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Lnc-TALC promotes O6-methylguanine-DNA
methyltransferase expression via regulating the
c-Met pathway by competitively binding with
miR-20b-3p
Pengfei Wu1,3, Jinquan Cai1,4, Qun Chen1,3, Bo Han1, Xiangqi Meng1, Yansheng Li2, Ziwei Li1, Ruijia Wang1,

Lin Lin1, Chunbin Duan1, Chunsheng Kang2,4 & Chuanlu Jiang1,4

Long noncoding RNAs (lncRNAs) have emerged as new regulatory molecules implicated in

diverse biological processes, including therapeutic resistance. However, the mechanisms

underlying lncRNA-mediated temozolomide (TMZ) resistance in glioblastoma (GBM) remain

largely unknown. To illustrate the role of lncRNA in TMZ resistance, we induce TMZ-

resistant GBM cells, perform a lncRNA microarray of the parental and TMZ-resistant cells,

and find an unreported lncRNA in GBM, lnc-TALC (temozolomide-associated lncRNA in

glioblastoma recurrence), correlated with TMZ resistance via competitively binding miR-20b-

3p to facilitate c-Met expression. A phosphorylated AKT/FOXO3 axis regulated lnc-TALC

expression in TMZ-resistant GBM cells. Furthermore, lnc-TALC increased MGMT expression

by mediating the acetylation of H3K9, H3K27 and H3K36 in MGMT promoter regions

through the c-Met/Stat3/p300 axis. In clinical patients, lnc-TALC is required for TMZ

resistance and GBM recurrence. Our results reveal that lnc-TALC in GBM could serve as a

therapeutic target to overcome TMZ resistance, enhancing the clinical benefits of TMZ

chemotherapy.
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LncRNAs have emerged as an abundant and functionally
diverse species of ncRNAs1,2, which can mediate base-
pairing interactions that guide lncRNA-containing com-

plexes to specific RNA or DNA target sites3–5. LncRNAs have
been described as pseudogenes that compete for miRNA binding,
playing widespread roles in gene regulation and cellular
processes2,6. For example, LINC00673 acts as a tumor suppressor,
diminishing SRC-ERK oncogenic signaling. However, a G>A
change at rs1111655237 in exon 4 of LINC00673 creates a target
site for miR-1231 binding, decreases PTPN11 ubiquitination,
attenuates the effect of LINC00673 in an allele-specific manner,
conferring susceptibility to tumorigenesis7, and indicating the
importance of embedded miRNAs in lncRNAs regulating onco-
genic signaling pathways. Emerging evidence has revealed that
lncRNAs, as competitive RNAs6,8, mediate postoperative treat-
ment resistance in some cancers9. Lnc-RI, a radiation-inducible
lncRNA molecule involved in radiation-induced DNA damage
response, acted as a ceRNA to stabilize RAD51 mRNA via
competitively binding with miR-193a-3p and releasing of its
inhibition on RAD51 expression9. Thus, the transcriptome pro-
filing alteration of lncRNAs still needs to be illustrated in resistant
tumor cells.

Glioblastoma (GBM) is the most common malignant primary
brain cancer in adults, with a median survival of 14.6 months
upon diagnosis10,11, and a 5-year survival rate of only 5.5%12.
This poor prognosis is due to therapeutic resistance and tumor
recurrence following surgical removal, and the treatment of such
brain tumors remains a challenge13. The alkylating drug TMZ is
routinely used in brain tumor patients10,14, but the major hurdle
in GBM treatment is the development of resistance to TMZ
chemotherapy. The lncRNA MALAT1 can promote TMZ resis-
tance in GBM, and targeting MALAT1 sensitizes GBM to TMZ.
The lncRNA-regulated TMZ-resistant mechanisms in GBM
represent a crucial nodal point for therapeutic intervention15–17.
Thus, it is urgent to elucidate the underlying lncRNA-based
mechanisms of TMZ resistance in GBM patients.

Receptor protein tyrosine kinases (RTKs) are essential enzymes
in cellular signaling processes that can regulate cell growth, dif-
ferentiation, migration, and metabolism18. Activation of c-Met
enhances GBM cell migration and tumor cell resistance in
response to DNA damage19,20. In cancer cells, aberrant c-Met axis
activation, closely related to c-Met gene mutations, over-
expression, and amplification, promotes tumor development and
progression by stimulating the PI3K/AKT21, Ras/MAPK22, JAK/
STAT23, SRC24, and Wnt/β-catenin25 signaling pathways, among
others26,27. Therefore, c-Met and its associated signaling path-
ways are clinically important therapeutic targets28. Few studies
have investigated how the c-Met signaling pathway interacts with
lncRNAs to contribute to TMZ resistance in GBM.

