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Mixed topological semimetals driven by orbital
complexity in two-dimensional ferromagnets
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Daniel Wortmann2, Stefan Blügel 2, Gustav Bihlmayer 2 & Yuriy Mokrousov 2,3

The concepts of Weyl fermions and topological semimetals emerging in three-dimensional

momentum space are extensively explored owing to the vast variety of exotic properties that

they give rise to. On the other hand, very little is known about semimetallic states emerging

in two-dimensional magnetic materials, which present the foundation for both present and

future information technology. Here, we demonstrate that including the magnetization

direction into the topological analysis allows for a natural classification of topological semi-

metallic states that manifest in two-dimensional ferromagnets as a result of the interplay

between spin-orbit and exchange interactions. We explore the emergence and stability of

such mixed topological semimetals in realistic materials, and point out the perspectives of

mixed topological states for current-induced orbital magnetism and current-induced domain

wall motion. Our findings pave the way to understanding, engineering and utilizing topological

semimetallic states in two-dimensional spin-orbit ferromagnets.
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Two-dimensional (2D) materials are in the focus of intensive
research in chemistry, materials science, and physics,
owing to their wide range of prominent properties that

include superconductivity, magnetotransport, magneto-, and
thermoelectricity. The observations of quantum Hall and quan-
tum spin Hall effects are manifestly associated with 2D materials,
and they ignited comprehensive research in the area of topolo-
gical condensed matter, resulting in the discovery of topological
insulators (TIs) and topological crystalline insulators (TCIs) both
in 2D and in three spatial dimensions (3D)1–3. Recently, research
in the area of topological materials has extended to the class of
topological semimetals4–6, which notably include Dirac7–9,
Weyl10–12, and nodal-line semimetals13–15. These materials have
been theoretically proposed and experimentally confirmed in 3D,
revealing remarkable properties such as ultrahigh mobility16,
anomalous magnetoresistance17,18, and nonlinear optical
response19. However, in 2D films the material realization of
topological semimetals has been elusive so far4–6. Although in
some situations a gap closing was argued to occur due to sym-
metries leading to the realization of 2D Dirac and nodal-line
states, a gap is usually introduced once the spin-orbit coupling
(SOC) comes into play20–24.

While magnets have been successfully fabricated in 2D25,26,
combining 2D magnetism with non-trivial topological properties
holds great opportunities for topological transport phenomena
and technological applications in magneto-electric, magneto-
optic, and topological spintronics27–30. Thus, studying the unique
interplay of topological phases with the dynamic magnetization of
solids currently matures into a significant burgeoning research
field of condensed-matter physics30–33. In this context, magnetic
interfaces with topological insulators34 and layered van der Waals
crystals35,36, which can exhibit ferromagnetism at room tem-
perature, constitute compelling and experimentally feasible clas-
ses of 2D quantum materials.

Here, we demonstrate the emergence of zero-dimensional and
one-dimensional semimetallic topological states, which arise at
the boundary between distinct topological phases when the
direction of the magnetization in a 2D magnet is varied. We show
that by including the direction of the magnetization into the

topological analysis, one arrives at a natural classification of such
mixed Weyl and nodal-line semimetallic phases, which paves the
way to scrutinizing their stability with respect to perturbations.
We uncover that the appearance of semimetallic phases is typi-
cally enforced by the drastic variation of the orbital band char-
acter upon changing the magnetization direction, which arises
commonly in 2D ferromagnets, and we proclaim that emergent
semimetals can be experimentally detected by measuring the
current-induced orbital response, e.g., via XMCD. Besides pro-
viding realistic material candidates in which the discussed semi-
metals could be observed, we suggest possible applications of
these states in shaping the magnetic properties of the edges and
current-induced domain-wall motion.

Results
Nodal points and lines in mixed topological semimetals.
Topological phase transitions constitute a pervasive concept that
necessitates the occurrence of metallic points in the electronic
structure. Acting as prominent microscopic sources of geome-
trical curvature of momentum space, such band crossings are
currently discussed in three-dimensional Weyl semimetals, where
they mediate a plethora of fascinating properties10–12. Analo-
gously, it was suggested30 that large magneto-electric effects in
two-dimensional ferromagnets coined mixed Weyl semimetals
(MWSMs) originate from emergent nodal points in the mixed
phase space of the crystal momentum k= (kx, ky) and the mag-
netization direction bm (see Fig. 1b). Discovering material candi-
dates and advancing our understanding of topological states in
this novel class of semimetallic systems is invaluable for the
interpretation of physical phenomena that root in the global
properties of the underlying complex phase space.

