Recipient cells were infected in the presence of a serum-containing med-
ium supplemented with 8 μg ml−1 Polybrene. Forty eight hours after infection, cells
were used for the indicated experiments. Knockdown efficiencies were examined by
immunoblot assays using the antibodies against ASCL1.

Cell culture. All lung cell lines used in this study were obtained from the Hamon
Cancer Center Collection (University of Texas Southwestern Medical Center,
Dallas, TX). HBEC34-KT cells were cultured in Keratinocyte-SFM (GIBCO) sup-
plemented with BPE and EGF (GIBCO) at 37 °C in 5% CO2. H2081, HCC4018,
H889, H1092, H69, H2107, H128, H378, H82, H2171, HCC970, and H524 cells
were cultured in RPMI-1640 (Sigma) with 10% FBS (Sigma) at 37 °C in 5% CO2.
All cell lines have been DNA fingerprinted using the PowerPlex 1.2 kit (Promega)
and are found to be mycoplasma free using the e-Myco kit (Boca Scientific).
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Fig. 6 ASCL1 orchestrates an IGFBP5-dependent mechanism to suppress IGF-1 signaling. Under basal conditions, ASCL1 promotes the transcription and
expression of IGFBP5, which accumulates in the extracellular space. In doing so, IGFBP5 inhibits IGF-1 from binding to its cognate receptor (IGF-1R). JQ-1-
treatment leads to the downregulation of ASCL1 and subsequently, IGFBP5. This de-represses IGF-1 signaling and renders the cells more sensitive to IGF-1R
inhibitors. This model suggests that a combination of JQ-1 and IGF-1R inhibitors might be more effective in killing ASCL1High NE-lung cancers
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Western blotting analysis. Cells were harvested and lysed in the SDS lysis buffer
(1% SDS, 10 mM HEPES, pH 7.0, 2 mM MgCl2, universal nuclease 20 U ml−1).
Total cellular protein concentration was measured by the BCA assay kit (Thermo
Fisher Scientific). Equal amounts (20 μg) of the protein samples were subjected to
10% SDS-PAGE and transferred to nitrocellulose blotting membranes (GE
Healthcare). The membranes were incubated in the blocking buffer for 60 min at
room temperature to reduce non-specific binding of the primary antibodies. The
membranes were then blotted with the primary antibodies overnight at 4 °C, after
which, the membranes were washed three times in TBST (10 min per wash on a
rocking platform) which was followed by incubation with the secondary antibody
for 1 h at room temperature. Proteins were developed using enhanced chemilu-
minescence exposed on an autoradiograph film.

Secretome sample preparation for mass spectrometric analysis. For HBEC34-
KT cells, 2.5 million cells were plated in Keratinocyte-SFM (GIBCO) supplemented
with BPE and EGF for 16 h. The next day cells were washed with PBS twice and the
medium was changed to Keratinocyte-SFM without BPE or EGF. Two dishes of
cells (15 cm) were starved in SFM at 37oC in 5% CO2 for 24 h, and the CM was
collected and mixed with SDS (1% final concentration). The CM was then cen-
trifuged (300×g, 3 min), filtered (0.45 μM Polythersulfone Membrane, GE health-
care) and lyophilized. Secreted proteins were extracted by methanol/chloroform
precipitation (methanol: chloroform: H2O: sample= 4:1:3:1) and were subse-
quently washed by ice-cold methanol. Protein pellets were re-solubilized in 2 ml
freshly prepared 8M urea buffer (containing 50 mM Tris, 10 mM EDTA, pH 7.5)
and concentrations were measured by the BCA assay (Thermo Scientific). Proteins
were reduced (2 mM DTT for 15 min at RT) and alkylated (30 mM iodoacetamide
for 30 min at RT). Proteins were then digested by Lys-C at a 1:100 (w/w) enzyme/
protein ratio for 2 h, followed by trypsin digestion at a 1:100 (w/w) enzyme/protein
ratio overnight at RT. Peptides were desalted by using Oasis HLB solid-phase
extraction (SPE) cartridges (Waters)45.