The DNA repair enzyme O6-methylguanine-DNA methyl-
transferase (MGMT) expression is lost in TMZ-responsive glio-
mas and is highly expressed in TMZ-resistant gliomas29.
Alkylating chemotherapy is a mainstay in the treatment of GBM
despite primary and acquired resistance30. MGMT efficiently
removes alkylating lesions at the O6 position of guanine and
repairs the DNA damage induced by DNA alkylators or chlor-
oethylating agents, thereby causing treatment failure31. Although
higher MGMT expression levels are accompanied by the devel-
opment of TMZ resistance in GBM cells32, the mechanism of
MGMT upregulation in TMZ-resistant GBM cells has not been
clarified.

In the present study, we investigate the contribution of
lncRNAs by profiling alterations in TMZ resistance and explore
the therapeutic implications of the lncRNA lnc-TALC in TMZ-
resistant GBM cells. Our results show that lnc-TALC regulates the
c-Met signaling pathway via competitively binding to miR-20b-3p

and activating the Stat3/p300 complex to promote MGMT
expression and TMZ resistance by modulating the acetylation of
histone H3.

Results
Lnc-TALC is highly expressed in TMZ-resistant GBM cells.
Patient-derived GBM cells 551W and HG7 were isolated from
discarded GBM specimens. Four types of GBM cells, including
LN229, U251, 551W, and HG7, were exposed to increasing TMZ
concentrations and underwent cycles of TMZ treatment for
5 months. The GBM cells acquired TMZ resistance and were
named 229R, 251R, 551WR, and HG7R (Fig. 1a). Compared with
the parental cells, the TMZ-resistant cells exhibited a poor response
to TMZ, as illustrated by an increased the half maximal inhibitory
concentration (IC50), enhanced independent growth ability and
decreased apoptosis under TMZ treatment (Supplementary
Fig. 1a–c). The lncRNA microarrays were performed to compare
lncRNA expression profiles between LN229 and 229R cells, and the
top 30 up- or downregulated lncRNAs of TMZ-resistant GBM cells
out of the entire genome were identified; the associations with
mRNAs are shown in the circos plot (Fig. 1b). The heatmap shows
the expression levels of the top 30 up- or downregulated lncRNAs
(Fig. 1c). Single-sample gene set enrichment analysis (ssGSEA)
illustrated that the top 30 upregulated lncRNAs were associated
with the Gene Ontology (GO) and KEGG pathways enriched in the
regulation of DNA repair and the MAPK signaling pathway, among
others (Fig. 1d). The top 10 upregulated lncRNAs between LN229
and 229R cells are listed in the volcano plot (Fig. 1e), and were
subjected to validation by quantitative real time polymerase chain
reaction (qRT-PCR) using four groups of parental and resistant
GBM cells (Supplementary Fig. 2a). RNAi was then used to knock
down the 10 selected lncRNAs for further loss-of-function analysis
in the TMZ-resistant GBM cells (Supplementary Fig. 2b). Knock-
down of lnc-TALC (ENST00000424980.5) and NR_028415 both
inhibited the TMZ resistance in two types of resistant cells (Fig. 2a).
Lnc-TALC is composed of two exons with a full length of 418 nt
determined by RACE (rapid amplification of cDNA ends) assay
(Supplementary Fig. 2c). The non-coding nature of lnc-TALC was
confirmed by coding-potential analysis (Supplementary Fig. 2d, e).
To further elucidate the functional role of lnc-TALC in TMZ
resistance, we observed that lnc-TALC was correlated with the
ERK1 and ERK2 cascade, DNA repair, and the MAPK signaling
pathway through GO and KEGG pathway analysis (Fig. 2b). We
stably knocked down lnc-TALC in TMZ-resistant cells or over-
expressed lnc-TALC in parental cells using the CRISPR-Cas9 system
or LV-lnc-TALC, respectively (Supplementary Fig. 2f, g). Knock-
down of lnc-TALC in resistant GBM cells significantly decreased
cell viability, promoted cell apoptosis, and inhibited cell colony
formation and proliferation after TMZ treatment (Fig. 2c–f).
Overexpression of lnc-TALC in LN229 and HG7 cells led to a
marked increase in TMZ IC50, inhibited cell apoptosis, and pro-
moted cell proliferation and colony formation after TMZ treatment
(Supplementary Fig. 2h–k). In addition, knockdown of lnc-TALC in
resistant GBM cells obviously inhibited the phosphorylation of
Stat3, AKT, and MAPK in TMZ-resistant cells. The overexpression
of lnc-TALC in LN229 and HG7 cells promoted the phosphoryla-
tion of Stat3, AKT, and MAPK (Fig. 2g), suggesting that lnc-TALC
might function as part of the tyrosine kinase signaling pathway,
which is involved in TMZ resistance of GBM cells.