The emergence of nodal points in MWSMs correlates with
drastic changes in the mixed topology and it is accompanied
by discrete jumps of the momentum Chern number C ¼
1=ð2πÞRΩkk

xy dkxdky with respect to the magnetization direction,

as well as of the mixed Chern number Z ¼ 1=ð2πÞRΩbmk
yx dkxdθ

with respect to the crystal momentum30. Here, the momentum
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Fig. 1 Characteristics of mixed topological semimetals. a The magnetization direction bm= (sin θ, 0, cos θ) of a two-dimensional magnet encloses the angle
θ with the z-axis perpendicular to the film plane. b Acting as sources or sinks of the Berry curvature, emergent band crossings in the mixed phase space of
crystal momentum k= (kx, ky) and θ can be identified with jumps of the momentum Chern number C and the mixed Chern number Z upon passing through
the nodal points. Alternatively, the topological nature of such a mixed Weyl point can be confirmed by calculating its charge as the flux of Berry curvature
through the closed surface indicated by the grey box. c If the magnetic system is symmetric with respect to reflections at z= 0, nodal lines with the Berry
phase γ= π may manifest in the corresponding (kx, ky)-plane of the mixed phase space. The inset illustrates the distribution of the generalized Berry
curvature field Ω around the nodal line. d Mixed topological semimetals can host additionally a very distinct type of nodal lines that are one-dimensional
manifolds evolving in θ as well as in k. Originating from the complex topology in the mixed phase space as revealed by a non-trivial Berry phase γ, these
nodal lines give rise to a characteristic distribution of the Berry curvature as exemplified in the inset
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Berry curvature of all occupied states juθkni is denoted by
Ωkk

xy ¼ 2 Im
Pocc

n h∂kxu
θ
knj∂kyu

θ
kni, the mixed Berry curvature is

Ωbmk
yi ¼ 2 Im

Pocc
n h∂θuθknj∂kiu

θ
kni, and θ is the angle that the

magnetization bm= (sin θ, 0, cos θ) makes with the z-axis as
depicted in Fig. 1a. To fully characterize the properties of nodal
points in the composite phase space spanned by kx, ky, and θ, we
introduce the integer topological charge

Q ¼ 1
2π

Z
S

Ω � dS; ð1Þ

which describes the non-zero flux of the generalized Berry

curvature field Ω ¼ ð�Ωbmk
yy ;Ω

bmk
yx ;Ω

kk
xy Þ through a closed surface S

that encompasses the nodal point (see Fig. 1b). We classify in the
following two different types of such mixed Weyl points in the
composite phase space: First, the symmorphic combination of
time reversal and mirror symmetries can enforce topological
phase transitions accompanied by a closing of the band gap as the
magnetization direction is varied. As we discuss below, such type-
(i) nodal points are robust against perturbations that preserve the
protective symmetry, as long as the magnetization direction is
fixed. Second, generic band crossings may arise due to the
complex interplay of exchange interaction and SOC in systems of
low symmetry. In this case, when the underlying electronic
structure is modified, such type-(ii) nodal points disappear as
long as the direction of the magnetization is fixed, but they
reappear if the magnetization direction is adjusted.

In addition, as we demonstrate below, nodal points in mixed
topological semimetals can form closed lines in the higher-
dimensional phase space of momentum and magnetization
direction (see Fig. 1c, d). It is tempting to interpret these one-
dimensional manifolds of topological states as mixed nodal lines
in analogy to their conventional sisters in three-dimensional
topological semimetals13–15. While crystalline mirror symmetry
underlies the emergence of the nodal line in momentum space
shown in Fig. 1c, mixed topological semimetals host additionally
a distinct type of nodal lines as depicted in Fig. 1d. Owing to the
subtle balance of spin-orbit and exchange interactions, these

topological states can be thought of as series of nodal points that
evolve also with the magnetization direction θ. As a direct
consequence, this type of mixed nodal line is not protected by
crystalline symmetries but stems purely from a non-trivial Berry
phase γ ¼

H
c
A � d‘, where A ¼ i

Pocc
n huθknj∇uθkni is the general-

ized Berry connection in the complex phase space, ∇ stands for
ð∂kx ; ∂ky ; ∂θÞ, and the closed path c encircles the nodal line as

shown in Fig. 1d.