Desalted peptides were resuspended in 200 mM HEPES pH 8.5. Approximately
100 μg peptides were reacted with the amine-based TMT six-plex reagents
(Thermo Fisher) for 1 h at room temperature (i.e., channel 126 and 127 for
HBEC34-KT, 128 and 129 for HCC4018, and then 130 and 131 for H2081 cells).
Hydroxylamine solution was added to quench the reaction and the labeled peptide
samples were combined. The TMT sample was lyophilized and reconstituted in
400 μl buffer A (5 mM KH2PO4, pH 2.65, 30% acetonitrile). It was then centrifuged
at 10,000×g for 3 min using spin-X centrifuge tube filters (Corning) prior to
loading onto a SCX column (PolySULFOETHYL ATM, 200 mm × 4.6 mm, 5 μm
particle size, 200 Ǻ pore size, PolyLC). Peptides were fractioned by SCX-HPLC at a
flow rate of 1 ml min−1. Gradient was developed from 0 to 21% buffer B (5 mM
KH2PO4, pH 2.65, 30% acetonitrile, 350 mM KCl)23,46. Seventeen fractions were
collected, which were lyophilized, desalted, and analyzed by LC–MS/MS.

LC–MS/MS analysis. The TMT sample was analyzed by LC–MS/MS on an LTQ
Velos Pro Orbitrap mass spectrometer (Thermo, San Jose, CA) using a top ten
HCD (higher-energy collisional dissociation) method (collision energy set at 34
eV). Orbitrap resolution for precursor and fragment ions was set to be 60,000 and
7000, respectively. MS/MS spectra were searched against a composite database of
human protein sequences (Uniprot) and their reversed complement using the
Sequest algorithm (Ver28) embedded in an in-house-developed software suite47.
MS1 and MS2 mass tolerance was set to be 50 ppm and 0.05 Da, respectively.
Search parameters allowed for full tryptic peptides (2 missed cleavage sites) with a
static modification of 57.02146, 229.16293, and 229.16293 Da for Cys, Lys, and
peptide N terminus, respectively. A dynamic modification of oxidation (15.99491
Da) was considered for Met. Default settings were used for min and max peptide
lengths. Search results were filtered to include < 1% matches (both peptide and
protein level filtering) to the reverse database by the linear discriminator function
using parameters including Xcorr, dCN, missed cleavage, charge state (exclude 1+
peptides), mass accuracy, peptide length, and fraction of ions matched to MS/MS
spectra. Peptide quantification was performed by using the CoreQuant algorithm
implemented in an in-house-developed software suite48.

The labeling scheme for the TMT experiments is as follows: TMT set 1: 126:
HBEC34-KT replicate 1; 127: HBEC34-KT replicate 2; 128: H4018 replicate 1; 129:
H4018 replicate 2; 130: H2081 replicate 1; 131: H2081 replicate 2; TMT set 2: 126:
HBEC34-KT; 127: H889; 128: H1092; 129: H69; 130: H2107; 131: H128; TMT set 3:
126: HBEC34-KT; 127: H378; 128: H82; 129: H2171; 130: HCC970; 131: H524. For
TMT quantification, a 0.03 Th window was scanned around the theoretical m/z of
each reporter ion (126: 126.127726; 127: 127.124761; 128: 128.134436; 129:
129.131471; 130: 130.141145; 131: 131.138180) to detect the presence of these ions.
The maximum intensity of each ion is extracted, and the SN value of each protein
is calculated by summing the reporter ion counts (SN) across all identified peptides.
Because a same amount of peptides was used for each TMT channel, the total
reporter ion intensity of each channel was summed across all quantified proteins,
and was then normalized and reported.

Protein–protein interaction network analysis. A protein interaction network was
generated using the STRING database (Version 11.0)29. The interaction network of
NE-LCSS genes was generated with a required confidence score of 0.4.

Unsupervised relative expression based clustering. The signal-to-noise ratio
(SN) of a protein was determined by summing the corresponding values for its
individual peptides. These protein SN values were further processed and compared
to the control group. H2081 and HCC4018 were compared to HBEC34-KT, while
H2073 and H1993 were compared to HBEC3-KT23. These values were then
transformed to a Log2 base (i.e., Y= log2 (X)). The subsequent hierarchical clus-
tering was conducted using the complete agglomeration method of hclust as
implemented in the heatmap2 R package. Selected proteins were analyzed by GO
using the DAVID database (https://david.ncifcrf.gov/).

