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Theory of the field-revealed Kitaev spin liquid
Jacob S. Gordon 1, Andrei Catuneanu1, Erik S. Sørensen 2 & Hae-Young Kee1,3

Elementary excitations in entangled states such as quantum spin liquids may exhibit exotic

statistics different from those obeyed by fundamental bosons and fermions. Non-Abelian

anyons exist in a Kitaev spin liquid—the ground state of an exactly solvable model. A

smoking-gun signature of these excitations, namely a half-integer quantized thermal Hall

conductivity, was recently reported in α-RuCl3. While fascinating, a microscopic theory for

this phenomenon remains elusive because the pure Kitaev model cannot display this effect in

an intermediate magnetic field. Here we present a microscopic theory of the Kitaev spin liquid

emerging between the low- and high-field states. Essential to this result is an anti-

ferromagnetic off-diagonal symmetric interaction which allows the Kitaev spin liquid to

protrude from the ferromagnetic Kitaev limit under a magnetic field. This generic model

displays a strong field anisotropy, and we predict a wide spin liquid regime when the field is

perpendicular to the honeycomb plane.
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The Kitaev spin liquid (KSL) is a long-range entangled state
on a honeycomb lattice1, which hosts non-Abelian1–3

anyon excitations in a magnetic field. It has been proposed
that topological quantum computation can be performed via
braiding of non-Abelian anyons4, meaning the KSL is of both
practical, and fundamental interest. However, it has been chal-
lenging to find a solid state realization of Kitaev physics, which
has been the focus of recent research. Several honeycomb mate-
rials have been suggested as KSL candidates, namely Mott insu-
lators with strong spin-orbit coupling (SOC) featuring 4d or 5d
transition metal elements5–9. Proposals so far include the iridates
A2IrO3

5,6,10–13 (A=Li, Na), and α-RuCl314–18. However, all these
candidates exhibit magnetic ordering at low temperatures17,19–26

which masks potential Kitaev physics. Later theoretical27–29 and
experimental30–33 results suggest that α-RuCl3 may enter a field-
induced spin liquid, but there has been no evidence that it is a
chiral spin liquid until a half-integer quantized thermal Hall
conductivity was reported in α-RuCl334; a strong indication35–37

of chiral edge currents of Majorana fermions (MFs) predicted in a
KSL.

While the observation of a half-integer quantized thermal Hall
conductivity is the first experimental evidence of charge-neutral
non-Abelian anyons in spin systems, a microscopic theory
describing their appearance under a field in α-RuCl3 is missing.
This is because, if the dominant interaction in α-RuCl3 is the
ferromagnetic (FM) Kitaev term (as shown through ab-initio
studies25,26 and spin wave analysis36), the FM Kitaev phase is
almost immediately destroyed, and the polarized state appears in
an applied field38–40 with no intervening phase. This can be
contrasted with the antiferromagnetic (AFM) Kitaev model which
hosts a potentially gapless spin liquid under a field, supported by
several numerical studies39–47. However, this intermediate gapless
spin liquid cannot explain the half-integer thermal Hall effect
observed in α-RuCl3. Thus, searching for a chiral spin liquid
offering a half-integer thermal Hall effect in an intermediate
magnetic field remains a challenging task.

Here we present a microscopic theory in which the KSL is
revealed under a magnetic field. The key to our result is an AFM
symmetric off-diagonal Γ interaction, which is essential to stabi-
lize the otherwise fragile KSL under intermediate fields. The
intermediate phase emerges between the low-field and high-field
phases as Γ increases, and is adiabatically connected to the pure
FM Kitaev phase at zero field, providing evidence that it is the
KSL. We introduce a microscopic theory with a brief review of the
generic nearest neighbor spin model for spin-orbit coupled
honeycomb materials, appropriate for α-RuCl3.