Model of a mixed Weyl semimetal. To establish the existence of
the predicted mixed topological semimetals, we begin our dis-
cussion with a simple insightful model of p-electrons on a 2D
honeycomb lattice37 depicted in Fig. 2b. The tight-binding
Hamiltonian assumes the form

H ¼
X
ij

tijc
y
i cj þ

X
i

ðεi1þ B � σÞcyi ci þ Hsoc; ð2Þ

where the first term is the hopping with tij between orbitals i, j=
px, py, pz on different sublattices, the orbital-dependent εi is an
on-site energy, the exchange field is B= B(sin θ, 0, cos θ), the
SOC reads Hsoc= ξ l ⋅ σ, and σ is the vector of Pauli matrices (see
also Methods). While the reflection M with respect to the film
plane is a symmetry of the planar lattice, buckling breaks this
mirror symmetry.

We consider first the M-broken model, known to be a
quantum anomalous Hall insulator37 over a wide range of model
parameters. As exemplified in Fig. 2a for strong exchange,
valence, and conduction bands approach each other as the
magnetization direction θ is tuned, which results in an emergent
band crossing slightly off the K point for θ ≈ 60°. Using our
classification scheme, we identify this single mixed Weyl point as
type-(ii) since it occurs for a generic magnetization direction, the
value of which is controlled by the magnitude of SOC and
exchange coupling. The effective Hamiltonian close to the linear
crossing is governed by three tunable parameters, entangling
momentum, magnetization direction, and the interactions of the
model, which facilitates a degenerate point in the spectrum
following the von Neumann–Wigner theorem38. Figure 2c
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Fig. 2 Model of a mixed topological semimetal. a Band structure for θ= 45°, showing the lowest four energy bands of the p-model on the buckled
honeycomb lattice. Bold numbers refer to the individual Chern numbers of the bands, and colors encode the states’ polarization in terms of px− ipy (blue)
and px+ ipy (red) orbital character. b Honeycomb lattice of the model. (c) Distribution of the Berry curvature Ωkk

xy in momentum space close to the
emergent nodal point for θ= 60°. The in-plane direction of the full Berry curvature field Ω is indicated by unit arrows that refer to the mixed curvatures
�Ωbmk

yy and Ωbmk
yx . d–f Evolution with respect to the magnetization direction θ of d the valence band top and conduction band bottom, e the total orbital

magnetization mz, and f the orbital Edelstein response αij using kBT= 25meV in the Fermi distribution, with the Fermi level set to the energy of the band
crossing. In panel d, the Chern number C of the occupied states is bold, and colors denote the orbital polarization as in a
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suggests that the isolated nodal point manifests in a characteristic
distribution of the Berry curvature, whereby it mediates a
topological phase transition from the non-trivial C ¼ �1ð Þ to
the trivial regime C ¼ 0ð Þ as shown in Fig. 2d. The unique orbital
signatures of such a mixed Weyl point, summarized in Fig. 2d–f,
will be discussed later.

To uncover the non-trivial topology of the metallic point in the
mixed space of Bloch vector and magnetization direction, we
evaluate the flux of the Berry curvature field Ω through an
enclosing surface in (k, θ)-space, which amounts to the
topological charge Q of that point according to Eq. (1). The
mixed Weyl point emerging at θ ≈ 60° carries a negative unit
charge, which is consistent with the distribution of the Berry
curvature field Ω in Fig. 2c. Figure 2d illustrates the presence of
another nodal point located near K′ with the very same
topological charge if the magnetization direction is tuned to θ ≈
120°. However, the net topological charge over the full Brillouin
zone of the combined phase space is zero since the two mixed
Weyl points with negative unit charge are complemented by
partners of opposite topological charge for θ ≈ 240° and θ ≈ 300°,
respectively. Owing to their topological protection, these generic
mixed Weyl points feature a unique property: if the Hamiltonian
is perturbed, they may only move to a different position in (k, θ)-
space but cannot gap out easily. In the context of angle-resolved
photoemission spectroscopy (ARPES) performed at a fixed
magnetization direction, this means that although the generic
nodal points might appear non-robust with respect to strain,
chemical deposition of adsorbates, alloying etc., it should
generally be possible to recover them again upon adjusting the
magnetization direction. We anticipate that the topological
charge can be measured by experiments that sweep the
magnetization close to the nodal point: during the phase
transition both the quantized anomalous Hall transport and the
currents that are pumped by the magnetization dynamics, relating
to the mixed Berry curvature39, change uniquely as they are
sensitive to the magnetic orientation of the ferromagnet.