Unsupervised clustering was performed with the lung cancer cell line
microarray data5, human SCLC tumor microarray data33, and RNA-seq data of 69
SCLC cases for which matching genome sequencing data was available16. For
RNA-seq data, as expression values are following log-normal distribution, we
transformed the raw FPKM value of each transcript by log2(1+ FPKM). Using the
determined list of transcripts/genes, the subsequent hierarchical clustering was
conducted in the heatmap2 R package.

Luciferase reporter assays. To explore the potential ASCL1 binding sites in the
IGFBP5 gene, fragments of IGFBP5 that are upstream and downstream of the
genomic transcription start site were amplified and subcloned into the pGL4.42
(luc2P/HRE/Hygro) vector (Promega) using the XhoI and KpnI sites. Ten reporter
vectors were generated with this strategy, pGL4.P1 (P1, −1.5 kb ∼−50 bp), pGL4.
P2 (P2, −0.6 kb ∼−50 bp), pGL4.P3 (P3,+0.1 kb ∼+0.9 kb), pGL4.P4 (P4,+2.9 kb
∼+3.2 kb), pGL4.P5 (P5,+3.2 kb ~+3.5 kb), pGL4.P6 (P6,+6 kb ~+6.6 kb),
pGL4.P7 (P7,+6.6 kb ~+7 kb), pGL4.P8 (P8,+7.2 kb ~+7.9 kb), pGL4.P9
(P9,+7.9 kb ~+8.4 kb) and pGL4.P10 (P10,+9 kb ~+10 kb). The E-box-deficient
pGL4.42 mutants reporters were generated using the QuikChange site-directed
mutagenesis kit (Stratagene). The sequences of the primers are listed in Supple-
mentary Table 3. To perform the luciferase reporter assay, these pGL4 reporter
vectors were co-transfected with pLenti-V5-ASCL1, pLenti-V5-NEUROD1 or
pLenti-V5-GFP into HEK293T cells. The pGL4–hRluc expressing the Renilla
reniformis luciferase under the TK promoter was used as the internal control in
each experiment. Forty eight hours after transfection, cells lysates were collected
and were used to determine the luciferase activity using the protocol from Pro-
mega. Experiments were performed in triplicate.

IGFBP5 ELISA. The concentration of IGFBP5 in mouse sera was determined by an
enzyme-linked immunosorbent assay according to the manufacturer’s instructions
(DY578, R&D Systems). A 96-well plate (Corning Costar) was coated overnight at
room temperature with a mouse IGFBP5 capture antibody. Triplicates of mouse
IGFBP5 standards and serum from control mice and mice with SCLC tumors were
then added to the plate, followed by incubation for 2 h at room temperature. After
three washes, a biotinylated mouse IGFBP5 detection antibody was added to the
plate, followed by incubation for 2 h at room temperature. Then the streptavidin-
HRP antibody was added into each well, followed by 20 min incubation at room
temperature. The amount of bound avidin was then assessed with TMB peroxidase
that was acidified by 2 N H2SO4. The absorbance of each well at 450 nm was then
measured with a spectrophotometric plate reader (BioTek).

Cell viability assays. Three-day dose-dependent cell viability assays were carried
out by plating 2000 cells per well of H2081, H69, or H524, respectively, into white
transparent-bottom 96-well plates. On the same day, the cells were treated with JQ-
1 or the combination of JQ-1 and BMS-754807 across a 6-dose range from 62.5 nM
to 2 μM. For validation experiments, 2000–5000 cells (per well) of HCC4018,
H2081, H889, H1092, H69, H2107, H82, HCC970, or H524 were plated into white
transparent-bottom 96-well plates, and were then treated with DMSO, 1 μM JQ-1,
1 μM BMS-754807, or JQ-1+ BMS-754807 (1 μM each). After 72 h of drug
treatment, cell viability was measured using the CellTiter-Glo assay (Promega).