Results
Model. The nearest neighbor model has been derived in
refs. 5,12,13 based on a strong coupling expansion of the Kanamori
Hamiltonian. The combination of crystal field splitting and strong
spin-orbit coupling leads to a model based on pseudospin-12 local
moments with bond-dependent interactions. On a bond of type
γ∈ {x, y, z} with sites j, k, the nearest-neighbor spin Hamiltonian
is taken to be of the J-K-Γ-Γ′ form13

Hγ
jk ¼ JSj � Sk þ KSγj S

γ
k þ Γ Sαj S

β
k þ Sβj S

α
k

� �

þ Γ′ Sαj S
γ
k þ Sγj S

α
k þ Sβj S

γ
k þ Sγj S

β
k

� � ; ð1Þ

where α, β are the remaining spin components in {x, y, z}/{γ}. The
spin components are directed along the cubic axes of the
underlying ligand octahedra, so the honeycomb layer lies in a
plane perpendicular to the [111] spin direction as shown in
Fig. 1a. A small Γ′ is present due to trigonal distortion of ligand
octahedra in the real material. Here we omit the Heisenberg J for

simplicity, and its effects are discussed later. Earlier
studies14,26,29,48,49 noted that the Γ interaction with AFM sign
may play an important role near the FM Kitaev regime to stabilize
the spin liquid48. Since α-RuCl3 has a dominant FM Kitaev
interaction with AFM Γ, we focus on Γ/K∈ [−1, 0] with Γ > 0 and
K < 0. The remaining parameters of the Hamiltonian are
expressed in units of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ Γ2

p
� 1.

To describe the effect of a magnetic field we consider a Zeeman
term with isotropic g-factor

HZ ¼ �h
X
j

bh � Sj; ð2Þ

where h is the magnetic field strength, and bh is a unit vector
specifying the field direction. The effect of an anisotropic g-factor
is discussed later. In order to make a connection with the thermal
Hall measurements34 we focus on field directions in the âĉ� plane
spanned by ½11�2� and [111]. The direction of the field in this
plane is parameterized by an angle θ from the [111] direction, as
shown in Fig. 1a.

Exact diagonalization. Our main results are shown in Fig. 1b, c.
Phase diagrams in the Γ/K− h plane are shown for tilting angles
(b) θ= 5° and (c) 90° obtained through numerical exact diag-
onalization (ED) with fixed Γ′=−0.03 and J= 0. Details of the
24-site honeycomb cluster used are discussed in Supplementary
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Fig. 1 ED phase diagrams. a The angle θ is measured from [111] towards the

in-plane ½11�2� direction. Phase diagrams in the Γ/K− h plane (FM Kitaev
and AFM Γ) obtained using ED on the 24-site honeycomb cluster are
shown for b θ= 5° and c θ= 90° at a fixed Γ′=−0.03 in units offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K2 þ Γ2
p

� 1. Circular and triangular markers represent peaks in the
susceptibilities χΓ/K and χh, respectively. The intermediate-field KSL is
adiabatically connected to the pure K limit at h= 0, as indicated by a black
arrow inside the KSL. Colors represent the expectation value of the
plaquette operator 〈Wp〉 in the ZZ and KSL, but not in the PS for clarity,
which is discussed further in the main text. A sequence of phase transitions
from ZZ order to the KSL, and finally the PS is found for θ= 5°, except near
the pure K limit. The green line in b at Γ/K≃−0.37 denotes a
representative slice where χh and S(q) are plotted in Fig. 2
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Note 1. Peaks in the susceptibilities χΓ=K ¼ �∂2Γ=Ke0 and

χh ¼ �∂2he0, where e0= E0/N is the ground state energy density,
are depicted as circles and triangles, respectively. There are three
phases in the phase space, namely, zigzag (ZZ) magnetic order at
low fields, the KSL, and a polarized state (PS) at high fields.
Remarkably, we find an intermediate KSL sitting between ZZ
order and the PS which is adiabatically connected to the pure K
limit at h= 0.

