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Phosphorylated lipid-conjugated oligonucleotide
selectively anchors on cell membranes with high
alkaline phosphatase expression
Cheng Jin1,2, Jiaxuan He1, Jianmei Zou1, Wenjing Xuan1, Ting Fu1, Ruowen Wang2 & Weihong Tan1,2,3

Attachment of lipid tails to oligonucleotides has emerged as a powerful technology in

constructing cell membrane-anchorable nucleic acid-based probes. In practice, however,

conventional lipid-conjugated oligonucleotides fail to distinguish among different cell mem-

branes. Herein, a phosphorylated lipid-conjugated oligonucleotide (DNA-lipid-P) is reported

for alkaline phosphatase (ALP)-dependent cell membrane adhesion. In the absence of ALP,

DNA-lipid-P with its poor hydrophobicity shows only weak interaction with cell membrane.

However, in the presence of the highly expressed plasma membrane-associated ALP,

DNA-lipid-P is converted to lipid-conjugated oligonucleotide (DNA-lipid) by enzymatic

dephosphorylation. As a result of such conversion, the generated DNA-lipid has greater

hydrophobicity than DNA-lipid-P and is thus able to insert into cell membranes in situ.

Accordingly, DNA-lipid-P enables selective anchoring on cell membranes with elevated ALP

level. Since elevated ALP level is a critical index of some diseases and even cancers,

DNA-lipid-P holds promise for cell membrane engineering and disease diagnostics at the

molecular level.
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The mammalian cell membrane is a phospholipid bilayer
structure which contains a variety of biological molecules,
notably lipids and proteins1,2. Generally, the negatively

charged moieties are on the cell membrane surface, while the
hydrophobic alkyl chains are in the interior. Taking advantage of
these features, lipid-conjugated oligonucleotides have been
developed to anchor on the cell membrane through hydrophobic
interactions between lipid tail and the hydrophobic area of cell
membrane3,4. This has allowed the engineering of a variety of
functional nucleic acids, such as DNAzymes and aptamers, on the
cell membrane as biosensors or targeting ligands. For example,
metal ion-responsive DNAzyme probes were immobilized on the
cell membrane to monitor the changes of metal ions in cellular
microenvironments5. Also, a cell-specific aptamer selected by
systematic evolution of ligands by exponential enrichment
(SELEX) was anchored on the cell membrane of T-lymphocytes
in order to construct an aptamer-mediated cell recognition sys-
tem for immunotherapy6. Recently, a membrane-anchored DNA
probe was used to monitor dynamic and transient molecular
encounters on the live cell membrane7. Finally, lipid-conjugated
oligonucleotides were anchored on cell membranes to recon-
stitute three-dimensional microtissue arrays by layer-by-layer
DNA-programmed assembly of cells4.

In spite of these advances, conventional lipid-conjugated oli-
gonucleotides suffer from poor selectivity among different cell
membranes. This can be attributed to the following two reasons:
(1) most mammalian cell membranes share similar phospholipid
bilayer structures; and (2) the interaction between lipid tails and
cell membranes is a nonselective physical interaction. To over-
come the lack of selectivity caused by physical hydrophobic
interaction between conventional lipid-conjugated oligonucleo-
tides and different cell membranes, novel lipid tails with mole-
cular recognition capability are needed. Therefore, since strong
hydrophobic interaction between lipid-conjugated oligonucleo-
tides and cell membranes is essential for their insertion into the
cell membrane, we reasoned that the hydrophobicity of lipid-
conjugated oligonucleotide would increase, but only after some
type of selective reaction has taken place, which would, in turn,
result in anchorage of lipid-conjugated oligonucleotides on the
cell membrane of interest in situ.

Carrying this idea forward, we note that ALP is a universal
hydrolyase responsible for the cleavage of phosphate groups
from proteins and nucleic acids8,9. Elevated ALP levels occur in
diabetes, bone diseases and even human cancers10,11. Because of
its highly catalytic activity, ALP has been widely employed to
convert phosphorylated hydrophilic probes to dephosphorylated
hydrophobic molecules. The generated hydrophobic molecules
can then self-assemble into supramolecular nanostructures for
molecular imaging and cancer cell therapy12–16. Remarkably,
ALP is highly expressed on the cell membranes of many cancer
cells14,17,18. Inspired by the aforementioned pioneering works, we
develop a phosphorylated lipid-conjugated oligonucleotide able
to selectively anchor on the cell membranes with high ALP
expression.

