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RNA structure drives interaction with proteins
Natalia Sanchez de Groot 1,8, Alexandros Armaos1,8, Ricardo Graña-Montes1,7, Marion Alriquet2,3,

Giulia Calloni2,3, R. Martin Vabulas2,3 & Gian Gaetano Tartaglia1,4,5,6

The combination of high-throughput sequencing and in vivo crosslinking approaches leads to

the progressive uncovering of the complex interdependence between cellular transcriptome

and proteome. Yet, the molecular determinants governing interactions in protein-RNA net-

works are not well understood. Here we investigated the relationship between the structure

of an RNA and its ability to interact with proteins. Analysing in silico, in vitro and in vivo

experiments, we find that the amount of double-stranded regions in an RNA correlates with

the number of protein contacts. This relationship —which we call structure-driven protein

interactivity— allows classification of RNA types, plays a role in gene regulation and could

have implications for the formation of phase-separated ribonucleoprotein assemblies. We

validate our hypothesis by showing that a highly structured RNA can rearrange the com-

position of a protein aggregate. We report that the tendency of proteins to phase-separate is

reduced by interactions with specific RNAs.
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S ince the central dogma was proposed in 1950, the main role
attributed to RNA has been to act as the intermediate
between DNA and protein synthesis. Yet, more than 70% of

the genome is transcribed and just a small part codes for
proteins1,2, which indicates that the majority of RNAs could have
different biological roles. During the past decade many efforts
were made to develop methods to study RNA isoforms: sequen-
cing has been essential for detection of RNA species3 and recent
developments provided a great deal of data on polymorphisms4,
expression5 and half-lives6 of all types of RNAs, generating a
valuable resource to understand their cellular functions and
regulation. Although a number of techniques identified biological
characteristics such as cellular location7 and secondary
structure8,9, the characterization of the interaction network
remains one of the most urgent challenges10,11. To this aim,
computational methods are being developed to identify physi-
cochemical features of the transcripts10, their conservation
between species12 and, most importantly, binding partners13 that
are also active in the cellular environment14.

RNA is involved in many cellular processes such as control of
gene expression, catalysis of various substrates, scaffolding of
complex assemblies, and molecular chaperoning15. Its ability to
act as a hub of cellular networks is at the centre of an active
research field and has already led to the discovery of diverse
ribonucleoprotein (RNP) assemblies16,17. A number of
membrane-less organelles contain specific mixtures of RNAs and
RBPs (RNA-binding proteins) that, due to their intrinsic lability,
are difficult to characterize10. In most cases, liquid-like RNP
assemblies, or condensates, such as P-bodies and stress gran-
ules18, exchange components with the surrounding content and
adapt to the environmental condition in a dynamic way. Within
these phase-separated assemblies RNA plays a central role19:
whereas a polypeptide of 100 amino acids can interact with one or
two proteins, a chain of 100 nucleotides is able to bind to 5–20
proteins, thus providing an ideal platform or scaffold for
interactions20,21. Not surprisingly, changes in the interactions
within RNP granules leading to liquid-to-solid phase transition
are associated with the development of several human diseases,
including neurological disorders and different types of cancer17.
In RNP condensates such as stress granules, regulation of protein
and RNA contacts is primarily controlled by HSP70 and co-
chaperones17 that act as versatile elements promoting assembly
and disassembly of complexes22.

In this large spectrum of activities, RNA structure controls the
precise binding of proteins by creating spatial patterns and
alternative conformations for the interactions to occur 12. Known
complexes in which the structure regulates protein binding
include transfer RNAs (tRNAs) whose three-dimensional con-
formation facilitates the codon/anticodon interaction23 and the
ribosomal RNA (rRNA) scaffold that sustains the ribosome24.
Importantly, the structure of a messenger RNA (mRNA) defines
its lifecycle25, recruitment of ribosomes and response against
environmental changes25. There are several cases of nucleotide
chains of non-coding RNAs acting as scaffolds for protein com-
plexes21: structured domains in NEAT1 attract paraspeckle
components26 and repeat regions in XIST sequester proteins to
orchestrate X-chromosome inactivation27. By contrast, poorly
structured snoRNAs have been shown to facilitate the assembly of
other transcripts28.

Of both coding and non-coding transcripts, RBPs are known as
the major regulators29 and are classified as single-stranded RNA
(ssRNA) and double-stranded RNA (dsRNA), depending on their
binding preferences. Here we investigated the relationship
between RNA structure and ability to interact with RBPs. At the
transcriptome level, we find that the amount of RNA secondary
structure correlates with the number of protein interactions. We

propose several possible implications of this relationship: a link to
RNA types and biological roles; a connection to regulatory net-
works; and the ability to modulate phase separation. Based on our
observations, we also demonstrated that this RNA property can
be exploited in vitro to tune the contact network of a protein
aggregate.

Results
Highly structured RNAs bind a large amount of proteins. With
the aim of studying how RNA structure influences protein
binding, we measured the amount of double-stranded regions of
the human transcriptome8 (Fig. 1a). We first grouped the RNAs,
as detected by enhanced crosslinking and immunoprecipitation
(eCLIP) approach30, in classes based on the structural content
measured by ‘parallel analysis of RNA structure’ (PARS)8 (Sup-
plementary Fig. 1a and Fig. 1b). PARS is an experimental tech-
nique that distinguishes double- and single-stranded regions of
RNA using the catalytic activity of two enzymes, RNase V1 (able
to cut double-stranded nucleotides) and S1 (able to cut single-
stranded nucleotides) and for which positive scores indicate
double-stranded regions (see Eq. (1) in Methods)8. We then used
catRAPID predictions of protein–RNA interactions (available
from the RNAct database that contains both proteome-wide and
transcriptome-wide calculations31) and compared the interaction
scores of different groups (HS, high structural content, vs. LS, low
structural content) (Fig. 1b). The catRAPID algorithm32 estimates
the binding potential through van der Waals, hydrogen bonding
and secondary structure propensities of both protein and RNA
sequences (total of 10 properties), allowing identification of
binding partners with high confidence. Indeed, as reported in a
recent analysis of about half a million of experimentally validated
interactions31, the algorithm is able to separate interacting vs.
non-interacting pairs with an area under the curve (AUC)
receiver operating characteristic (ROC) curve of 0.78 (with false
discovery rate (FDR) significantly below 0.25 when the Z-score
values are >2). Comparison of RNA groups with different
structural content shows a consistent trend in which higher
structural content in RNA molecules results in higher protein
interaction scores (Fig. 1b). As for the PARS data, we note that
the amount of double-stranded regions correlates weakly (<0.10;
Pearson’s) with RNA length and GC content, indicating that
these two factors positively contribute to the secondary structure
by increasing the size of the conformational space as well as the
overall stability33.