The intermediate KSL begins from the pure FM K regime, i.e.,
bottom right corner of the phase diagram, which is unstable to a
small magnetic field. However, it is stabilized by the AFM Γ term
and extends above the ZZ phase in a magnetic field. For moderate
Γ/K appropriate for α-RuCl3—for example, Γ/K≃−0.37 indicated
by the green dashed line in Fig. 1b—we observe two phase
transitions from ZZ order to the KSL, and then from KSL to the
PS as the field increases. Close to the Kitaev limit, the peak
positions of the magnetic (χh) and Γ/K (χΓ/K) susceptibilities agree
well along the phase boundaries between the KSL and PS for each
direction. At larger Γ/|K| the singular points determining the
phase boundaries start to deviate for θ= 5°, as seen through
differing positions of circular and triangular markers in Fig. 1b.
However, the anomalous peaks in χΓ/K in this region shrink
significantly while the peaks in χh retain their sharpness. Since
these peaks are not seen in χh, and there are strong variations
within the PS in the quantities discussed below, we determine the
KSL-PS phase boundary based on peaks in χh and attribute peaks
in χΓ/K to large fluctuations above the KSL.

Interestingly, with a constant Γ′ both the ZZ and KSL phases
widen with increasing Γ as suggested by the curvature of the
transition line in Fig. 1b. This behavior survives for further tilting
of the magnetic field away from [111] with increased ½11�2� in-
plane component. However, the window of the KSL rapidly
diminishes with tilting angle until a direct transition between ZZ
order and the PS appears at large Γ/|K|, as shown in Fig. 1c for a
½11�2� field. The critical field required to destroy the ZZ ordering
drops dramatically with increasing θ. With an estimate of the
energy unit as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ Γ2

p
� 7meV, h= 0.1 corresponds to a field

of ~10 T. This is within the range of fields required to kill the ZZ
order in α-RuCl334.

Since the pure Kitaev limit at h= 0 involves the fractionaliza-
tion of spins into itinerant MFs and Z2 fluxes, another quantity
that characterizes the KSL is the plaquette operator Wp

1

Wp ¼ 26Sx1S
y
2S

z
3S

x
4S

y
5S

z
6; ð3Þ

defined on sites belonging to a hexagonal plaquette p. The pure
KSL with h= Γ= Γ′= 0 (bottom right corner of the phase
diagram) is a flux-free state with Wp=+1 on all plaquettes. A
finite Γ, Γ′ or h spoils the exact solubility of the Kitaev model, as
they generate interactions among the MFs and Z2 fluxes. Despite
the fact that plaquette operators are no longer conserved
quantities 〈Wp〉 remains positive in the KSL, denoted by red
colors in Fig. 1. At the same time the plaquette expectation value
is negative in the ZZ ordered phase, as denoted by blue colors in
Fig. 1, distinguishing it from the neighboring KSL. Due to this
sign difference, the phase boundary between KSL and ZZ is
accompanied by a vanishing 〈Wp〉 and seen through the rapid
color change in Fig. 1. This is a generic feature which also appears
for an in-plane field of θ= 90°. Further details of the negative
plaquette expectation in the ZZ phase can be found in
Supplementary Note 3.

To confirm the ZZ magnetically ordered phase at low field, and
the sequence of phase transitions, we compute the spin structure
factor S(q) for increasing values of h along the green dashed line
of Fig. 1b where Γ/K≃−0.37. For low fields of h < hc1, where hc1
is the position of the first transition, S(q) displays sharp features

at the M-point of the Brillouin zone (BZ) consistent with ZZ
magnetic order as shown in Fig. 2a. Within the intermediate
phase, hc1 < h < hc2 where hc2 is the position of the second
transition, S(q) is diffuse with a soft peak at the Γ-point.
Interestingly, an increased intensity at the Γ-point was observed
in α-RuCl3 under fields in a recent neutron scattering measure-
ment50. As expected, the PS exhibits a sharp feature at the Γ-point
for h > hc2. Note that the magnetization m=−∂he0 eventually
saturates at 1

2 in the PS at a field larger than hc2, as shown in
Fig. 2b indicating large spin fluctuations inside the PS.