Phosphorylated AKT/FOXO3 axis regulates lnc-TALC
expression. We next investigated the underlying mechanism of
lnc-TALC upregulation in TMZ-resistant GBM cells. We did not
observe copy number aberrance of the lnc-TALC gene in the
TMZ-resistant cell genomes (Supplementary Fig. 3a). Inhibition
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of DNA methyltransferase also had no effect on the lnc-TALC
expression in GBM cells (Supplementary Fig. 3b).

Since activated AKT induced phosphorylation and cytoplasmic
retention of the FOXO family for subsequent proteasome
degradation33, we performed a bioinformatics analysis of the
promoter region of the lnc-TALC gene and predicted two DNA-
binding elements (DBEs) for FOXO3 based on the FOXO families’
binding sites in the JASPAR database34,35 (Fig. 3a and Supplemen-
tary Table 1). The immunofluorescence assay showed that there was
less aggregated FOXO3 in the nucleus of TMZ-resistant GBM cells
than in parental cells (Fig. 3b). Transfection of constitutively active
FOXO3 significantly downregulated lnc-TALC levels in TMZ-
resistant cells, whereas DNA-binding domain-truncated mutants
(FOXO3-Mut) had no effect on lnc-TALC levels (Fig. 3c). Knock-
down of AKT in TMZ-resistant cells decreased lnc-TALC but
increased the level and nuclear translocation of FOXO3 (Fig. 3d, e).
We performed chromatin immunoprecipitation (ChIP)-PCR assay
to detect the enrichment of FOXO3 on the promoter region of lnc-
TALC, whereas the enrichment was significantly decreased in TMZ-
resistant cells (Fig. 3f). The histone deacetylase inhibitors,
suberoylanilide hydroxamic acid (SAHA) and sodium butyrate
(NaB), abolished the FOXO3-triggered transcriptional suppression
of lnc-TALC (Fig. 3g).

Met regulated by lnc-TALC is required for TMZ resistance. To
further illuminate the potential mechanism of TMZ resistance, we

then selected 56 patients diagnosed with GBM and treated by
TMZ chemotherapy from the Cancer Genome Atlas (TCGA)
RPPA protein expression database. We found higher levels of
AKT-pS473-R-V (p= 0.0236) and c-Met_pY1235-R-C (p=
0.0485) in samples with shorter survival times (Supplementary
Fig. 4a). Moreover, we observed that the expression levels of RTK
molecules were much higher in 229R cells through analyzing
mRNA microarray profiles (Fig. 4a). We also investigated 502
GBM samples, including 483 primary GBM samples and 19
recurrent GBM samples, from the TCGA database. Differentially
expressed genes were selected (FDR < 0.05), and MET had a
higher level in recurrent GBM samples (Supplementary Fig. 4b).
TMZ-resistant GBM cells showed a higher level of c-Met and p-
Met than did parental GBM cells (Fig. 4b). We observed the
effects of lnc-TALC on Met expression in TMZ-resistant GBM
cells by knocking down lnc-TALC and parental GBM cells by
overexpressing lnc-TALC. Knockdown of lnc-TALC decreased the
c-Met and p-Met levels, and overexpression of lnc-TALC
increased the c-Met and p-Met levels (Fig. 4c–f). Over-
expression of MET restored the resistant phenotype and down-
stream signaling in TMZ-resistant GBM cells with knocked-down
lnc-TALC (Fig. 4g, h and Supplementary Fig. 4c, d). Conversely,
knockdown of MET inhibited the resistant phenotype and the
downstream signaling in parental GBM cells overexpressing lnc-
TALC (Fig. 4i, j and Supplementary Fig. 4e, f). Consistently, SGX-
523, a small-molecule inhibitor of c-Met, restored the sensitivity
and the downstream signaling of parental GBM cells after the
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overexpression of lnc-TALC (Fig. 4k, l and Supplementary
Fig. 4g). Taken together, these results indicate that inhibition of
the c-Met signaling pathway reversed the lnc-TALC-induced
TMZ resistance in GBM cells.