While tuning the ratio between exchange and SOC expands or
shrinks the extent of the topologically non-trivial phases,
symmetries can enforce the appearance of the trivial state with
C ¼ 0 under certain magnetization directions, resulting in a band
crossing. To illustrate this, we turn to the planar honeycomb
lattice that respects the mirror symmetry M with respect to the
film plane. If the magnetization points along any in-plane
direction, the combined symmetry of time-reversal and mirror
operation requires that the Chern number vanishes. Therefore,
starting from a non-trivial phase as induced by the model’s
interactions for finite out-of-plane magnetization, the system
undergoes a topological phase transition from C ¼ �1 to C ¼ 1
exactly at θ= 90° (see Supplementary Fig. 1). Contrary to the
buckled case, this transition is mediated by two nodal points
located at K and K′, respectively, each of which carries a negative
unit topological charge. Thus, while the minimal number of type-
(ii) nodal points is one for a given θ, the symmetry-related type-
(i) mixed Weyl points come at least in pairs of the very same
charge. This correlates with a distinct nature of the topological
phase transition in terms of the minimal change of the Chern
number by ΔC ¼ ± 1 and ΔC ¼ ± 2, respectively. We anticipate
that type-(i) mixed Weyl points may share formal analogies with
symmetry-constrained counterparts40 in 3D solids.

Remarkably, whereas adjacent nodal points in momentum
space of conventional 3D Weyl semimetals must have opposite
charges and thus annihilate under certain conditions40 if pushed
towards each other11,12, this is not necessarily the case in 2D
MWSMs. We speculate that it might be more difficult to destroy
the nodal points in MWSMs by realistic perturbations of the
Hamiltonian as they can have the same topological charge for a

given magnetization direction, while their counterparts of
opposite charge may be very far from them in θ. Generally this
does not imply that the direction under which the mixed Weyl
points occur is constant as the Hamiltonian is perturbed,
although this is the case in the planar model if the perturbation
preserves symmetry. On the other hand, the two nodal points of
negative charge, emerging originally at θ= 90°, split into two
distinct entities that manifest for generic directions of the
magnetization if the restrictive symmetry is broken, e.g., due to
buckling of the lattice.

From topological insulators to mixed Weyl semimetals.
According to our model analysis, the interplay between mag-
netism and topology in 2D materials offers the potential to realize
mixed Weyl points with non-zero topological charges. We apply
electronic-structure methods to uncover these nodal points in
first candidates of single-layer ferromagnets with SOC. As pro-
totypical examples that are very susceptible to external magnetic
fields, and display a rich topological phase diagram, we choose
TlSe41, Na3Bi42, and GaBi43 (see Supplementary Note 1), which
are originally TCIs and/or TIs with large energy gaps (for the unit
cells see insets in Fig. 3). To study systematically the mixed
topology, we use an additional exchange field term B ⋅ σ on top of
the non-magnetic Hamiltonian.

We start by considering the case of planar TlSe, which is a TCI
if no exchange field is applied41. Introducing an exchange field
with an in-plane component breaks both time-reversal and
M-mirror symmetry, provides an exchange splitting between
spin-up and spin-down states, and brings conduction and valence
bands closer together. As follows from our topological analysis,
the TCI character is kept even under sufficiently small exchange
fields (see Supplementary Note 2). In analogy to the T -broken
quantum spin Hall insulator44, we refer to this phase as a 2D
M-broken TCI. Increasing the magnitude B results in a gap
closure and gives rise to a non-trivial semimetallic state at the
critical value Bc. If the exchange field exceeds this value, the
reopening of the energy gap is accompanied by the emergence of
the quantum anomalous Hall phase for any magnetization
direction with finite out-of-plane component (see Fig. 3a and
Supplementary Note 3).

Now, we turn to the in-plane magnetized system that exhibits
symmetry, and for which the gap closes over a wide range of fields
B > Bc, see Fig. 3a. As exemplified in Fig. 4a, the electronic
structure for B > Bc reveals that the gap closing is mediated by
four isolated metallic points around the Fermi energy, where
bands of opposite spin cross slightly off the X and Y points.
Owing to their characteristic Berry curvature field, Fig. 4c, each of
these mixed Weyl points occuring for θ= 90° carries a positive
unit charge, which corresponds to a change of the Chern number
C from +2 to −2. Consequently, the Berry phase γ evaluated
along a closed loop in momentum space around one of the points
acquires a value of π. In total, the topological charge over the full
phase space vanishes as the individual charges of the mixed Weyl
points at θ= 90° are compensated by four nodal points that
emerge during a second topological phase transition at θ= 270°,
Fig. 4c. Analogously to the planar model, we classify these objects
as type-(i) nodal points since their emergence is enforced by the
symmorphic symmetry, contrary to the Dirac nodes in 2D Dirac
semimetals that are protected by non-symmorphic symmetries20.
The non-trivial mixed topology further leads to exotic boundary
solutions in finite ribbons of TlSe, Fig. 4b.