We repeated the analysis with a unrelated approach, RPISeq,
which predicts protein–RNA interactions using sequence patterns
in nucleotide and amino acid sequences11. RPISeq is comprised of
two methods based on support vector machines (RPISeq-SVM)
and random forest (RPISeq-RF). Due to specific computational
requirements, we applied RPISeq to an ensemble of RBPs (50
proteins with sequence similarity <0.85; http://cd-hit.org/) against
the HS and LS set from the tails of the structural content
distribution (100 transcripts) to estimate the binding probabilities
(Supplementary Data 1). In both cases, the HS set (RF 0.80, SVM
0.71) is predicted to bind with significantly higher probabilities
than the LS set (RF 0.70, SVM 0.54; p value <10–5;
Kolmogorov–Smirnov (KS) test; Supplementary Fig. 1b–c), in
agreement with catRAPID analysis (Fig. 1b). Thus, our analysis
suggests that the RNA structure content has effect on the
interaction with proteins.

To match our predictions with experimental data, we
investigated all RBP–RNA interactions revealed by enhanced
CrossLinking and ImmunoPrecipitation, eCLIP30 (118 RBPs; see
Methods). eCLIP provides protein contacts on target RNAs at
individual nucleotide resolution through ligation of barcoded
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single-stranded DNA adapters30. In agreement with catRAPID
predictions31 (Fig. 1b), eCLIP binding scores correlate with PARS
secondary structure, which indicates that the RNA propensity to
interact with proteins is proportional to the amount of structure
measured transcriptome wide (Fig. 1c). We note that the CLIP-
seq approaches in general favour detection of single-stranded (SS)
RNA at the expense of double-stranded (DS) RNA34 and the
eCLIP dataset is not enriched in double-stranded RNA-binding
proteins (9 out of 118 are assigned according to UniProt as
dsRNA binding, 12 out of 118 as ssRNA binding, using available
GO annotations35), which indicates that our results are not biased
by the protein types used in our analysis.

To further corroborate that the trend is genuine and not only
intrinsic to PARS measurements, we analysed the protein-
interacting potential of the entire human transcriptome against
the RNA secondary structure measured with the dimethyl sulfate
modification (DMS) technique (differently from PARS, high
values indicate single-stranded regions; Fig. 1d)9. This method of
assessing RNA structure employs deep sequencing to detect
unpaired adenosine and cytidine nucleotides. Once more, the
analysis shows that the RNA secondary structure of the human
transcripts is tightly correlated with protein-binding abilities.

We also used the POSTAR database (containing >1000 CLIP-
seq datasets; http://lulab.life.tsinghua.edu.cn/postar/) to retrieve
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Fig. 1 The amount of protein structure correlates with the number of interactions. a Cumulative distribution function (CDF) for the secondary structure
content of all human RNAs measured by parallel analysis of RNA structure (PARS)8,69. Vertical lines indicate a certain fraction (X%) of RNAs with the
lowest secondary content (LS; blue) and the same fraction with the highest secondary content (HS; pink). b catRAPID predictions of protein interactions
with human RNAs ranked by structural content measured by PARS (118 RNA-binding proteins (RBPs) for which enhanced crosslinking and
immunoprecipitation (eCLIP) information is also available)31. The fractions 10%, 15%, …, 50% refer to the comparison between equal-size HS and LS sets.
The results indicate that catRAPID is able to distinguish HS and LS groups significantly and consistently through the different fractions (p value <10–16;
Kolmogorov–Smirnov (KS) test). The boxes show the interquartile range (IQR), the central line represents the median, the whiskers add 1.5 times the IQR
to the 75 percentile (box upper limit) and subtract 1.5 times the IQR from the 25 percentile (box lower limit). s.d. is shown. c Relationship between number
of protein interactions (eCLIP) and structural content measured by PARS30. The fitting line corresponds to the formula y= exp(α+ βx), where α=−0.75;
β= 0.67; p value estimated with KS test. d Relationship between number of protein interactions and structural content measured by dimethyl sulfate
modification (DMS)9. The fitting line corresponds to the formula y= 1/(α+ βx), where α= 2.60; β= 87.36; p value estimated with KS test. e Structural
preferences of RBPs measured with three different CLIP techniques (photoactivatable ribonucleoside-enhanced CLIP (PAR-CLIP), high-throughput
sequencing-CLIP (HITS-CLIP) and individual nucleotide resolution CLIP (iCLIP)). The colour indicates the RNA-binding preference of each protein: pink,
high structured; blue, low structured; grey, no preference. f Correlation between structural content (CROSS predictions of icSHAPE experiments) and
protein interactions of eight transcripts revealed by protein microarrays (Pearson’s correlation). s.d. is shown. g Analysis of Protein Data Bank (PDB)
structures containing protein–RNA complexes reveals a trend between protein (inter) and RNA (intra) contacts (196 different pairs; Pearson’s correlation)
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the RNA-binding preferences of human proteins (103 experi-
ments, 85 different RBPs) measured with PAR-CLIP, high-
throughput sequencing-CLIP (HITS-CLIP) and individual
nucleotide resolution CLIP (iCLIP)10. Due to intrinsic differences
in the CLIP approaches (and other factors, such as the cell lines
employed), each experiment reports different protein–RNA
interactions10. Yet 77% of the RBPs have preference for highly
structured RNAs for at least one of the experimental methods
(DMS or PARS; Fig. 1e).