Lnc-TALC competitively binds miR-20b-3p targeting MET 3′
UTR. In addition to epigenetic regulation in the nucleus,
lncRNAs can also regulate target gene expression by functioning
as competing endogenous RNAs (ceRNAs) for specific miRNAs
in the cytoplasm. Lnc-TALC was identified as a cytoplasm-
enriched abundant lncRNA (Supplementary Fig. 5a). Suppression
of dicer increased the expression of c-Met (Supplementary
Fig. 5b). The RNA immunoprecipitation (RIP) schematic process
assay showed that lnc-TALC and c-MET transcript could bind
Ago2 (Fig. 5a). We overexpressed lnc-TALC in LN229 cells and

observed increasing enrichment of lnc-TALC and decreasing
enrichment of c-MET transcript in Ago2 compared to controls.
We also knocked down lnc-TALC in 229R cells and observed
decreasing enrichment of lnc-TALC and increasing enrichment of
c-MET transcript in Ago2 compared with controls. (Fig. 5b).

Based on the DIANA, RegRNA2.0, TargetScan, miRWalk, and
miRNA.org databases (Supplementary Table 2), two candidate
miRNAs (miR-20b-3p and miR-335-3p) were predicted to target
both the lnc-TALC and MET 3′UTR regions (Supplementary
Fig. 5c). Furthermore, the dual luciferase reporter assays (Fig. 5c
and Supplementary Fig. 5d) revealed that only miR-20b-3p
directly bound to the lnc-TALC and MET 3′UTR regions (Fig. 5d
and Supplementary Fig. 5e). The MS2-RIP assay was conducted
to pull down endogenous miRNAs associated with lnc-TALC and
showed that miR-20b-3p was significantly enriched in RNAs
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retrieved from MS2bs-lnc-TALC, further confirming that miR-
20b-3p specifically targeted lnc-TALC (Fig. 5e and Supplementary
Fig. 5f). Then, qRT-PCR was used to quantify the molecular
numbers of lnc-TALC, MET, and miR-20b-3p per cell (Supple-
mentary Fig. 5g). The dual luciferase reporter assays showed that
miR-20b-3p bound the MET mRNA 3′UTR sequence in parental
or TMZ-resistant GBM cells (Fig. 5f and Supplementary Fig. 5h,
i). Moreover, c-Met and its downstream activity were restored
after miR-20b-3p was inhibited in lnc-TALC knockdown cells. In
contrast, the overexpression of miR-20b-3p inhibited c-Met and
its downstream expression (Fig. 5g, h and Supplementary
Fig. 5j–l). The CCK-8 and colony formation assays showed that
miR-20b-3p was involved in lnc-TALC-mediated TMZ resistance
in GBM cells (Supplementary Fig. 5m–p).

Lnc-TALC increases MGMT by modulating H3 acetylation.
MGMT, which is a DNA repair enzyme that quickly removes
adducts from O6-meG and repairs damaged guanine, mediates
TMZ resistance in GBM36. In the present study, we confirmed
that the mRNA and protein levels of MGMT were much higher
in TMZ-resistant GBM cells than in parental GBM cells (Sup-
plementary Fig. 6a and Fig. 6a). Repression of MGMT restored
TMZ sensitivity in the TMZ-resistant GBM cells (Supplemen-
tary Fig. 6b). We then investigated whether lnc-TALC was
responsible for the upregulation of MGMT. Overexpression of
lnc-TALC in parental GBM cells increased the protein level of
MGMT (Supplementary Fig. 6c). However, the MGMT level
decreased when lnc-TALC was knocked down in TMZ-resistant
GBM cells (Fig. 6b). Our previous results confirmed that lnc-
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TALC promoted c-Met expression in TMZ-resistant GBM cells.
The MGMT protein level was suppressed after c-Met was
restrained (Fig. 6c and Supplementary Fig. 6d). The over-
expression of c-Met promoted MGMT expression and phos-
phorylation of Stat3 and MAPK (Supplementary Fig. 6e, f).
Inhibition or overexpression of miR-20b-3p promoted or sup-
pressed the MGMT expression levels, respectively (Supple-
mentary Fig. 6g). Furthermore, the corepression of Stat3 and
MAPK markedly lowered TMZ resistance (Supplementary
Fig. 6h).