Breaking the underlying T �M symmetry, e.g., by buckling of
the lattice (see Supplementary Note 2), splits the four nodal
points in TlSe, which originally appeared at θ= 90°, into two
distinct groups that manifest for generic magnetization directions.
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To elucidate this transition more clearly, we consider the
monolayers Na3Bi and GaBi, where this symmetry is absent. As
visible from the phase diagrams in Fig. 3b, c, the single Weyl
points in these systems emerge at the boundaries between the
T -broken quantum spin Hall phase and Chern insulator phases
with different Chern numbers. Analogously to TlSe, we identify
the mixed topological charge of such points to be Q= ±1,
depending on the position in (k, θ)-space. However, in contrast to

TlSe, for which both the number as well as the position of mixed
Weyl points is determined by symmetry, the single mixed Weyl
point in Na3Bi and GaBi appears for a given generic direction of
the magnetization, and we thus classify it as type-(ii) nodal point.

From mixed Weyl points to mixed nodal lines. It can occur that
the mixed Weyl point is realized accidentally for a range of θ in
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the 2D ferromagnet, as it is exemplified in TlSe at a fixed value of
exchange field of about 0.29 eV, see Fig. 3a. In the spirit of Fig. 1d,
this presents a truly mixed nodal line, a 1D manifold of states,
which evolves not only in k-space but also in θ. The topological
character of the line is reflected in the Berry phase that is the line
integral of the Berry connection along a path in k-space, which
encloses the corresponding point that the mixed nodal line pin-
ches in the Brillouin zone at a given θ, see Fig. 1d. The occurrence
of such mixed nodal lines is purely accidental and does not rely
on symmetries, while perturbing the system (i.e., by changing the
magnitude of B) may result in the mixed nodal line’s destruction,
as we discuss below. Owing to the subtle interplay of exchange
interactions and relativistic effects which underlies their emer-
gence, the realization of such mixed nodal lines in real materials
sets an exciting challenge, where 2D magnets are advantageous
for semimetallic states that are robust against variations of the
magnetization direction.

Another distinct type of a mixed nodal line is the 1D nodal
line, which evolves in k-space for a fixed direction of the
magnetization, see Fig. 1c, similarly to the nodal-line semimetals
which exhibit nodal lines in high-symmetry planes corresponding
to the crystalline mirror symmetry13–15. While the M symmetry
is broken by an in-plane exchange field, it survives when bm is
perpendicular to the film. As shown in Fig. 3b, the energy gap
remains closed in Na3Bi with θ= 0° above the critical magnitude
Bc. To gain insights into the topological properties in this case, we
take B= 0.5 eV and present the spin-resolved band structure of
the system in Fig. 4d. In absence of inversion and time-reversal
symmetries, all bands are generically non-degenerate. Taking into
account the mirror symmetry M, bands in the xy-plane can be
marked by mirror eigenvalues ±i, and those with opposite mirror
eigenvalues can cross each other without opening a gap. As the
highest occupied and lowest unoccupied bands in Na3Bi cross
each other around the Γ point, a nodal line is formed as shown in
the inset of Fig. 4d.

To validate the mixed topological character of this nodal line in
Na3Bi, we compute its non-trivial Berry phase according to
Fig. 1c. However, the overall flux of the generalized Berry
curvature field through any surface in (k, θ)-space surrounding
the mixed nodal line vanishes, which confirms the zero
topological charge of the mixed nodal line as an object in 3D
space of momentum and bm. Accordingly, there is no variation in
the Chern number C ¼ þ1 as the magnetization crosses θ= 0°
(see Supplementary Fig. 5b), which signifies the lack of
topological protection of the mixed nodal line and its disap-
pearance as the mirror symmetry is broken upon turning bm away
from the z-axis. To prove that the nodal line originates from the
mirror M, we perform for θ= 0° various distortions of the lattice
that break the three-fold rotational axis perpendicular to the film
but preserve M, resulting still in the mixed nodal line though for
different strengths of the exchange field (see Supplementary
Fig. 7).

Mixed topological semimetals in feasible 2D ferromagnets.
Having established the existence of mixed topological semimetals
in a simple model and by applying an external exchange field to
TIs/TCIs, an important question to ask is whether the proposed
mixed topological semimetals can be realized in stable 2D fer-
romagnets. While the existence of mixed Weyl points in several
2D magnets such as doped graphene or semi-hydrogenated bis-
muth has been shown30, in this work we demonstrate the pos-
sibility of their realization in other realistic systems, aiming
especially at van der Waals crystals. Bulk VOI2 has a layered
structure characterized by the orthorhombic space group Immm,
and has already been synthesized and investigated45,46. We focus