To accomplish this, we design and synthesize a DNA-lipid-P
construct which has two negatively charged phosphate groups at
the lipid terminus. As shown in Fig. 1, DNA-lipid-P has three
components, as follows: (1) oligonucleotide (DNA); (2) N,N-
didodecylaniline, acting as a hydrophobic lipid tail to insert into a
cell membrane; and (3) two phosphate groups, acting as substrate
of ALP that enables enzymatic cleavage on the cell membrane
surface. Based on its poor hydrophobicity, DNA-lipid-P
demonstrates weak anchoring on the cell membrane. However,
after enzymatic dephosphorylation of DNA-lipid-P in the
presence of high levels of ALP on the cell membrane surface,
DNA-lipid-P converts to DNA-lipid with greater hydrophobicity.

Such converted DNA-lipid with enhanced hydrophobicity can
then selectively anchor on the cell membrane in situ.

Results
Hydrophobicity-dependent cell membrane anchorage. Con-
ventional lipid-conjugated oligonucleotides are amphiphilic
molecules composed of two segments: negatively charged
oligonucleotides as the hydrophilic moieties and lipids as the
hydrophobic groups19. In order to generate a variety of lipid-
conjugated oligonucleotides with different hydrophobicities,
lipid tails with different alkyl chain lengths were synthesized
(Supplementary Fig. 1) and conjugated with DNA (Fig. 2a and
Supplementary Fig. 3). High-performance liquid chromatography
(HPLC) is a universal tool to evaluate the hydrophobicity of
oligonucleotides by comparing their retention time. A greater
retention time indicates stronger hydrophobicity of oligonucleo-
tides20. As shown in Fig. 2b, the retention times of C6-DNA, C9-
DNA, C12-DNA, and C15-DNA are 19.2, 23.8, 27.4, and 30.8
min, respectively, demonstrating that the longer alkyl chains, i.e.,
with stronger hydrophobicity, in the lipid tail provide stronger
hydrophobicity of lipid-conjugated oligonucleotides.

Next, flow cytometry was used to investigate the binding
affinity of C6-DNA, C9-DNA, C12-DNA, and C15-DNA to the
cell membrane. As shown in Fig. 2c, DNA-treated HepG2 cells
show the weakest fluorescence intensity, whereas C15-DNA-
treated HepG2 cells show the strongest fluorescence intensity. In
addition, confocal fluorescence microscopy imaging of HepG2
cells further indicates that almost all fluorescence signals were
located on the cell membrane (Fig. 2d). This cumulative evidence
shows that the adhesion of lipid-conjugated oligonucleotides to
the cell membrane primarily depends on the hydrophobicity of
the lipid tail. In other words, lipid-conjugated oligonucleotides
with stronger hydrophobicity have tighter anchorage on the cell
membrane.