It was necessary to further investigate how the c-Met signaling
pathway regulates MGMT expression in TMZ-resistant GBM
cells. The pyrosequencing assay showed no significant change in
the methylation levels of the MGMT gene promoter region
between parental cells and TMZ-resistant cells or between the lnc-
TALC knockdown and control groups (Supplementary Fig. 7a).
In public databases, multiple miRNAs that were reported to
posttranscriptionally regulate MGMT expression did not exhibit a
significant differential expression between recurrent GBMs and
primary GBMs (Supplementary Fig. 7b). We also did not observe
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obvious differential expression of these miRNAs between parental
cells and TMZ-resistant cells using qRT-PCR (Supplementary
Fig. 7c). Since Stat3-mediated regulation of MGMT does not
depend on its transcriptional activity32, we investigated whether
Stat3 could specifically modify histones in the promoter region of
the MGMT gene. We found that histone acetyltransferase p300
(p300) was markedly enriched in the MGMT promoter region of
TMZ-resistant cells compared with that of parental cells (Fig. 6d).
Protein coimmunoprecipitation indicated that p-Stat3 could bind
to p300 at a higher level in TMZ-resistant GBM cells (Fig. 6e).
Moreover, there was an increased enrichment of H3K9ac,
H3K27ac, and H3K36ac, but not H3K4ac, levels in the MGMT
promoter region in TMZ-resistant GBM cells (Fig. 6f and
Supplementary Fig. 7d). Furthermore, suppression of lnc-TALC
or Stat3 in TMZ-resistant GBM cells impaired the enrichment of
p300 in the MGMT promoter region (Fig. 6g), the interactivity
between p300 and p-Stat3 (Fig. 6h), and the enrichment of
H3K9ac, H3K27ac and H3K36ac, but not H3K4ac, in the MGMT
promoter region (Fig. 6i and Supplementary Fig. 7e). Collectively,
these findings demonstrate that the lnc-TALC/c-Met axis
regulates MGMT expression by modulating the acetylation of
H3K9/27/36 through the Stat3/p300 complex.

Knockdown of lnc-TALC restores TMZ sensitivity in vivo. To
examine the effect of lnc-TALC on the TMZ-resistant phenotype
in vivo, we first verified the TMZ sensitivity of parental GBM and
TMZ-resistant GBM through establishing mice orthotopic mod-
els bearing GBM xenografts via LN229 and 229R cells. Fourteen
days after GBM implantation, the mice were treated intraper-
itoneally with TMZ (60 mg kg−1 day−1 per mouse) or DMSO
(0.3%) every 5 days. At the same time, the mice received biolu-
minescence tomography every 7 days (Fig. 7a). Bioluminescent
imaging revealed that the antitumor effect of TMZ was limited in
TMZ-resistant GBMs (Fig. 7b, c). Mice with TMZ-resistant
GBMs exhibited significantly poorer survival (Fig. 7d). Next, we
evaluated the therapeutic value of lnc-TALC inhibition on TMZ-
resistant GBM in vivo (Fig. 7e). Bioluminescent imaging revealed
that knockdown of lnc-TALC efficiently restored the sensitivity of
TMZ-resistant xenografts to TMZ treatment (Fig. 7f). The mice
receiving a combined treatment demonstrated a much smaller
tumor volume than the other mice (Fig. 7g) and had a sig-
nificantly prolonged lifespan (Fig. 7h). Additionally, the
TMZ-resistant mice showed increased levels of p-AKT, p-MAPK,
p-Stat3, and MGMT (Fig. 7i). After knockdown of lnc-TALC, the
p-AKT, p-MAPK, p-Stat3, and MGMT levels decreased, as shown
by immunohistochemistry (Fig. 7j). Overall, these data demon-
strate that lnc-TALC serves as a potential therapeutic target to
overcome TMZ resistance, enhancing the benefits of TMZ
therapy.