Competition between ZZ and KSL. ZZ ordering at low fields can
be traced back to the presence of other small interactions, such as
such as a FM Γ′5,12,13,27 and/or FM (J) and AFM third-nearest
neighbor (J3) Heisenberg interactions51. We have considered Γ′ as
a minimal nearest-neighbor perturbation away from the K− Γ
model which induces ZZ order at low fields. The combination of
J < 0 and J3 > 0 has a similar effect to Γ′ in that their combination
can also induce ZZ ordering13,51. Inclusion of these small terms
would not alter our main results as they further stabilize the ZZ
phase. However, the combined strength of terms stabilizing the
ZZ order should be small enough to maintain the
intermediate KSL.

The particular values of Γ′ used in our calculations were chosen
based on the following criteria. For Γ′= 0 the phase to the left of
the KSL at larger Γ/|K| is non-magnetic, as discussed in the
Underlying Phase Diagram section, and develops ZZ magnetic
order as Γ′ < 0 is introduced. The magnitude |Γ′| was chosen to be
the smallest value such that ZZ magnetic order develops within
this phase. If |Γ′| becomes too large then the KSL at h= 0 will be
wiped out entirely. To quantify this, we have calculated χΓ/K with
ED on a 24-site honeycomb cluster near the Kitaev limit at h= 0
for different values of Γ′. As |Γ′| increases, the ZZ ordered phase
expands while the KSL shrinks at h= 0 as shown in Fig. 3a. The
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Fig. 2 Sequence of phases in a magnetic field. a Spin structure factor S(q)
within the ZZ, KSL, and PS phases. b χh ¼ �∂2he0 and magnetization m=
−∂he0 as a function of a 5° tilted field are shown for a fixed Γ/K≃−0.37,
indicated by a green dashed line in Fig. 1b. The field strengths hc1 and hc2 are
the critical values at which the transitions from the ZZ to KSL, and the KSL
to PS occur, respectively
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KSL at h= 0 is found to disappear entirely beyond Γ′c ’ �0:1.
Evolution of the intermediate-field KSL with Γ′ is seen in Fig. 3b
through the magnetic susceptibility χh in a 5° field at Γ/K=−1,
where the intermediate phase is largest with Γ′=−0.03.
Emergence of the intermediate-field KSL depends crucially on
the survival of the pure Kitaev phase at h= 0, because χh shows a
single transition from ZZ to PS beyond Γ′c ’ �0:1. Quantifying
the strengths of Γ′, J, J3 required for an intermediate KSL is left for
a detailed future study.

DMRG. In order to check the dependence of this result on cluster
geometry, we have also studied a two-leg honeycomb strip using
density-matrix renormalization group (DMRG). We denote the
total number of sites in the strip by N. This geometry has recently
been used to study the Kitaev-Heisenberg model52, where it was
found that its phase diagram displays a striking similarity with
that of the 2D honeycomb lattice. For the K− Γ model we find
quantitative differences in the positions of the phase boundaries
due to the cluster connectivity, but the main result of an emerging
intermediate-field KSL remains the same. Further rationale for
this choice of geometry is discussed in Supplementary Note 1.

Phase diagrams in the Γ/K− h plane with N= 200 and open
boundary conditions (OBC) for tilting angles θ= 0°, 5°, 10°, and
90° with fixed Γ′=−0.1 and J= 0 are shown in Fig. 4. The phase
boundaries in Fig. 4, determined by peaks in χh or χΓ/K, are
represented by red lines. We find a qualitative similarity with the
ED phase diagram of Fig. 1, showing a region of KSL which
extends above the ZZ ordered phase and below the PS under a
magnetic field. The KSL phase space shrinks rapidly as the in-
plane component of the field becomes larger. As found with ED
on the 24-site honeycomb cluster, the intermediate KSL at large
Γ/|K| disappears as the field tilts towards θ= 90°, leaving a single
direct transition from ZZ to the PS. Crucially, a small region of
KSL remains intact at smaller Γ/|K|. Thus, with the in-plane ½11�2�
field the KSL is confined to a narrow range of low fields near the
pure FM Kitaev limit. The same qualitative behavior is seen for
another in-plane field direction of ½�110� only for the 24-site