Synthesis of DNA-lipid-P. Next, we attempted to generate DNA-
lipid-P through DNA synthesis and phosphoramidite chemistry.
However, conventional lipid phosphoramidites lack 4,4′-dime-
thoxytrityl-(DMT-)protected hydroxyl at the terminus of alkyl
chains for further functionalization. Therefore, to synthesize
DNA-lipid-P, a novel lipid phosphoramidite was developed. As
shown in Fig. 3a, this lipid phosphoramidite has two DMT-
protected hydroxyls at the terminus of alkyl chains which enable
further chemical phosphorylation during solid-phase synthesis
(Fig. 3b). As such, after iterative synthesis on a DNA synthesizer,
DNA-lipid-P was generated with acceptable yield (about 38%)
(Supplementary Fig. 7) and high purity (>99%) (Supplementary
Table 3).
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Fig. 1 Schematic of ALP-dependent cell membrane anchorage of DNA-lipid-P
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Fig. 2 Hydrophobicity-dependent cell membrane adhesion of lipid-conjugated oligonucleotides. a Schematic illustration of the structure of C6-DNA, C9-
DNA, C12-DNA and C15-DNA with different alkyl chain lengths in lipid tails. b HPLC chromatograms of DNA, C6-DNA, C9-DNA, C12-DNA and C15-DNA.
c Flow cytometry of HepG2 cells treated with 1 μM TAMRA-labeled DNA, C6-DNA, C9-DNA, C12-DNA or C15-DNA. d Confocal fluorescence microscopy
imaging of HepG2 cells treated with 1 μM TAMRA-labeled C6-DNA, C9-DNA, C12-DNA or C15-DNA. Scale bar is 10 μm
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Enzymatic dephosphorylation of DNA-lipid-P. Having con-
firmed the successful synthesis of DNA-lipid-P, we further
investigated whether it could be converted to DNA-lipid by
ALP (Fig. 4a). As shown in Fig. 4b, the retention times of DNA-
lipid and DNA-lipid-P are 21.8 and 18.0 min, respectively,
suggesting that the phosphorylation of lipid tail does, indeed,
significantly decrease its hydrophobicity. Next, ALP was used to
enzymatically dephosphorylate DNA-lipid-P. Upon incubation
with ALP (0.5 U mL−1), the DNA-lipid-P peak at 18.0 min dis-
appeared; instead, a new DNA peak at 21.8 min was observed
(Fig. 4c and Supplementary Fig. 8). The molecular weight of DNA
at 21.8 min post-dephosphorylation was 6563.0 Da, which is
consistent with the molecular weight of DNA-lipid (6562.6 Da),
demonstrating that DNA-lipid-P had been converted to DNA-
lipid (Fig. 4c and Supplementary Fig. 9). Sodium orthovanadate
(Na3VO4), a competitive inhibitor of ALP, was used to inhibit
ALP activity to provide more proof that only ALP is responsible
for dephosphorylation21. As shown in Fig. 4c and Supplementary
Fig. 10, Na3VO4 (2 mM) completely inhibited the conversion of
DNA-lipid-P to DNA-lipid. In a word, ALP removed the phos-
phate groups from DNA-lipid-P by enzymatic hydrolysis, pro-
ducing DNA-lipid with greater hydrophobicity than DNA-lipid-
P, thereby promoting cell membrane anchorage.

ALP-dependent cell membrane anchorage of DNA-lipid-P.
Encouraged by the enzymatic dephosphorylation of DNA-lipid-P
in homogeneous buffer solution, we further investigated whether
DNA-lipid-P would show ALP-dependent anchorage on the
HepG2 cell membrane with high expression of ALP16,22–24. Flow
cytometry of HepG2 cells treated with DNA-lipid, DNA-lipid-P,
or DNA-lipid-P+Na3VO4 was performed, and the mean
fluorescence intensity was recorded. As shown in Fig. 5b and
Supplementary Fig. 11, DNA-lipid-P-treated HepG2 cells exhibit
fluorescence intensity comparable with that of DNA-lipid-treated
cells. However, poor fluorescence signals were observed in
cells treated with DNA-lipid-P in Na3VO4-containing buffer
solution (DNA-lipid-P+Na3VO4 group). In addition, most of

the fluorescence signal was located on the cell membrane, even 6
h post-incubation (Supplementary Fig. 13). These results
demonstrate that ALP, which is highly expressed on the HepG2
cell membrane, induces the dephosphorylation of DNA-lipid-P
and, subsequently, the anchorage of DNA-lipid on the cell
membrane in situ.

To further evaluate whether the oligonucleotides had anchored
on the external surface of cell membrane after incubation,
Dabcyl-labeled complementary DNA (Dabcyl-cDNA) was
designed to hybridize with the anchored DNA to quench its
fluorescence (Supplementary Fig. 14)7. As shown in Fig. 5d and
Supplementary Fig. 15, decreases of about 70 and 66% in
fluorescence were observed in DNA-lipid and DNA-lipid-P
groups, respectively, suggesting that oligonucleotides had, indeed,
anchored on the external membrane of HepG2 cells. Moreover,
neither DNA-lipid nor DNA-lipid-P was able to aggregate into
micellar nanoparticles in buffer solution in any appreciable way,
suggesting that both DNA-lipid and DNA-lipid-P interacted with
cell membranes as monomers, not as aggregates (Supplementary
Fig. 17). Taken together, it can be concluded that DNA-lipid-P
anchors to the HepG2 cell membrane in an ALP-dependent
manner.