on a VOI2 monolayer, the unit cell of which contains two I, one
O, and one V atom that is coordinated in the center as shown in
Fig. 5a. The electronic structure of the single layer represents the
in-plane electronic structure of its bulk parent compound quite
well, and one-layer fabrication could be realized experimentally,
e.g., by mechanical exfoliation from the layered bulk due to the
low cleavage energy of 0.7 meV/Å2, which is much smaller than
for graphite (12 meV/Å2) or MoS2 (26 meV/Å2). As verified by
our explicit calculations of the phonon spectrum, the monolayer
is dynamically stable and difficult to destroy once formed. The
ground state of the system is ferromagnetic with a spin magne-
tization of about 1 μB per unit cell and an easy in-plane aniso-
tropy. Supplementary Note 4 presents further details on the
electronic structure.

As illustrated in Fig. 5b, the band structure of one-layer VOI2
with in-plane magnetization and SOC reveals band crossings
along the M − Y and Γ − X paths near the Fermi level. There are
four semimetallic points in the 2D Brillouin zone as can be seen
from the k-resolved energy difference between top valence band
and lowest conduction band around Γ and Y (see Fig. 5b). To
demonstrate the topological nature of these points we analyze the
distribution of the Berry curvature in the complex phase space
shown in Fig. 5b, and find that all four crossings are mixed Weyl
points with a charge of +1. Similarly to magnetized TlSe
discussed before, the predicted mixed Weyl points in VOI2
monolayer are protected by the operation as can be confirmed
explicitly by breaking this symmetry, which gaps out the nodal
points. When constructing a semi-infinite 1D ribbon of the
material along the Γ − Y direction, we observe that the four
mixed Weyl points project onto two pairs of distinct points that
are connected by emergent edge states close to �X and �Γ as
illustrated by the edge dispersion in Fig. 5c.

In addition, to prove the emergence of mixed nodal lines in
realistic 2D magnets, we start from Na3Bi in its hexagonal P63/
mmc phase, which is one of the first established realizations of
Dirac semimetals. This material has been synthesized both in bulk
and film form8,9,47. Replacing one Na atom with Cr, we focus here
on a monolayer of Na2CrBi (see Fig. 5d for a sketch of the unit
cell), which is a strong ferromagnet that is energetically and
dynamically stable according to our calculations of cleavage
energy (25.5 meV/Å2) and phonon spectrum (see Supplementary
Fig. 8). Including SOC, the band structure of perpendicularly
magnetized Na2CrBi in Fig. 5d exhibits prominent band crossings
around the Γ point. These metallic points form due to the mirror
symmetry M, which allows two bands with opposite mirror
eigenvalues to cross close to the Fermi level. Extending the analysis
to the full Brillouin zone reveals that these band crossings forge a
nodal loop (see Fig. 5e). In analogy to the previous case of the
Na3Bi monolayer, the nodal line is gapped out as soon as the
mirror symmetry is broken, e.g., by tilting the magnetization
direction, and we verify its non-trivial mixed topology by
evaluating the Berry phase around the nodal line as outlined in
Fig. 1c. As in the case of VOI2, a key manifestation of the complex
topology of the mixed nodal line is the emergence of characteristic
edge states in a semi-infinite ribbon of Na2CrBi, which can be
clearly distinguished from the projected bulk states in Fig. 5f.

Origin of mixed nodal points and orbital magnetism. Finally,
we elucidate one of the universal physical mechanisms that
triggers magnetically induced topological phase transitions and
gives rise to non-trivial band crossings. We refer again to the
above model, which contains elementary ingredients that govern
the appearance of mixed nodal points, including exchange and
SOC (see Eq. (2)). As illustrated in Fig. 2d, given an initial spin-
orbit driven energy splitting for out-of-plane magnetization,
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bands with different orbital character are guaranteed to cross as
the direction of the magnetization is reversed, owing to the fact
that the orbital momentum of the system is dragged by the
magnetization via SOC. This observation is well known in
molecular physics as well as in the band theory of ferromagnets48.
In the studied model such crossing points of orbitally polarized
states appear either for θ= 90° enforced by the symmetry, or
under generic directions of the magnetization if the symmetry in
the orbitally complex system is reduced. Although the non-trivial
mixed topology originates here primarily from p-states, we point
out that materials with s-electrons on a bipartite lattice can offer
similar prospects by exploiting the valley degree of freedom30.