honeycomb cluster used with ED. On the two-leg honeycomb
strip the KSL (in the region Γ/|K| < Γ/|K|c where Γ/|K|c is the
transition point between ZZ and KSL at h= 0) is immediately
destroyed by any non-zero field in this direction, as shown in
Supplementary Fig. 3. While this is consistent with the
observation that there is no Z2 topological order when a certain
mirror symmetry is preserved46, the phase boundary is an artifact
of the strip geometry.

The first row in Fig. 4 shows Sxj S
x
k

D E
at separation k− j= 50

along the leg of the strip with maximum correlations as a function
of field and Γ/K for different tilting angles of the field in the âĉ�

plane. As expected, correlations are appreciable within the
magnetically ordered and polarized states. The KSL phase is
clearly distinguished from the surrounding ordered states by
nearly vanishing SxSxh i (¼ SySyh i) spin correlations. However,
spin-spin correlations need not be identically zero except at h= 0
due to a component of the spin aligning with the field, which is
more pronounced when h is large. The PS away from the pure
Kitaev region shows large spin fluctuations, which is similar to
the 24-site ED result where saturation of the magnetization
occurs at higher fields above hc2, and small peaks in χΓ/K only
appear above the KSL-PS phase boundary.

In the bottom row of Fig. 4 we show plaquette-plaquette

correlations WpWp′

D E
at separation p′− p= 30. Close to the

Kitaev limit these correlations are nearly unity, consistent with
〈Wp〉=+1 in the K limit, and decrease with increasing field and
Γ/|K| within the KSL. This is expected because the magnetic field,
as well as Γ, Γ′, introduces interactions among the MF and flux
degrees of freedom. Interestingly, the plaquette–plaquette corre-

lations, which approach Wp

D E2
in the KSL at large separations,

show large fluctuations in the PS above the KSL phase for 5° and
10° tilting angles. We note that these fluctuations in the PS for
θ= 5° and 10° disappear above the transition line between the
KSL and PS determined by θ= 0°.

A representative cut of the phase diagram is presented in
Fig. 5c, d as a function of a 5° tilted field with Γ/K=−0.325,
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Fig. 3 Effect of Γ′ on the intermediate phase. The role of Γ′ is illustrated through cuts of the susceptibilities for increasing values of |Γ′| as calculated with
ED on a 24-site honeycomb cluster. a The susceptibility χΓ/K is shown at h= 0 near the Kitaev limit for Γ′=−0.03, −0.07, and −0.11. Peak values of χΓ/K
are scaled to the same number and are offset for visibility. With increasing |Γ′| the ZZ phase is seen to expand as the KSL shrinks, and the KSL disappears
entirely beyond Γ′c ’ �0:1. b The magnetic susceptibility χh is shown for a 5° tilted field at Γ/K=−1 where the intermediate phase is largest for Γ′=
−0.03. Values of χh are not scaled, but simply offset for visibility. A similar trend is found where the size of the intermediate phase shrinks with increasing |
Γ′|. The intermediate KSL disappears beyond Γ′c ’ �0:1 where the KSL at h= 0 is overtaken by ZZ magnetic order. Vertical dashed lines represent the
position of phase transitions
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slice where certain quantities are plotted in Fig. 5 for a θ= 5° tilted field
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Fig. 5 Evolving correlations in a magnetic field. With Γ/K=−0.325 and Γ′=−0.1, quantities computed in the two-leg honeycomb strip with DMRG are
plotted as a function of a 5° field for system sizes N= 100, 200, 300, 400 and infinite DMRG (iDMRG) as solid red line. a χh displays two peaks which
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display a finite value consistent with a KSL in field. Spin and plaquette correlations are evaluated at the largest separation accessible in each cluster
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which corresponds to the green line in Fig. 4b. With increasing
field, a sequence of transitions from ZZ order to the KSL and
finally the PS are evidenced by strong singular behavior in χh in
Fig. 5a. The transition between ZZ order and the KSL is
accompanied by a sharp increase in plaquette–plaquette correla-
tions shown in Fig. 5b, and a larger value of 〈Wp〉 accordingly.