Selective cell membrane anchorage of DNA-lipid-P. Next,
DNA-lipid-P was employed to distinguish different cell mem-
branes with different levels of ALP expression. HepG2 is a
hepatoma cell line with elevated ALP level on the cell membrane,
while U-2 OS is an osteosarcoma cell line with quite low
expression of ALP on the cell membrane25–28. In consistent with
the previous literatures, the measured ALP activity in HepG2 cells
is much higher than that in U-2 OS cells with a multiple of about
145-fold (Fig. 6b, c and Supplementary Table 4). DNA-lipid alone
fails to selectively anchor on either cell membrane. Meanwhile,
DNA-lipid-P-treated HepG2 cells show obviously greater fluor-
escence intensity on the cell membrane compared with that of
DNA-lipid-P-treated U-2 OS cells with ratios of fluorescence
intensity in 1 μM concentration of about 1.9-fold (Fig. 6d, e and
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Supplementary Fig. 19), indicating that DNA-lipid-P can selec-
tively anchor on the surface membrane of cells with elevated ALP
levels.

Discussion
In summary, a phosphorylated lipid-conjugated oligonucleotide
for ALP-dependent cell membrane anchorage was developed by
integrating enzymatic cleavage and DNA-based engineering of
cell membranes. DNA-lipid-P could anchor on cell membranes
expressing a high level of ALP by dephosphorylation-induced
increase of hydrophobicity. In addition, DNA-lipid-P could be
synthesized automatically on a DNA synthesizer with acceptable
yields, well-defined molecular structure and high purity. Notably,
few studies have reported on the functionalization of lipid tails in
lipid-conjugated oligonucleotides. The strategy reported in this
work provides a facile route toward such functionalization and
synthesis and offers a model for the improvement of properties of
conventional lipid-conjugated oligonucleotides.

Methods
Synthesis of lipid phosphoramidite. Three grams 12-bromo-1-dodecanol (11.3
mmol), DIPEA (2.90 g, 22.6 mmol), and p-aminophenol (0.61 g, 5.6 mmol) were
dissolved in 15 mL anhydrous DMF. The reaction was allowed to reflux under the
protection of nitrogen gas and monitored by thin-layer chromatography (TLC).
When the reaction was completed, the mixture was diluted with 100 mL dichlor-
omethane and washed successively with saturated NaHCO3 and brine. The organic
layer was collected and dried by anhydrous Na2SO4. The solvent was removed by
rotary evaporator. After purification through a flash chromatography column, 2.1 g

hydroxylated lipid was obtained (79% yield). ESI-MS calculated molecular weight is
477, and observed molecular weight is 478.

Two grams hydroxylated lipid (4.2 mmol) and 4,4′-dimethoxytrityl chloride
(3.0 g, 8.8 mmol) were dissolved in 30 mL anhydrous pyridine. The reaction was
allowed to stir overnight at room temperature under the protection of nitrogen gas.
Then, the solvent was removed by rotary evaporator. After purification through a
flash chromatography column, 2.18 g DMT-protected lipid was obtained as a
colorless foamed solid (48% yield). 1H NMR (400MHz, acetone-d6): δ 7.46 (d, J=
7.6 Hz, 4 H), 7.32 (d, J= 7.7 Hz, 8 H), 7.29 (d, J= 7.6 Hz, 4 H), 7.21 (t, J= 7.2 Hz,
2 H), 6.87 (d, J= 7.7 Hz, 8 H), 6.76 (s, 1 H), 6.69 (d, J= 8.1 Hz, 2 H), 6.62 (d, J=
7.9 Hz, 2 H), 3.78 (s, 12 H), 3.15 (t, J= 7.1 Hz, 4 H), 3.05 (t, J= 6.2 Hz, 4 H),
1.65–1.57 (m, 4 H), 1.51 (s, 4 H), 1.42–1.35 (m, 4 H), 1.28 (s, 28 H). ESI-MS
calculated molecular weight is 1082, and observed molecular weight is 1082. The
NMR spectra are shown in Supplementary Fig. 40.