Given possible technical biases of high-throughput experi-
ments, we decided to verify the reproducibility of the trend by
investigating the correlation between RNA structure and protein
interactions in low-throughput analyses. We first studied the
interactome of eight large (>1000 nt) RNAs whose protein
partners have been identified by microarray, a crosslinking-free
approach21,36,37 (see Methods). In parallel, we estimated the
structural content of each transcript using the CROSS algorithm
that was previously trained on SHAPE data38 to predict the
double-stranded propensity at nucleotide level resolution. Our
results presented in Fig. 1f indicate that highly structured
transcripts have more protein contacts than poorly structured
transcripts, which is fully compatible with the findings presented
in our previous analysis (Fig. 1b–e).

We corroborated our observations through the study of RNP
complexes deposited in the Protein Data Bank (PDB) database
(X-ray resolution <2 Å; Supplementary Data 2; see Methods),
which is comprised of 196 distinct RNA–protein pairs (>20 spe-
cies) analysed with different techniques (mainly X-ray and
nuclear magnetic resonance (NMR)) by different laboratories.
Measuring the amount of RNA intra-contact (i.e. amount of RNA
structure) and inter-contact (i.e. amino acid) per nucleotide
chain, we found a striking correlation of 0.78 between the two
variables, which provides compelling evidence of their tight
relation (Fig. 1g; see Eqs. (2) and (3) in Methods).

Thus, independently of the experiment (PARS, DMS, micro-
array, X-ray, NMR, eCLIP, PAR-CLIP, HITS-CLIP and iCLIP),
the algorithms employed (catRAPID and RPISeq or CROSS to
mimic SHAPE data) or organism (PDB database), we found a
correlation between number of protein interactions and RNA
structural content.

The structure-driven protein interactivity of RNA types. We
next investigated if the tight link between secondary structure and
number of protein interactions is a property of specific RNA
types (Fig. 2a). To this aim, we compared the secondary structure
and protein interactions of transcripts ranked by sequence simi-
larity using the CD-HIT algorithm39 (http://cd-hit.org/). With a
threshold of 85% similarity, we found 22 clusters (total of 55
transcripts) with at least one RBP contact revealed by eCLIP. We
then calculated the correlation between DMS signal and eCLIP
protein interactions for each cluster and obtained a negative
correlation in 64% of cases. This finding indicates that between
two similar transcripts the one with higher structural content is
more likely to have a larger number of protein interactions.

The two transcripts sharing the highest similarity (99.31%) are
the γ-globins HBG1 and HBG2 (haemoglobin subunits γ1 and
γ2) that are expressed in fetal liver, spleen and bone marrow
(NCBI Gene ID: 3048). The γ-globin variant with higher
structure (HBG1) has a significantly larger number of protein
interactors (HBG1, average DMS signal of 0.04, 29 interactors;
HBG2, average DMS signal of 0.07, 14 interactors; p value=
0.003; KS test; Fig. 2b). While the nucleotide composition of the
two transcripts remains nearly the same (HBG1:280c, 463c, 514t,
552a, 575g; HBG2: 280t, 463g, 514g, Δ552a, 574a), the differences
between HBG1 and HBG2 are concentrated in regions where the

secondary structure is altered (Supplementary Fig. 2). These
results indicate that protein interactivity is tightly associated with
conformational changes in elements of secondary structure.
Interestingly, the increased double-stranded content in HBG1,
especially in the 3′-UTR, is accompanied by an accumulation of
translation regulatory elements (Fig. 2b) and a concomitant
decrease in expression (NCBI Gene ID: 3048).

We then wondered whether specific RNA structures are
involved in protein regulation. We divided the human tran-
scriptome in different classes and analysed their secondary
structure as detected by two independent experimental techni-
ques, PARS and DMS. Both techniques show that protein-coding
RNAs have the largest structural content (Fig. 2c, Supplementary
Table 1)38. Although part of the mRNA structure is concentrated
in the UTRs8, when these are excluded, the distribution of the
structural content does not change substantially (Pearson’s
correlation between transcripts with and without their UTRs=
0.94; Supplementary Fig. 3). The RNAs known to interact with
proteins, such as small nuclear RNA (snRNAs)40 and small
nucleolar RNAs (snoRNAs)28, show the highest amount of
structure, whereas RNAs targeting complementary regions in
nucleic acids such as antisense, miRNAs and a number of long
intergenic non-coding RNAs (lincRNAs)41,42 feature the smallest
amount of structure43 (Supplementary Table 1).

In agreement with our findings, Seemann et al.12 previously
observed a tight relationship between protein binding and
conservation of structural elements in mRNAs, which occur to a
lesser extent in long non-coding RNAs12. Although lincRNAs show
a lower amount of double-stranded regions (lowest in PARS, third-
lowest in DMS), we note that some of them, such as for instance
NEAT144 and XIST27, are able to scaffold protein assembly through
structured domains. As there is an ongoing debate on the structural
differences between coding and non-coding transcripts45,46 and our
analysis of DMS and PARS data reveals contradicting results for
specific RNA types, we suggest further investigations in future
studies (Fig. 2c; Supplementary Table 1).

To investigate functional differences between highly and poorly
structured RNAs, we analysed GO terms associated to the least
and most structured RNAs (100 LS vs. 100 HS transcripts) using
the cleverGO35 approach. While the LS set (14 non-coding RNAs
and 86 mRNAs) is not associated with specific semantic similarity
clusters (total of 36 terms with p value <0.05; Bonferroni test), the
HS set (100 mRNAs; total of 395 terms with p value <0.05 and
103 terms with p value <0.01; Bonferroni test; Fig. 2d) includes 20
distinct clusters. The five main categories associated with the
clusters and covering at least a quarter of the entries are: (i)
complex protein regulation (49/103), (ii) nucleoside metabolic
process (39/103), (iii) cellular response (29/103), (iv) gene
expression (29/103) and (v) protein targeting (28/103). We also
repeated the GO term analysis using as a background the 25%
higher expressed transcripts and obtained similar results
(K562 strain GENCODE, Methods, Supplementary Fig. 4).

The cluster analysis reveals the intriguing finding that
transcripts with strong structural content interact more with
polypeptides and code for proteins involved in regulatory
functions and in the formation of complex contact networks.
Given the relationship between RNA structure and number of
protein interactions (Fig. 1), one preliminary interpretation of our
results is that a high degree of control is required for genes that
coordinate the activity of a large number of cellular networks47.
Thus, our analysis suggests a ‘recursive’ property: highly contacted
transcripts code for highly contacting proteins (Fig. 2e)20,48.