Since the inversion of the orbital chemistry mediates the level
crossing, we argue that this transition imprints general magnetic
properties. A representative example of a real material where the
crossing emerges at general θ is the semi-hydrogenated bismuth
film H-Bi, which has been shown to host single mixed Weyl
points at θ ≈ ±43° and ±137° due to a magnetically induced
topological phase transition from a Chern insulator with C ¼ ± 1
to a trivial phase30. In Fig. 6a we plot the evolution of the orbitally
resolved electronic structure of H-Bi around the Fermi energy,
where the states originate mainly from p orbitals of bismuth. In
accordance with the model scenario, the emergent nodal point
correlates with a reordering of the px ± ipy states, which
underlines the role of SOC in mediating the inversion of energy
bands in terms of their orbital character and stabilizing generic
mixed nodal points.

The changes in the orbital character of the states across mixed
Weyl points manifest in prominent changes in the local orbital
magnetization (OM) near the mixed Weyl points as the

magnetization is varied. According to its modern theory49–52,
the OM as a genuine bulk property of the ground-state wave
functions juθkni is given by m ¼ R

mðkÞdk, with momentum-
resolved contributions from all occupied bands

mðkÞ ¼ e
2�h

Im
Xocc
n

h∂kuθknj ´ ½Hk þ Ekn � 2EF�j∂kuθkni; ð3Þ

with Hk= e−ik⋅rHeik⋅r as the lattice-periodic Hamiltonian, Ekn as
the energy of band n, and EF as the Fermi level.

Equation (3) underlines the deep relation of the OM to the
local geometry in k-space, and it is thus expected that, in accord
with the strongly modified geometry of Bloch states in (k, θ)-
space in the vicinity of mixed Weyl points, the OM may also
experience a pronounced variation both in k and θ. Therefore, we
anticipate that the non-trivial topology of the mixed Weyl points
enhance the variation of the orbital character of the states. Indeed,
our calculations verify the validity of this line of thought: Fig. 6d,
e reflects unique local fingerprints and colossal magnitude of
the orbital magnetization mz(k) in momentum space, which
correlate with the emergence of magnetic monopoles in two of
the predicted mixed topological semimetals. These features are
present for both types of nodal points, i.e., the generic and
symmetry-enforced ones.

Remarkably, the pronounced but competing local contribu-
tions to the OM for fixed θ nearly cancel each other, rendering
the net effect of the mixed Weyl points on the total OM rather
small. However, the microscopic response of the orbital chemistry
to magnetically controlled band crossings opens up bright
avenues for generating large orbital magnetization by applying
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magnetized VOI2 manifest in the momentum-resolved direct band gap (color scale in eV) and in the distribution of the Berry curvature field shown as
arrows throughout the complex phase space, confirming the presence of four nodal points with the same topological charge. Ranging from white (small) to
dark red (large), the arrow’s color illustrates the magnitude of the Berry curvature field. c Electronic structure of a semi-infinite ribbon of VOI2, where the
state’s localization at the edge is indicated by colors ranging from dark blue (weak) to dark red (strong). e In the mirror-symmetric plane, the band
crossings in perpendicularly magnetized Na2CrBi form a mixed nodal line that disperses in energy. f The band structure of a semi-infinite Na2CrBi ribbon
reveals characteristic edge states due to the non-trivial mixed topology
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an electric field that repopulates the occupied states (see Fig. 6b,
c). Such a giant current-induced orbital Edelstein effect can have
a strong impact on phenomena that rely sensitively on the orbital
moment at the Fermi surface. Moreover, the drastic change in the
local OM with θ may be used to detect experimentally the
presence of mixed Weyl points in the electronic structure by
detecting large variations in the current-induced orbital
properties53,54. To demonstrate the feasibility of our proposal,
we evaluate the orbital Edelstein effect mi= αijEj for the buckled
p-model with broken inversion symmetry within a Boltzmann
theory:53,54

αij ¼ eτ
X
n

Z
dk

ð2πÞ2
df
dEkn

mloc
n;i ðkÞvn;jðkÞ; ð4Þ

where τ is the relaxation time, f is the Fermi distribution function,
and vn,i(k) and mloc

n;i ðkÞ correspond to the ith components of the
state’s group velocity and its local orbital moment
mloc

n ðkÞ ¼ ðe=2�hÞImh∂kuθknj ´ ½Hk � Ekn�j∂kuθkni, respectively.
While the equilibrium OM hardly changes as a function of the
direction θ (see Fig. 2e), the sharply peaked current-induced
response αij is an immediate orbital signature of the emergent
mixed Weyl points with complex topology, Fig. 2f.