DMT-protected lipid (2.10 g, 1.6 mmol) and DIPEA (0.63 g, 4.9 mmol) were
dissolved in 30 mL anhydrous dichloromethane. The reaction bottle was allowed to
cool in an ice bath under the protection of nitrogen gas. Then, 2-cyanoethyl N,N-
diisopropylchlorophosphoramidite (0.58 g, 2.46 mmol) was added dropwise. The
ice bath was removed, and the reaction was stirred for an additional 1 h. When the
reaction was completed, 100 mL dichloromethane was added, and the mixture was
washed successively by saturated NaHCO3, brine, and water. The organic layer was
collected and dried by anhydrous Na2SO4. The solvent was removed by rotary
evaporator. After purification through a flash chromatography column, 1.70 g lipid
phosphoramidite was obtained as a colorless solid (81% yield). 1H NMR (400MHz,
acetone-d6): δ 7.46 (d, J= 7.7 Hz, 4 H), 7.32 (d, J= 8.5 Hz, 8 H), 7.29 (d, J= 7.7 Hz,
4 H), 7.20 (t, J= 7.3 Hz, 2 H), 6.90 (d, J= 9.6 Hz, 2 H), 6.87 (d, J= 8.5 Hz, 8 H),
6.63 (d, J= 8.7 Hz, 2 H), 3.97–3.88 (m, 2 H), 3.77 (s, 14 H), 3.24 (t, J= 7.4 Hz, 4 H),
3.05 (t, J= 6.4 Hz, 4 H), 2.78 (t, J= 6.0 Hz, 2 H), 1.65–1.51 (m, 8 H), 1.39 (d, J=
6.9 Hz, 4 H), 1.30 (d, J= 19.3 Hz, 28 H), 1.19 (d, J= 6.3 Hz, 12 H). 31P NMR (162
MHz, acetone-d6): δ 146.4. 13C NMR (101MHz, acetone-d6): δ 158.59, 145.79,
144.62, 136.58, 129.95, 128.07, 127.59, 126.49, 120.98, 120.90, 113.30, 112.88, 85.57,
63.02, 59.64, 59.16, 58.98, 54.59, 51.24, 43.36, 43.24, 29.84, 29.40, 29.24, 27.17,
26.93, 26.17, 24.07, 24.00, 23.94, 23.86, 19.94. ESI-MS calculated molecular weight
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is 1282, observed molecular weight is 1282. The NMR spectra are shown in
Supplementary Figs. 41–43.

DNA synthesis. All DNA strands used in this work were synthesized on the
PolyGen C12 DNA/RNA solid-phase synthesizer on a 0.1 micromolar scale, using
the corresponding CPG. The labeled phosphoramidites were reacted with CPG for
600 s on the DNA synthesizer. After synthesis, the obtained oligonucleotides were
cleaved and deprotected from the CPG, followed by precipitation in cold ethanol
solution at −20 °C overnight. After centrifugation to remove the supernatant
solution, oligonucleotides were dissolved with 0.1 M triethylamine acetate (TEAA)
and purified by reversed phase HPLC (Agilent 1260 Infinity) using a BioBasic 4
column. Finally, the 4,4′-dimethoxytrityl group was removed from DNA by adding
80% acetic acid aqueous solution and precipitating in cold ethanol again. After
drying in vacuum and desalting, the obtained oligonucleotides were quantified by
measuring their absorbances at 260 nm.

Mass spectrometry analysis of oligonucleotides. After desalting using a NAP-5
column (GE Healthcare), the oligonucleotides (1 nmol) were sent to Sangon Bio-
technology (Shanghai, China) as a powder sample for mass spectrometry analysis.
Analytic conditions were as follows: instrument: Thermo LCQ, ESI-MS, negative
ion mode; solvent condition: hexafluoroisopropanol aqueous solution (HFIPA-
H2O); scanned mass range set from 550 to 1550 (mass-to-charge ratio).

Retention time analysis of oligonucleotides. The corresponding oligonucleotides
were diluted with TBS buffer (10 mM Tris-HCl buffer, pH 7.4, 137 mM NaCl, 4.7
mM KCl and 5 mM MgCl2) to the final concentration of 20 μM (100 μL). Then, the
above solution was injected into the HPLC for retention time analysis. The elution
program was shown in Supplementary Table 2.