Disorder and helix distinguish dsRNA vs. ssRNA. To under-
stand the molecular basis of the structure-driven interactivity of
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RNA molecules, we analysed which physicochemical properties of
the proteins better discriminate the HS and LS sets. We studied all
10 variables used in the catRAPID algorithm (Fig. 2f)13,32 and
removed them one by one to estimate the impact on the pre-
diction of RNA–protein interactions. We found that the capacity

to distinguish between the least and most structured RNAs
(100 HS and LS transcripts; Supplementary Data 3) sets is more
affected when the polarity (p value = 0.28; KS test) and α-helical
propensity (p value= 0.06; KS test) are removed (Fig. 2f). The
property that more significantly affects the HS binding propensity
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is polarity, which is enriched in structurally disordered proteins49

and anti-correlates with hydrophobicity that is key in macro-
molecular recognition (Supplementary Table 2)50. As for the α-
helical propensity, we note that the helices are the most frequent
structural elements involved in the formation of contacts with
double-stranded regions and occur in dsRBD and zinc fingers29

(Supplementary Table 3). Our observation suggests a possible co-
evolution between proteins and RNAs: while the RNA adopts
complex shapes to expose binding regions, proteins change their
structural content. In agreement with the key lock theory51, we
propose that natural selection favours highly structured RBPs as
interactors of dsRNAs.

We validated the importance of protein polarity and helical
structure by comparing three datasets of well-studied RBPs
(human and yeast)52–54 and two sets of proteins retrieved from
UniProt (all organisms) as either exclusively ssRNA binders (453
proteins) or dsRNA binders (390 proteins; Supplementary
Data 4). Analysis of biophysical properties with the cleverMa-
chine approach55 revealed that ssRNA binders and dsRNA
binders differ for two properties: disorder and α-helix content
(Fig. 2g). The comparison of the two sets, one against the other,
indicate that RBPs interacting with highly structured RNAs are
structured and hydrophobic, while disordered and polar RBPs
associate with less structured RNAs (Supplementary Fig. 5). Thus,
our analysis further expands what was previously reported for
protein–protein interaction networks, in which structural dis-
ordered regions have been shown to play a central role47, and
suggests new rules for nucleotide base pairing with amino acids.

RNA structure content and protein contact in chaperones. The
analysis of the human transcriptome and across organisms
indicate that highly structured RNAs are prone to interact with
polypeptides and, in turn, code for proteins involved in biological
processes associated with large and complex contact networks. To
better investigate the structure-driven protein interactivity of
RNA molecules, we focused on a class of transcripts coding for
proteins interacting with several partners. The natural choice for
this analysis is the molecular chaperones, as they promote folding
into the native state56 and organize the assembly of phase-
separate RNP assemblies57, thus fulfilling the ‘recursive’ property
presented in Fig. 2d. eCLIP data30 show that most of the RNAs
coding for human chaperones are involved in interactions with
multiple proteins (Supplementary Fig. 6). We found a significant
correlation between protein–RNA and protein–protein interac-
tions annotated in BioGRID (Fig. 3a). This result confirms that

transcripts bound by many RBPs also code for highly contacted
proteins.

To understand if the correlation between protein–protein and
protein–RNA interactions is a general property or simply a
feature of the chaperone family, we analysed interactions of the
transcriptome ranked by PARS scores and 24 mRNAs coding for
chaperones for which PARS data are available (Genecards;
https://www.genecards.org; ‘HSPs’ set; Methods, Fig. 3b). We
found a positive correlation between the amount of RNA
structure and the number of BioGRID interactors of the encoded
proteins (Supplementary Fig. 7a–b). Thus, our calculations agree
with the GO analysis (Fig. 2d) and suggest a relationship between
mRNA and their coding partners: highly structured RNAs code
for highly interacting proteins.

The data presented so far suggest that RNAs related by type
(e.g. miRNA, snRNA) or function (e.g. coding for chaperones)
share similar structural characteristics (Fig. 2). Thus, it should be
possible to estimate differences in the interaction network of two
unrelated transcripts by analysing their structural content, and
vice versa. To test this hypothesis, we selected the highly
structured HSP70 transcript (HS RNA, log of PARS score of
−1.3 corresponding to 26% of double-stranded content, Fig. 3c)
coding for a chaperone essential to regulate protein complex
assemblies such as clathrin coats58 and stress granules22,57. As a
control we chose the RNA coding for BRaf that is less structured
(LS RNA, score of −2.8 indicating 6% of double-stranded content
according to PARS, Fig. 3c–e) and encoding for an oncogene
involved in transmission of chemical signals from outside the cell
to the nucleus (the structural comparison is confirmed by CROSS
predictions and DMS experiments, as shown in Supplementary
Fig. 8).

We found that HSP70 has a larger number of partners
(30 RBPs identified by eCLIP) than BRaf (9 eCLIP RBPs, 6 in
common to HSP70, Supplementary Fig. 9), which is perfectly in
agreement with the structure-driven protein interactivity prop-
erty. In keeping with the trend of Fig. 1b, catRAPID indicates that
proteins have a larger propensity to bind to HSP70 than BRaf
(Fig. 3f). Moreover, the highly structured HSP70 codes for a
protein with a higher number of interactors (244 BioGRID
physical interactors), while the poorly structured BRaf has a
protein product binding to a smaller set of molecules
(88 BioGRID physical interactors). Our observations suggest that
an RNA with a large number of interactions is prone to act as a
network regulator: we speculate that, because of the higher
interactivity, HSP70 transcript could perform as a chaperone
depending on the context.