Discussion
Owing to the nature of mixed semimetals incorporating the mag-
netization direction as an integral variable, we expect pronounced

topological magneto-electric effects to which these materials should
give rise. Apart from their substantial relevance for technological
applications based on magnetic solids, we anticipate that these
coupling phenomena can play a key role even in finite systems such
as quantum dots55. Analogously, we envisage that complementing
the topological classification of matter by magnetic information
rooting in the electronic degrees of freedom will be valuable for
other research fields as well, e.g., for topological magnon
semimetals56,57. In addition to the prospects for current-induced
orbital magnetism, current-induced spin-orbit torques that can be
used to efficiently realize topological phase transitions, and
possible giant influences on anisotropic magnetotransport30,31,58,
we would like to emphasize in particular the promises of mixed
semimetals for chiral magnetism. While it is known that MWSMs
may exhibit a distinct tendency towards chiral magnetism30, we
speculate that chiral spin textures such as magnetic skyrmions or
domain walls can effectively unravel the topological features of
mixed semimetals in real space, which can have profound con-
sequences on, e.g., orbital magnetism and transport properties of
these textures.

To illustrate this point more clearly, we return to the emergent
nodal points in H-Bi. In complete analogy to 3D Weyl semimetals
in momentum space, the complex mixed topology of MWSMs
results generally in the emergence of mixed Fermi arcs at the
surfaces of these systems. By following the θ-evolution of the
electronic structure of 1D ribbons of H-Bi that are periodic along
the x-axis, we effectively construct such a 2D surface for which we
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� �
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of all occupied Bloch states jψθ
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position relative to the μth atom, and the real-space integration is restricted to spherical regions around the atoms. b, c A finite electric field E repopulates
the electronic states at the Fermi level EF, which can be used to promote the net effect of mixed Weyl points on orbital magnetism. d, e Evolution of the
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present in Fig. 6f the states at the Fermi energy as a function of kx
and θ. As clearly evident, the emergent surface states connect the
projections of the mixed Weyl points with opposite charge, rea-
lizing mixed Fermi arcs. Imagining now a long-wavelength chiral
domain-wall running along the x-axis of a H-Bi ribbon, where θ
(x) describes the local variation of the magnetization, we recog-
nize that the mixed Fermi arcs will manifest in topological
metallic states in certain regions of the domain-wall as a con-
sequence of the non-trivial mixed topology. In chiral spin textures
hosting mixed Weyl semimetallic states, we anticipate that such
electronic puddles will result in topologically distinct contribu-
tions to the current-driven spin torques acting on these spin
structures, a prominent variation of the texture-induced Hall
signal in real space, chiral and topological orbital magnetism59–61,
as well as topological contributions to the longitudinal transport
properties of domain walls and chiral magnetic skyrmions made
of MWSMs. Interfaces between topological insulators and
dynamic magnetization structures present further compelling
examples of such complex mixed topologies62–64. We thereby
proclaim that exploring the avenues associated with the exotic
electronic, transport, and response phenomena in textured mixed
semimetals presents one of the most exciting challenges in
topological chiral spintronics.

Methods
Tight-binding model. In order to arrive at the model (2) of the mixed Weyl
semimetal, we extended the tight-binding Hamiltonian of ref. 37 to describe arbi-
trary magnetization directions. Throughout this work we incorporated only the
nearest-neighbor hopping of σ-type on the honeycomb lattice with tσ= 1.854 eV
but our general conclusions remain valid even beyond nearest-neighbor hoppings.
In addition, we chose B= 8.0 eV to fully spin-polarize the bands, ξ= 1.0 eV for the
SOC, and we shifted the pz states to higher energies. By introducing a relative shift
of the on-site energies we further imitated the buckling of the honeycomb lattice.
Diagonalizing at every (k, θ)-point the Fourier transform of the 12 × 12 matrix that
results from Eq. (2) grants access to the wave functions and the band energies.

First-principles calculations. Based on density functional theory as implemented
in the full-potential linearized augmented-plane-wave code FLEUR (see http://
www.flapw.de), we converged the electronic structure of the studied systems
including SOC self-consistently. Exchange and correlation effects were treated in
the generalized gradient approximation of the PBE functional65. To represent the
electronic Hamiltonian efficiently, we subsequently constructed so-called maxi-
mally localized Wannier functions using the wannier90 program66,67. In this tight-
binding basis, the Hamiltonian of the non-magnetic TI/TCI systems was supple-
mented by an exchange term B ⋅ σ, where σ is the vector of Pauli matrices and B=
B(sin θ, 0, cos θ). In the ferromagnetic candidate materials, we obtained an efficient
description of the electronic structure in the complex phase space of k and θ by
constructing a single set of higher-dimensional Wannier functions68. The struc-
tural relaxations of the ferromagnetic systems were carried out in the Vienna Ab
initio Simulation Package69.

Data availability
The tight-binding code and the data that support the findings of this study are available
from the corresponding authors on reasonable request.
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