Dephosphorylation of DNA-lipid-P in buffer solution. DNA-lipid-P was diluted
with TBS buffer to a final concentration of 20 μM (100 μL). Then, ALP was added
to the above solution. After mixing, the solution was incubated at 37 °C for 10 min
and then 75 °C for 5 min to deactivate ALP.

Flow cytometry assay. HepG2 and U-2 OS cells were purchased from Xiangya
School of Medicine, Central South University, China. Cell lines were authenticated
by short tandem repeat (STR)-profiling. HepG2 and U-2 OS cells were cultured in
6-well plates and maintained in DMEM medium supplemented with 10% fetal
bovine serum and 0.5 mg mL−1 penicillin-streptomycin at 37 °C in 5% CO2. Then,
cells were digested from 6-well plates by using 0.2% EDTA and washed with TBS
buffer twice. Then, about 300 thousand cells were incubated with the corre-
sponding oligonucleotides at 37 °C for 1 h. When incubation was completed, cells
were washed twice with TBS buffer and subjected to flow cytometry. For cDNA
hybridization experiments, TAMRA-labeled DNA-lipid and DNA-lipid-P were
incubated with HepG2 cells for 1 h. After washing twice, cells were incubated with
Dabcyl-cDNA in TBS buffer for 10 min. Then, cells were washed twice again and
subjected to flow cytometry assay. Binding affinity of every group was measured
three times with the same sample.

Measurement of ALP enzymatic activity. After washing with TBS buffer, HepG2
and U-2 OS cells were harvested in cell lysis buffer (20 mM Tris, 150 mM NaCl, 1%
Triton X-100) (Cell lysis buffer for Western and IP without inhibitors, Beyotime
Biotechnology), respectively. The harvested cells were sonicated and centrifuged at
19,314 × g for 5 min. Then, the supernatant was collected for the assays of protein
concentration and ALP activity. ALP activity was assessed at 37 °C using p-
nitrophenyl phosphate as a substrate in 0.1 M diethanolamine (DEA)-HCl buffer
(pH 9.8) containing 5 mM MgCl2 (Alkaline Phosphatase Assay Kit, Beyotime
Biotechnology). Protein concentrations were determined using a BCA Protein
Assay Kit (Beyotime Biotechnology). ALP activity was expressed as nmol min−1

mg−1 protein. ALP enzymatic activity in HepG2 and U-2 OS cells was measured
three times with the same sample.

Confocal fluorescence microscopy imaging assay. HepG2 and U-2 OS cells were
placed in a 35 mm culture dish and cultured for 36 h before the experiment. Cells
were washed twice with TBS buffer. Then, the corresponding oligonucleotides were
incubated with cells in TBS buffer for the desired time. After incubation, cells were
washed twice with TBS buffer and then subjected to confocal fluorescence
microscopy imaging. For co-stain experiments with cell membrane probe (DiO),
the corresponding oligonucleotides were incubated with HepG2 cells for the
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desired time at 37 °C. Then, DiO (1 μM) was added and the cells were incubated for
an additional 15 min. Cells were washed twice with TBS buffer and subjected to
confocal fluorescence microscopy imaging assay. For cDNA hybridization experi-
ments, TAMRA-labeled DNA-lipid-P was incubated with HepG2 cells for 1 h.
After washing twice, cells were incubated with Dabcyl-cDNA in TBS buffer for
10 min. Then, cells were washed twice again and subjected to confocal fluorescence
microscopy imaging assay.

Cell viability assay. The cytotoxicity of oligonucleotides to HepG2 and U-2 OS
cells was evaluated using a 96-well proliferation assay. HepG2 and U-2 OS cells
were placed in 96-well plates and grown to around 30% confluence for 24 h
before the experiment. Then, oligonucleotides in DMEM culture medium
(10% FBS) were added to the above 96-well plates. Cells were cultured for an
additional 24 or 48 h at 37 °C. Finally, CCK-8 was added to each well, and the
96-well plates were subjected to absorption measurement at 450 nm using a
microplate reader.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All data supporting the finding of this study are available with the Article and
its Supplementary Information or from the corresponding author upon the reasonable
request.
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