Fig. 2 Functional footprints of the RNA structure-driven protein interactivity. a Scheme showing the role of intra- and intermolecular contacts in a
RNA–protein complex. Top, intramolecular contacts. Bottom, inter-molecular contacts. The number of contacts range is indicated with shades from dark
blue (lowest) to red (highest). b Up, Structural content (dimethyl sulfate modification (DMS); p value estimated with KS test). Bottom, Protein interactions
(enhanced CrossLinking and ImmunoPrecipitation (eCLIP) of haemoglobin subunit γ1 (HBG1) (pink) and haemoglobin subunit γ2 (HBG2) (blue) RNAs
(99.3% of sequential identity); the empirical p value was estimated by comparing the overlap with that of 1000 samples taken from eCLIP RNA-binding
proteins (RBPs). c Parallel analysis of RNA structure (PARS) (pink) and DMS (blue) structural content of different RNA types (Ensembl). d Semantic
grouping of gene ontology terms associated to the least and most structured RNAs (100 less structured (LS) vs. 100 high structured (HS) transcripts)
using cleverGO. e Through the analysis of individual RNAs (Figs. 1 and 2b) we found that the structural content is linked to the number of partners and
function of an RNA. Our analysis indicates that functionally related RNAs have similar structural content (Fig. 2c). The structure-driven protein interactivity
is an intrinsic property associated with the RNA that can be traced at any regulatory level. f Each row shows the catRAPID interaction propensities caused
by removing a physicochemical property13,32. The removal of α-helix (Chou) and polarity (Grantham) reduce the ability to distinguish between HS and LS
(p values estimated with KS test). g multicleverMachine analysis of the physicochemical properties of three RBP sets and proteins annotated in UniProt as
binders of double-stranded RNAs (DS) or single-stranded RNAs (SS) (see Methods). ‘Disorder propensity’ and ‘α-helix’ are the properties showing
significant difference and opposite results between DS and SS binders for at least two RBP databases (blue or pink indicate that DS or SS are enriched or
depleted; yellow indicates no significant differences between the sets). In b, c, the boxes show the interquartile range (IQR), the central line represents the
median, the notches the 95% confidence interval of the median, the whiskers add 1.5 times the IQR to the 75 percentile (box upper limit) and subtract 1.5
times the IQR from the 25 percentile (box lower limit). S.d. is shown
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Thus, we hypothesize that a structured RNA, because of its
higher protein-interacting potential, is able to affect the protein
interaction network more than a poorly structured RNA. In a
proof-of-concept experiment, we used a chemical compound,
biotinylated isoxazole (b-isox) to induce formation of a liquid-to-
solid phase transition of a protein assembly59,60 that we incubated
with either HS (HSP70) or LS (BRaf) transcripts (Fig. 4a and
Supplementary Fig. 10). We observed that HS altered the
composition of the protein aggregate more than LS RNA (Fig. 4b
and Supplementary Data 5). Indeed, when HS RNA was added, a
significant change of concentration was observed for 29 proteins
(Fig. 4c; 21 ‘released’ set, black dots, and 8 ‘kept’ set, red dots in
Fig. 4b), while only nine proteins were identified in the LS RNA
case. Thus, the composition in presence of LS RNA remained

similar to that of the background control (‘static’ set, grey dots in
Fig. 4b).

We reasoned that the competition of RNA with the b-isox
precipitate contact network59,60 could be the result of either direct
or indirect protein–RNA interactions (Fig. 5a). Yet, catRAPID
predictions support the hypothesis of a direct effect: an increase in
the experimental stringency (Supplementary Fig. 11; Methods) is
also associated with an increase in the theoretical predictive power
(Fig. 5b). In accordance with our previous analysis of RNA-binding
preferences, proteins released upon HSP70 incubation result
significantly deprived of polarity (Fig. 5c). Thus, our experiment
suggests that the structure-driven protein interactivity of RNA
molecules is active at every level, promoting individual interactions
and altering the composition of condensates12 (Fig. 2e).
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Discussion
Owing to recent advances in high-throughput sequencing, it is
now possible to collect information on the majority of RNAs.
Large-scale experiments unveiled many functions of
transcripts10,37: chromatin modification27, protein assembly26

and phase separation21, among others. At the molecular level,
there are still many questions to be addressed in order to
understand the full picture.

Here we focused on the relationship between RNA secondary
structure and ability to interact with proteins. It is widely
accepted that the structure of a molecule determines all aspects of

its life, from stability to function10. Yet, to the best of our
knowledge, we are the first to report that the structural content of
an RNA is intimately connected with the number of protein
binders. We demonstrated the solidity of this observation by
analysing PARS, DMS, crystals, protein microarrays and CLIP
datasets, and also carrying experimental work on RNP aggrega-
tion. Our results are not completely unexpected, since lack of
RNA structure is linked to more flexible and variable con-
formations and, thus, a shorter residence of proteins. Moreover, it
should be considered that presence of a native fold favours the
formation of stable and well-defined binding site that promotes
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functional roles and, in turn, evolutionary selection12. Thus, our
findings are reminiscent of the ‘target accessibility’ model that
links protein–RNA recognition to the secondary structure of
physical contacts61,62.

The trends presented in this work suggest the existence of a
layer of regulation that directly associates an RNA with its protein
product20,48. In agreement with our GO ontology analysis, it has
been previously reported that the transcripts with high conserved
secondary structure are enriched in regulatory processes in
plants63. Indeed, a tight relationship exists between the number of
protein contacts of transcripts and the participation of encoded
proteins in the network, which reveals an important level of
transcriptional regulation37 for highly connected genes47: pro-
teins involved in many interactions are encoded by RNAs bound
by several proteins. Our observation indicates an important
functional connection, since highly contacted proteins participate
in many cellular processes and require tight control at the post-
transcriptional level12,64,65.

By studying transcripts sharing high sequence similarity, such
as HBG1 and HBG2, we found that the structure-driven protein
interactivity is finely regulated by the exact position of nucleo-
tides. Through the study of a phase-separated RNP assembly we
proved that a highly structured RNA such as HSP70 is able to
transform the interaction network by competing with pre-existent
protein interactions. The main effect observed was the release of

proteins from the aggregate; proteins computationally and
experimentally tested to be direct interactors of HSP70.