Note that the maximum value of WpWp′

D E
’ 0:1 corresponds to

〈Wp〉≃ 0.32, as WpWp′

D E
approaches Wp

D E2
at large distances.

Components SxSxh i and SzSzh i of the spin–spin correlators are
plotted in Fig. 5c, d. While the SxSxh i correlations are small in the
KSL, the SzSzh i correlations are slightly larger. This is similar to
the honeycomb cluster with ED, where a finite magnetization m is
present in the KSL phase, as shown in Fig. 2b. The source of
asymmetry between the Sx and Sz components of the spin is two-
fold. One is due to the two-leg honeycomb strip connectivity, and
the second is the finite tilting of the magnetic field which further
enhances their difference. The preceding properties are shown for
N= 100, 200, 300, 400, and iDMRG in Fig. 5 with different
colors, and are seen to be relatively insensitive to the system size.

Underlying phase diagram. To understand the microscopic
mechanism of the emerging KSL, we study the K− Γ model
without Γ′—i.e., in the absence of small interactions that induce
ZZ order—at θ= 0. At zero field, there is a finite region of the
KSL when the AFM off-diagonal symmetric Γ interaction is

introduced. Then in zero field at Γ/Kc there is a transition from
the KSL to another possible spin liquid dubbed KΓ spin liquid
(KΓSL)28. Components of the spin-spin correlators, SxSxh i and
SzSzh i shown in Fig. 6a, b, demonstrate a lack of magnetic order
in the KSL and KΓSL at h= 0, and finite correlations building
with increasing field.

The KΓSL is characterized by a finite hWpWp′i like the KSL, but
with negative 〈Wp〉 as shown in Fig. 6c, d. While 〈Wp〉 is positive
in the KSL, a negative 〈Wp〉 in the KΓSL indicates a phase with a
finite flux density. Strikingly, when the field is applied along the
[111] direction the KSL sits above the KΓSL for a fixed Γ/K,
leading to two phase transitions with increasing field: KΓSL→
KSL→ PS. The KΓSL is extremely fragile to additional interac-
tions that stabilize ZZ order. For example, when a small Γ′
interaction is introduced the KΓSL is replaced by the ZZ ordered
phase as shown in Fig. 1. Importantly, the ZZ order does not
extend all the way to the Kitaev limit and leaves a finite region of
the KSL at zero field.

Discussion
Here we presented a microscopic theory, based on dominant Kitaev
and off-diagonal symmetric Γ interactions, which offers an inter-
mediate KSL emerging between the low-field and high-field states.
The low-field ZZ state is induced via small perturbations beyond K
and Γ, such as Γ′ due to trigonal distortion of ligand octahedra. Our
numerical data indicates that this additional interaction can wipe
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Fig. 6 Underlying phase diagram. Underlying phase diagram with Γ′= 0 and θ= 0 in the Γ/K− h plane as calculated with DRMG for N= 200 and OBC.