Lnc-TALC is responsible for TMZ resistance in clinic. Multiple
samples (labeled 1, 2, and 3) from the same primary GBM patient
receiving standard TMZ therapy showed the expression of lnc-
TALC by qRT-PCR and in situ hybridization (ISH) assays, and
subsequently, we found that a higher lnc-TALC expression
showed a more obvious tendency toward recurrent neoplasms in
magnetic resonance (MR) images (Fig. 8a, b), suggesting that lnc-
TALC might play an important role in promoting recurrence in
GBM. The expression of lnc-TALC was higher in recurrent GBM
samples after TMZ treatment than in primary GBM samples
(Fig. 8c). According to the Chinese Glioma Genome Atlas
(CGGA) database and the qRT-PCR results, we found that MET
expression levels were higher in recurrent GBM samples than in
primary GBM samples (Supplementary Fig. 8a, b). In primary
and paired recurrent GBM samples, immunohistochemistry

(IHC) staining detected that c-Met was highly expressed in
recurrent GBM samples (Fig. 8d and Supplementary Table 3).
Western blot results also showed that recurrent GBM tissues had
higher levels of c-Met and p-Met than primary GBM tissues
(Fig. 8e). We found a significantly positive correlation between
MET and lnc-TALC expression in GBM tissues (r= 0.8688, p <
0.001, Fig. 8f). In the TCGA database, MGMT expression levels
were higher in recurrent GBM samples (Supplementary Fig. 8c),
and there was a positive relationship between the MET and
MGMT expression levels (Supplementary Fig. 8d). Patients with
low lnc-TALC expression had a significant benefit from TMZ
chemotherapy (Fig. 8g, p= 0.0085) compared with patients with
high lnc-TALC expression (Supplementary Table 4, p= 0.2566).
The Cox regression analysis revealed that TMZ chemotherapy
was associated with the overall survival of patients with low lnc-
TALC expression (p= 0.027), after adjusting for age at diagnosis,
age, KPS, and radiotherapy (Supplementary Table 5).

Discussion
LncRNAs take part in several cancer-associated processes,
including miRNA silencing, epigenetic regulation, DNA damage,
cell cycle control, and signal transduction pathways37. The cur-
rent standard therapy for GBM patients consists of surgical
resection followed by concurrent radiotherapy and chemother-
apy. Recurrent GBM patients who develop resistance to TMZ
have limited therapeutic options in the clinic. Effective treatment
options for GBM, especially for TMZ resistance, are not well
established. Elucidating the molecular basis of TMZ resistance
could contribute to the development of logically designed com-
bination therapies to block resistance in TMZ chemotherapy. At
present, lncRNA-based TMZ-resistant mechanisms in GBM
represent crucial nodal points for therapeutic intervention. In the
context of GBM chemotherapy, for example, lncRNA MALAT1
has been reported to promote TMZ resistance in GBM15,16.
However, the aberrance of lncRNA expressive profiling in TMZ-
resistant GBM cells requires further exploration. LncRNA
microarrays of TMZ-resistant GBM cells allows us to better
understand the role of key lncRNAs in TMZ resistance.

In this study, we established TMZ-resistant GBM cells and
detected alterations in lncRNA expression by microarray. We
confirmed that the lncRNA MALAT1 had a high expression level
in the TMZ-resistant GBM cells (data not shown) and found an
unreported lncRNA in GBM, namely, lnc-TALC, that is highly
expressed in TMZ-resistant GBM through comparing the
expression differences in the lncRNA microarray and the TMZ
IC50 after RNAi. Lnc-TALC was located on the AL358975 locus
and composed of two exons with a full length of 418 nt. There are
several papers published for lncARSR, a lncRNA from the same
locus, composed of four exons with a full length of 591 nt38–44.
LncARSR is upregulated in hepatocellular carcinoma (HCC),
associated with tumor size and advanced stage, which directly
binds to PTEN mRNA, promotes PTEN mRNA degradation,
regulates PI3K/Akt pathway38, and induces dedifferentiation of
cancer stem cells by targeting STAT3 signaling in HCC cells39.
LncARSR increases SREBP-1c and SREBP-2 expression, involved
in the sterol biosynthesis after activation of PI3K/Akt
pathway40,41. LncARSR could bind YAP to impede LATS1-
induced YAP phosphorylation and facilitate YAP nuclear trans-
location42, and could be incorporated into exosomes and trans-
mitted to sensitive cells, thus disseminating sunitinib resistance in
RCC43. In ovarian cancer, lncARSR interacts with HuR, upre-
gulates β-catenin expression, and then activates Wnt/β-catenin
signaling pathway44.