While the role of HSP70 protein as a protein chaperone is well
documented and there are reports on its binding to hydrophobic
peptide domains to prevent aggregation and facilitate protein
folding66, very little is known about the property of the mRNA.
Our data suggest an intriguing activity of the HSP70 transcript as
a chaperone solubilising the protein assembly, which creates a
connection between RNA and protein activities. Our findings are
in agreement with previous reports indicating that RNAs are
directly involved in RBPs assembly21. Indeed, ribosomes have
been shown to be powerful co-factors aiding the folding of
polypeptide chains as they emerge from their channel15. Thus, we
speculate that other RNAs can act as chaperones assisting the
assembly of proteins. As each transcript is continuously handed
off from one protein to another, we expect a mutual chaperoning
effect of proteins on RNA and RNA on proteins, which is likely
the result of the co-evolution between the two molecules67.

In the future, kinetic analyses tracking the RNA–protein
association will be needed to further elucidate to which extent
protein partners actively contribute to RNA structure formation.
Our findings are reminiscent of the lock-and-key model in the
field of enzymology51: the structure of both, enzyme and sub-
strate, are key determinants of their association. Yet, structure
contributions are not trivial in the case of RNP associations
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because the combination of different nucleotides bears an obvious
specificity-determining potential. While unfolded regions pro-
mote protein–protein assembly and disordered proteins exploit
short motifs to ensure high connectivity68, the reduced nucleotide
alphabet and its complementarity suggest that nature favours
structure to connect RNAs with proteins12.

The observations presented here, from transcriptome-wide to
single molecule analyses, indicate that RNA controls gene reg-
ulation at multiple levels. The correlation between RNA structure
and number of protein interactions could lead to the discovery of
RNA functions that are presently unknown. As demonstrated in
the case of protein aggregation, there are RNA-based mechanisms
that control phase separation and could be important for the
formation of membrane-less organelles. Overall, the complexity
and diversity of protein–RNA networks reported here open the
avenue for the investigation of regulatory processes.

Methods
RNA secondary structure measured by PARS. To profile the secondary structure
of human transcripts, we used PARS data8,69. PARS distinguishes double- and
single-stranded regions using the catalytic activity of two enzymes, RNase V
(able to cut double-stranded nucleotides) and S (able to cut single-stranded
nucleotides)2,3. Nucleotides with a PARS score higher than 0 indicate double-
stranded conformation, while values lower than 0 are considered single
stranded8,69. Transcripts with all nucleotides undetermined were discarded from
our analysis. To measure the PARS structural content, for each transcript, we
normalized by length and computed the fraction of double-stranded regions over
the entire sequence. Given the stepwise function ϑ(x)= 1 for x > 0 and ϑ(x)= 0
otherwise, we computed the fraction of structured domains as:

PARS structural content ¼ 1=l
Xl

i

ϑ log10
VðiÞ
SðiÞ

� �
; ð1Þ

where V(i) and S(i) are the number of double- and single-stranded reads. The top
(larger fraction of double-stranded nucleotides) and bottom (larger fraction of
single-stranded nucleotides) transcripts are listed in Supplementary Data 1.

To measure the secondary structure content of the human transcripts without
the 5′- and 3′- UTR, we retrieved the corresponding locations of the 5′- and 3′-
UTR from Ensembl database (section Database of RNA types) and repeated the
same procedure described above eliminating the PARS values corresponding to
the UTRs.

RNA secondary structure measured by DMS. We obtained secondary structure
data from in vitro DMS modification published by Rouskin et al9. The number of
reads of each transcript was normalized to the highest value (as in Rouskin et al.9

Fig. 2a) and then averaged. Transcripts with available DMS data for <10% of the
entire sequence length were excluded from the analysis.

catRAPID predictions of protein–RNA interactions. The full list of protein–RNA
interactions calculated with catRAPID is available in the RNAct database31. These
interaction predictions were calculated over several months on a shared set of
80 HP BL460c nodes with two Intel Xeon E5-2680 2.70 GHz CPUs and 120 GB of
usable DDR3-1600 memory each, using eight cores per cluster job, corresponding
to 120 years of calculations in a high-throughput cluster. catRAPID omics was used
to compute the interaction propensities of 100 LS and HS against the human RNA-
binding sub-proteome32. catRAPID omics uses large pre-compiled protein libraries
and ranks interactions based on the propensity score, with strong predictive power
as well as presence of motifs and RBDs13. We used catRAPID omiXcore70 to
calculate the interaction propensities of HSP70 mRNA with the ad hoc set of
proteins present in the b-isox precipitate.

RPISeq predictions of protein-RNA interactions. RPISeq11 is a sequence-based
predictor of protein–RNA interactions based on two distinct classifiers, SVM and
RF. RPISeq is available only through webserver submission and for a limited
number of inputs (1 RBP against 100 transcripts per batch run). To circumvent this
practical problem, we used CD-HIT (similarity clustering threshold of 85%) to
select a representative group of 50 distinct RBPs out of our pool of 579 RBPs.
Similarly, we built a set of 100 transcripts (ranked by PARS scores and divided into
two groups, as reported in Results, ‘Highly structured RNAs bind a large amount of
proteins’: highest values or HS, and lowest values or LS). Using both RPISeq
approaches (RPISeq-SVM and RPISeq), we predicted that HS has higher interac-
tion propensities (RPISeq-SVM: HS median: 0.80, LS median: 0.70; RPISeq-RF: HS
median 0.71, LS median: 0.54; Supplementary Table 2). We estimated the inter-
action propensities on the same dataset using catRAPID and observed a similar
trend (HS median: 0.02; LS median: −0.17; Supplementary Fig. 1a).

ENCODE database of protein–RNA interactions. We used human protein–RNA
interactions that were identified through eCLIP experiments in two cell lines, K562
and HepG230, dataset downloaded 5 February 2018. The dataset contains inter-
actions for 118 unique RBPS: 92 proteins in the K562 cell line and 76 in the HepG2
cell line. We used input-normalized eCLIP data (SM input normalization). We
processed the eCLIP data using bioconductor package for R (https://www.
bioconductor.org/) and mapped the genomic locations to UCSC transcript
Identifiers.

To measure the fraction of protein binders for each transcript, we applied
stringent cut-offs [−log10(p value) >5 and −log2(fold_enrichment) >3] as in a
previous work30. The interactions retrieved after applying the above thresholds
represent the top 5% of all interactions in the eCLIP database. The number of
protein binders for the transcripts at the top and bottom PARS are listed in
Supplementary Table 1.