Spin–spin correlations a Sxj S
x
k

D E
and b Szj S

z
k

D E
at k− j= 50 are absent within the KΓSL and the KSL phases at h= 0, and develop under the field. Phase

boundaries, determined by smoothed fits to the peaks of of χh and χΓ/K, are drawn as red lines, and separate the KΓSL and the PS from the intervening KSL.

c Plaquette expectation 〈Wp〉 differentiates the KΓSL and the KSL as it changes sign across the transition. d Plaquette–plaquette correlations WpWp′
� �

at

p′− p= 30 are small in the PS and become appreciable within the KΓSL and KSL, approaching Wp

� �2
in the limit of large separation
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out the KSL phase (including the pure Kitaev limit at h= 0) when
its strength is too large, leading to a single transition between ZZ
and PS under a magnetic field. Experimental reports of a half-
quantized thermal Hall conductivity in α-RuCl3 imply that the
strengths of interactions beyond K and Γ are small enough to leave
the intermediate KSL intact, yet finite to induce the ZZ order. In the
absence of these interactions the K-Γ model exhibits another pos-
sible spin liquid called the KΓSL, which is then replaced by the ZZ
due to these small interactions. It is possible that a region of the
KΓSL survives with smaller Γ′ while developing ZZ order, resulting
in two spin liquids between ZZ and PS under a field. We leave these
questions for a future study.

As the magnetic field is tilted away from the out-of-plane [111]
direction towards the in-plane ½11�2� direction the intermediate KSL
region shrinks rapidly—independent of the strength of Γ′ and for
both cluster shapes studied here. What remains is a small inter-
mediate phase at fields an order of magnitude smaller for moderate
Γ/|K|, showing a dramatic magnetic anisotropy. Considering an
anisotropic g-factor, due to a combination of the layered structure
and SOC, the magnetic anisotropy is further enhanced by the ratio
between the in-plane gab and the out-of-plane gc� components.
While smaller tilting angles are less effective at destroying the ZZ
magnetic order, they offer a much larger region of the KSL. To
enlarge the intermediate KSL phase, we therefore propose that a
field should be applied at smaller tilting angles. Further thermal
Hall transport measurements for different in-plane components
would be desirable in order to test our microscopic theory.

There are several aspects of this work that require further

study. The first is the presence of large fluctuations in WpWp′

D E

and Sxj S
x
k

D E
just above the KSL phase into the PS, which is also

seen by χΓ/K and an unsaturated magnetization in the 24-site
honeycomb cluster. This is suggestive of a non-trivial crossover
region into the fully polarized phase. We also note the presence of
a non-magnetic phase dubbed KΓSL in the underlying phase
diagram of the K-Γ model on the two-leg geometry next to the
KSL phase. The KΓSL at zero field is differentiated from the KSL

by a sharp drop from 〈Wp〉= 1 in the KSL to Wp

D E
’ � 1

3 in the

KΓSL, accompanied by a singular χΓ/K. Nature of the
KΓSL, numerical studies of this phase in the honeycomb geo-
metry, and the transition to the KSL are excellent subjects for
future study. For instance, studies of possible vortex patterns due
to strong interactions among MFs and Z2 vortices would be
highly interesting to pursue.

Methods
Details of simulations. Numerical exact diagonalization (ED), and density matrix
renormalization group (DMRG) are used to study the parameter space appropriate
for α-RuCl3. In the ED and DMRG calculations, we consider the two-leg honey-
comb strip geometry, and the 24-site honeycomb shape in ED only, both shown in
Supplementary Fig. 1. The choice of these clusters is discussed in Supplementary
Note 1, and is related to hidden points of SU(2) symmetry present in the 2D limit.

ED was performed on the 24-site honeycomb cluster with periodic boundary
conditions, where the Lanczos method was used to obtain the lowest-lying
eigenvalues and eigenvectors of the Hamiltonian in Eq. (1).

Part of the numerical calculations were performed using the ITensor library
(http://itensor.orghttp://itensor.org) typically with a target precision of 10−11 using
up to 1000 states. All DMRG calculations were performed using open boundary
conditions (OBC). The iDMRG calculations were performed using a target
precision of 5 × 10−11 and up to 1000 states.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Code availability
The code used to generate the data used in this study is available from the corresponding
author upon reasonable request.
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