In the present study, we observed that patients with low lnc-
TALC expression exhibited a dramatic improvement in prognosis
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after receiving TMZ. The knockdown of lnc-TALC by the
CRISPR-Cas9 system resensitized resistant GBM cells to TMZ, in
both in vitro and in vivo models. We failed to observe any effect
of copy number variants and DNA methylation on lnc-TALC
expression. Our results revealed that lnc-TALC was correlated

with the phosphorylation of Stat3, AKT, and MAPK in
GBM cells. Bioinformatics analysis indicated that the phos-
phorylated AKT was associated with TMZ resistance in the
TCGA GBM RPPA database. Recurrent gliomas from patients
treated with TMZ harbor genetic alterations involved in AKT
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hyperactivation45. Suppressing the AKT signaling pathway
combination with TMZ synergistically induces autophagy and
apoptosis in TMZ-resistant GBM cells46.

As major direct substrates of AKT, FOXO factors are nega-
tively regulated by AKT phosphorylation, which induces their
nuclear export. FOXO factors are ubiquitinated and are subjected
to degradation by the proteasome once in the cytoplasm. FOXO
factors with well-recognized DNA-binding domains include
FOXO1, FOXO3, FOXO4, and FOXO647. The nuclear localiza-
tion of FOXO proteins is essential for their transcriptional reg-
ulatory functions, which includes the control of genes involved in
cell apoptosis, such as FasL33, and genes involved in cell cycle
regulation, such as cyclin D1 and D248. Our results revealed that
lnc-TALC expression was promoted by AKT through promoting
transcription factor FOXO3 degradation in TMZ-resistant
GBM cells.

Comparing the primary and recurrent GBM samples in the
TCGA database, we found that c-Met had a higher expression
level in recurrent samples. C-Met, as a receptor tyrosine kinase,

was an independent prognostic factor for TMZ chemotherapy.
Low expression levels of c-Met are prognostic for and predict the
benefits of TMZ chemotherapy in GBM49. C-Met mediated the
plasticity of endothelial cells to undergo mesenchymal transfor-
mation, rendering GBM resistant to TMZ50. C-Met activation
regulated various signaling pathways involving downstream
kinases, such as AKT, Stat3, and MAPK51. Based on the ceRNA
hypothesis, lncRNAs can elicit their biological activity through
their ability to act as endogenous decoys for miRNAs, and such
activity would, in turn, affect the distribution of miRNAs on their
targets6. We performed bioinformatic analyses revealing that
miR-20b-3p and miR-335-3p had the potential to target both lnc-
TALC and the MET mRNA 3′ UTR. Furthermore, the luciferase
reporter, RIP and MS2-RIP assays confirmed a direct interaction
between miR-20-3p and its target sites in lnc-TALC and in the
MET mRNA 3′ UTR regions. MiR-20b has been reported to
repress APC and FZD6 to sustain the proneural phenotype.
Additionally, FZD6 activates the CaMKII–TAK1–NLK pathway,
thereby promoting Stat3 and NF-kB signaling, which are essential
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for the mesenchymal phenotype52. GBM TMZ-sensitive clones
had more proneural subtype characteristics, such as OLIG2, while
GBM TMZ-resistant clones exhibited mesenchymal subtype fea-
tures. Furthermore, MET shows reduced expression in TMZ-
sensitive clones of GBM and is dramatically upregulated in TMZ-
resistant clones20. Thus, our findings suggest that lnc-TALC
regulated MET expression through competitive binding with
miR-20b-3p.

MGMT is a ubiquitous DNA repair enzyme that has been
highly conserved throughout evolution. MGMT is associated with
resistance to alkylating agent cancer therapies36. A high MGMT
expression level is mechanistically linked to TMZ resistance in
GBM, and elevated MGMT expression and/or the lack of MGMT
promoter hypermethylation in patient tumor specimens is asso-
ciated with worse outcomes in GBM patients treated with TMZ.
Modulation of this enzyme as a treatment target has been
investigated for many years. MGMT regulation might be involved
in the direct binding of specific miRNAs to the 3′untranslated
region of MGMT transcripts, which could lead to decreased
mRNA stability and/or reduced protein translation53. Distinct
miRNAs that have been implicated as direct regulators of MGMT
expression include miR‑181b, miR‑181d, miR‑221, miR‑767-3p,
and miR‑64853–56. However, these miRNAs showed no evident
changes between recurrent and primary GBM samples or TMZ-
resistant and TMZ-sensitive GBM cells. The epigenetic regulation
of gene transcription has multiple dimensions, and MGMT has
focused on CpG methylation57. In our current study, we did not
demonstrate a methylation-level change between TMZ-sensitive
and TMZ-resistant cells in the MGMT promoter regions. In
addition, lnc-TALC overexpression did not alter the promoter
methylation standard of MGMT.