RNA–protein interactions retrieved from POSTAR database. iCLIP, PAR-CLIP,
and HITS-CLIP interaction data were obtained from the POSTAR database
(http://lulab.life.tsinghua.edu.cn/postar/) using POSTAR’s thresholds (p value
<0.01 for Piranha, score <0.01 for CIMS, score >0.5 for PARalyzer) and mapped to
human GENCODE release 27 transcripts (which directly correspond to Ensembl
release 91). POSTAR provides the results of two alternative CLIP-seq data pro-
cessing methods for each CLIP-seq method (two of Piranha, CIMS, and PARaly-
zer). We prioritized Piranha since it had been applied to all three experimental
methods in POSTAR. In total, we retrieved data for 103 experiments on 85 distinct
RBPs (23 studied with HITS-CLIP, 58 with PAR-CLIP and 22 with iCLIP).

RNA secondary structure preference. To measure the RNA structure preference
of the 85 RBPs, we used DMS data (see Methods: RNA secondary structure
measured by DMS) and compared the secondary structural content of the inter-
actome of each RBP with the transcriptome as background. An RBP has (i) high
structured RNA preference when the median secondary structure content of its
transcriptome is higher than that of the background with p value ≤0.01, (ii) ‘low
structured’ RNA preference when the median secondary structure content of its
transcriptome is lower than that of the background with p value ≤0.01 and (iii) ‘no
preference’ for the rest of the cases.

CROSS predictions of RNA secondary structure. We predicted the secondary
structure of transcripts using CROSS (Computational Recognition of Secondary
Structure38. CROSS was developed to perform high-throughput RNA profiling.
The algorithm predicts the structural profile (single- and double-stranded state) at
single-nucleotide resolution using sequence information only and without
sequence length restrictions (scores >0 indicate double-stranded regions). In our
analysis, we used the CROSS icSHAPE method that is trained on icSHAPE data8.

Protein-array experiments on protein–RNA interactions. To find an alternative
link between RNA secondary structure and the number of RBP contacts, we
analysed protein-array data36,71. The GEO entry that we used in our analysis
includes the protein interactomes of eight RNAs. For each RNA, we computed its
number of interactors after applying a threshold on the signal (affinity over
background >5, average of two experiments). Then, we computed the percentage
structural content of the list of RNAs using CROSS. We then defined the per-
centage structural content as the percentage of nucleotides having a positive score
(double-stranded tendency).

PDB analysis of protein–RNA interactions. From the PDB database we retrieved
all structures that contain complexes composed of protein and RNA molecules,
excluding those that contain DNA or RNA/DNA hybrid and with X-ray resolution
≤2.0 Å (exact Search Parameter: ‘Chain Type: there is a Protein and a RNA chain
but not any DNA or Hybrid and Resolution is between 0.0 and 2.0’). These
complexes account for 196 PDB identifiers (Supplementary Table 1). For all
protein–RNA pairs reported in those complexes, we consider as internal contacts
the total number of times that two phosphate atoms of two distinct nucleotides are
in a distance <7 Å and as external contacts the total number of times that a
phosphate atom and a carbon A atom are in a distance <7 Å. We normalized those
numbers by the length of the nucleotide and protein sequence:

Internal contacts ¼ log2
1þPcontactsinternal

Length2RNA

 !
; ð2Þ

External contacts ¼ log2
1þPcontactsexternal

LengthRNA � Lengthprotein

 !
: ð3Þ

Features of proteins that bind ssRNA or dsRNA. Using physicochemical
properties, the multiclever Machine55,72 approache discriminates ssRNA and
dsRNA binders from RBPs. The datasets employed in this analysis comprise
453 ssRNA binders and 390 dsRNA binders, as well as three different RBPs sets.
For each feature, enrichment or depletion of a set is indicated with a specific colour:
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green indicates that ssRNA or dsRNA binders are enriched with respect to the
general RBP sets; red means depletion with respect to the general RBP sets; yellow
indicates no significant differences between the sets (p values <10–5; Fisher’s
exact test).

For sets and results see Data availability section.

HBG1 and HBG2 sequence analysis. We used the CD-HIT algorithm
(http://weizhongli-lab.org/cd-hit/) with similarity threshold of 85% to cluster
RNAs for which DMS (see Methods: RNA secondary structure measured by DMS)
and eCLIP data are available. CD-HIT returned 22 clusters (total 55 transcripts)
meeting the criterion that a cluster should be populated with at least two tran-
scripts. Pearson’s correlation was estimated for each individual cluster. HBG1 and
HBG2 were the two transcripts sharing the highest similarity (99.31%). HBG1 was
found to be significantly more structured (DMS score: 0.04) than HBG2 (DMS
score: 0.07) and in agreement with our observations HBG1 has more eCLIP
interactors than HBG2 (29 and 14, respectively).

Database of RNA types. The gene type information for all RNAs that PARS value
was available was extracted from the Ensembl database version GRCh38.p12
(https://www.ensembl.org/index.html).

Human chaperones. We retrieved the heat-shock protein members from Gene-
cards database (www.genecards.org) searching for keyword criteria: ‘HSP heat
shock’. This returned as a result 1258 entries. Out of these results, we looked for the
term ‘Heat Shock Protein’ in the description and removed entries referring to
‘DNA Heat Shock Proteins’, entries described as ‘Pseudogenes’ and ‘Heat Shock
Transcription Factors’. After the above criteria, the dataset was reduced to 27 gene
names, and for each of those we retrieved from Ensemble, the corresponding UCSC
identifier. As described (see Methods, ENCODE database of protein–RNA inter-
actions (eCLIP)), our compiled database for eCLIP is annotated with UCSC
identifiers. We used the UCSC identifiers of the HSP family to retrieve the fraction
of Proteins that they bind.

cleverGO. We used the cleverGO algorithm35 to analyze GO terms. The algorithm
provides dynamically organized visualization of the GO terms and group-
ing depending on the strength of their internal connections. Separate analyses are
generated for biological process, molecular function and cellular component
ontologies.

Parameter of the GO semantic grouping:
Similar strength threshold: 0.5
Minimal precision: 0.6
Minimal level: 0.3
P value cut-off: 0.01
For sets and results see Data availability section.