In vivo drug treatment experiments. The BET inhibitor JQ-1 and IGF-1R
inhibitor BMS-754807 were purchased from Selleck Chemicals. Compounds were
dissolved in 2% DMSO+ 30% PEG 300+ 5% Tween 80+ ddH2O. Tumors were
engrafted in NSG (NOD-SCID) mice (The Jackson Laboratory) by subcutaneous
injection of 1 × 106 cells in RPMI-1640 medium supplemented with 50% Matrigel
(BD Biosciences, cat. no. 354234). Ten days after the injection, animals were
assigned randomly to control and various treatment groups (n= 9–10 for each
group). Tumor bearing mice were intraperitoneal injected with: (1) Vehicle, 2%
DMSO+ 30% PEG 300+ 5% Tween 80+ ddH2O; (2) JQ-1, 25 mg kg−1 day−1; (3)
BMS-754807, 3.125 mg kg−1 day−1; (4) Combination of 25 mg kg−1 day−1 JQ-1
and 3.125 mg kg−1 day−1 BMS-754807. The mice were treated every other day.
Tumors were measured with an external caliper, and the volume was calculated as
(4π/3) × (width/2)2 × (length/2).

Statistical testing of the resulting data was conducted using the GraphPad Prism
software (v8). To examine significance in xenograft between two groups, a two-way
ANOVA was applied to compare the treated versus control groups, and a follow-up
Tukey’s post hoc test was used for the various comparisons in the experiments. All
animal procedures were reviewed and approved by the institutional animal care
and use committee (IACUC) at UT Southwestern medical center. All animal
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studies were performed in compliance with the IACUC’s guidelines at UT
Southwestern medical center.

Immunohistochemistry. Resected xenograft tumors were fixed in neutral-
buffered formalin (Sigma, F8775) for 48 h before processing to paraffin. Paraffin
blocks were sectioned to a thickness of 4 μm. Immunohistochemical analysis was
performed using a rabbit-anti-Cleaved Caspase-3 (Asp175) (1:200, #9661 s, CST)
antibody with overnight incubation at 4 °C. The antigen in tissue sections was
detected with the Mouse/Rabbit Specific HRP/DAB (ABC) Detection IHC Kit
(Abcam, ab64264). Briefly, the specific antibody is located by a biotin-conjugated
secondary antibody, followed by the addition of a streptavidin-enzyme conjugate
and then visualized with the substrate-chromogen. Tissue samples were then
imaged on a Keyence All-in-One microscope at ×40 with three fields per
tissue slice.

Statistical analysis. Hit calling is done by applying moderated t-test from R
limma package 3.34.832. The adjusted P-values were then calculated by using
limma in R v3.2.3 statistical environment. All of the other statistical analyses
(unpaired, two-tailed t-tests, and two-way ANOVA) were performed using the
GraphPad Prism software (v8). Data were derived from the average of three bio-
logical replicate experiments and calculated as mean ± SEM. *P < 0.5, **P < 0.01,
***P < 0.001, n.s not significant.

Reporting Summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The mass spectrometry data have been deposited to the ProteomeXchange Consortium
(https://www.ebi.ac.uk/pride/archive/) via the PRIDE partner repository with the dataset
identifiers: PXD013298 and PXD013267. Microarray, RNA-seq, and ChIP-seq data for
human patient samples and cell lines were obtained from published literature5,10,16,33.
The gene expression microarray data from the lung cancer cell lines were downloaded
from the Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/) with accession
number GSE32036. The gene expression microarray data from the human SCLC tumor
tissue was downloaded from GEO with accession numbers GSE43346. In this dataset, the
Affymetrix GeneChip Human Genome U133 plus 2.0 oligonucleotide array data were
analyzed using the Affymetrix GeneChip Operating Software v1.3 by MAS5 algorithms,
to obtain signal value for each probeset. ChIP-seq libraries were sequenced on an
Illumina High-Seq 2000 or Illumina GAIIx (GSE69398). The source data underlying
Figs. 2b, 3a, 3d–i, 4d, 4g, 4h, 5e, 5f, 5g–i and Supplementary Figs. 1d, 1f, 2c, 4d, 5b and 5d
are provided as a Source Data file. Fully uncropped versions of all gels and blots are
shown in Supplementary Fig. 6. A reporting summary for this Article is available as a
Supplementary Information file. Computer code and all the other data supporting the
findings of this study are available from the corresponding author upon request.
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