BioGRID protein–protein interactions. Protein–protein interaction information
was retrieved from BioGRID, version 3.4.163, which contains 312,474 human non-
redundant interactions (https://thebiogrid.org/). For each protein of interest we
counted the number of unique interactors (physical) as defined by their
Gene Name.

Statistical analysis. To assess whether ssRNAs exhibit different trends from
dsRNAs, we used the Wilcoxon’s test (Mann–Whitney U test). Wilcoxon’s is a
non-parametric test used to compare the mean of two distributions without any
given assumption about them. To compare properties and measure the difference
between RNA sets, we used the KS test. KS test is also a non-parametric test used to
compare the distance between two cumulative distribution functions.

b-isox precipitation of HeLa lysate and MS. For in vitro transcription, linearized
plasmids were purified by phenol/chloroform/isoamylalcohol extraction and
ethanol precipitation. Ampliscribe T7 high Yield kit (Epicenter, Madison, WI) was
used to transcribe 1 μg of template for 4 h at 37°C. The reaction mix was digested
with DNaseI and RNA was purified using MegaClear transcription clean-up kit
(Thermo Fisher Scientific). About 30 million HeLa cells were then trypsinized and
collected. They were washed two times with ice-cold phosphate-buffered saline,
resuspended in 300 µL lysis buffer (20 mM Tris, 150 mM NaCl, 0.5% NP-40, 0.1
mM PMSF, 10% glycerol, phosphatase inhibitor, RNasin (Promega) 1:100) and
incubated at 4 °C for 20 min with gentle shaking. The lysate was centrifuged at
21,000 × g, at 4 °C for 15 min and the supernatant was collected. Protein con-
centration was measured using Bradford reagent and BSA standards and nor-
malized to 2 µg/µL with lysis buffer. B-isox (10 mM stock in dimethyl sulfoxide)
was added to the lysate at 100 µM and the mixture was incubated at 4 °C for 1 h
with gentle shaking. After 1 h, the lysate with b-isox was splitted into three tubes
(3 × 120 µL) and 1 µg HSP70 mRNA, 1 µg BRaf mRNA or the same volume of
water and incubated again at 4 °C for 1 h with gentle shaking. The aggregates were
then collected by centrifugation at 10,000 × g at 4 °C for 10 min. The supernatant
was collected and 2× sample buffer was added. The pellets were washed two times
by being resuspended in 50 µL lysis buffer, vortexed, kept on ice for 10 min and

centrifuged again at 10,000 × g, at 4 °C for 10 min. The washed pellets were
resuspended in 50 µL MS buffer (4% SDS, 100 mM HEPES, pH 7.6, 150 mM NaCl)
and frozen before mass spectrometry analysis (or in 50 µL 2× sample buffer for
sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Coomassie
blue staining). Subsequently, the samples were processed according to the FASP
protocol using 30k filtration units (MRCF0R030, Millipore) for data-dependent
LC-MS/MS analysis with a Q Exactive Plus mass spectrometer.The MS data were
analyzed using the software environment MaxQuant version 1.5.3.30. Proteins
were identified by searching MS and MS/MS data against the human complete
proteome sequences from UniProtKB, version of November 2015, containing
70075 sequences. Carbamido-methylation of cysteines was set as fixed modifica-
tion. N-terminal acetylation and oxidation of methionines were set as variable
modifications. Up to two missed cleavages were allowed. The initial allowed mass
deviation of the precursor ion was up to 4.5 ppm and for the fragment masses it
was up to 20 ppm. The ‘match between runs’ option was enabled to match iden-
tifications across samples within a time window of 2 min of the aligned retention
times. The maximum false peptide and protein discovery rate was set to 0.01.
Protein matching to the reverse database or identified only with modified peptides
were filtered out. Relative protein quantitation was performed using the LFQ
algorithm of the Maxquant with a minimum ratio count of 1. Bioinformatic data
analysis was performed using Perseus (version 1.5.2.6). The proteins with mini-
mum three valid LFQ values in at least one group (background/Hsp70 mRNA/
B-Raf mRNA) of 4 biological replicates were considered as quantified and used for
downstream analysis. Proteins significantly changed in the presence of Hsp70 or
BRaf mRNA compared to the background control (water) were identified by two-
sample t-test at a p cutoff of 0.05.

b-isox contact network and catRAPID predictions. catRAPID omiXcore inte-
grates the interaction propensities of individual protein and RNA fragments into a
unique score that was used to compare predictions with experiments. To this aim,
we computed the AUC ROC of two protein groups: (i) the positive set was com-
prised of all proteins that were significantly released in the presence of HS mRNA
(HSP70; −log(p value) >1.3 and log(RNA/Background) <0) and not significantly
released in the presence of LS mRNA (BRaf; −log(p value) <1.3 or log(RNA/
Background) >0); (ii) as negative set we used all the proteins that did not show any
significant change in the presence of either HS or LS mRNAs (HSP70 or BRaf,
respectively; −log(p value) <1.3) in the b-isox precipitate.

We used a cut-off to define the experimental stringency: (i) highly stringent
cases, all those proteins with minimum fold change in the presence of both the two
mRNAs (−log(p value) <1.3 and |log(RNA/Background)| <0.15), (ii) medium
stringent cases, those that show modest change (−log(p value) <1.3 and |log(RNA/
Background)| <0.30) and (iii) low stringent cases, those that show greater change
(−log(p value) <1.3 and |log(RNA/Background)| <1).

We built the ROC curves and computed the corresponding AUCs for the three
different cases (low stringent, medium stringent, high stringent) and we observed
higher performances when increasing the experimental stringency.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the corresponding
author upon request. The MS data (Fig. 4) are available via ProteomeXchange with
identifier PXD011751. In the figshare repository with https://doi.org/10.6084/m9.
figshare.c.4505759.v2, we report: (i) the physicochemical properties identified by
multicleverMachine55,72 to discriminate ssRNA and dsRNA binders from RBPs; (ii) the
physicochemical properties selected by the cleverMachine55 that discriminate ssRNA and
dsRNA binders; (iii) the sets and results for the GO and term analysis obtained with
cleverGO35.
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