In previous research, it has been well-recognized that Stat3
activity is strongly linked to TMZ resistance in GBM. Inhibition
of Stat3, downstream of c-Met, overcomes TMZ resistance in
GBM by downregulating MGMT expression32. The same results
were found in our experiments. Although increasing the activity
of Stat3 induces MGMT expression, there is no direct evidence
indicating that Stat3-mediated regulation of MGMT depends on
its transcriptional activity. MGMT expression is also regulated by
chromatin remodeling58. Our results revealed elevated acetylation
of histone H3 (H3K9ac, H3K27ac, and H3K36ac) and increased
recruitment of p300 within the MGMT promoter regions of GBM
cells overexpressing lnc-TALC, which depended on Stat3.

In conclusion, based on the lncRNA microarray, we found that
lncRNA lnc-TALC induced by AKT mediated TMZ resistance in
GBM, which trapped miR-20b-3p, activated c-Met and increased
MGMT expression by remodeling the acetylation of histone H3
in the MGMT promoter regions. Lnc-TALC could serve as a
therapeutic target to overcome TMZ resistance, enhancing the
clinical benefits of TMZ chemotherapy in GBM patients (Fig. 9).

Methods
Cell lines and cell culture. Human GBM LN229 and U251 cells were purchased
from the Chinese Academy of Sciences Cell Bank. These cells were authenticated
using STR assay (Genetic Testing Biotechnology, Jiangsu, China). Patient-derived
GBM cells 551W and HG7 were isolated from discarded GBM specimens. Briefly,
mechanically minced tissues were digested with 0.1% trypsin (Invitrogen, USA)
and 10 U ml−1 of DNase I (Promega, USA) at 37 °C for 45 min. ACK lysis buffer
(Beyotime, Shanghai, China) was used to lyse the red blood cells. After being
washed, the tissues were triturated by pipetting and passed through a 100 μm cell
strainer. TMZ-resistant GBM 229R, 251R, 551WR, and HG7R cells were induced
from LN229, U251, 551W and HG7 cells, respectively. All cells were cultured in
Dulbecco’s modified Eagle’s medium (DMEM) or DMEM/F12 with 10% fetal
bovine serum (Gibco, USA) at 37 °C in a humidified atmosphere with 5% CO2 and
were tested negative for mycoplasma contamination.

Establishment of TMZ-resistant cells. LN229, U251, 551W, and HG7 cells were
seeded into 96-well plates at 6000 cells per well, and IC50 of TMZ was determined.

TMZ was then added to the cell culture medium at an IC50 1/50 concentration
(LN229/0.83 ± 0.26 μM, U251/1.1 ± 0.19 μM, 551W/1.0 ± 0.22 μM, HG7/1.48 ±
0.14 μM) to culture LN229, U251, 551W, and HG7 cells in six-well plates. After the
cells grew stably, the drug dose was increased in multiples. Each dose was main-
tained for 15 days, to the end of the fifth month. The induced TMZ-resistant cells
were named 229R, 251R, 551WR, and HG7R.

Microarray analysis. The RNA expression profiling was performed using Agilent
custom human lncRNA and mRNA microarrays (SHBIO Biotechnology Cor-
poration, Shanghai, China). The raw data were normalized using the quantile
algorithm from the limma package in R. Heatmaps representing differentially
regulated genes were generated using Cluster 3.0 and Gene Tree View. The
microarray data have been deposited in NCBI’s Gene Expression Omnibus (GEO)
database (www.ncbi.nlm.nih.gov/geo) under accession number GSE113510. The
top 10 upregulated lncRNAs of TMZ-resistant GBM cells are presented in Sup-
plementary Table 6.

Rapid amplification of cDNA ends (RACE). Total RNA was isolated with TRIzol
reagent (Invitrogen, USA) according to the manufacturer’s instructions. 5′RACE
and 3′RACE analyses were performed with 1 μg of total RNA. The SMARTer™
RACE cDNA kit (Clontech, CA) was used according to the manufacturer’s
instructions. RACE PCR products were separated on a 1% agarose gel. Gel
extraction products were subcloned into pGH-T vectors and sequenced bi-
directionally using indicated primers (Sagene, China). The gene specific primers
used for PCR are presented in Supplementary Table 7.

Coding potential analysis. Four different methods including Open reading frame
finder from NCBI59, phyloCSF60, coding probability from Coding potential
assessment tool (CPAT)61, and coding potential score from coding potential cal-
culator (CPC)62 were performed to calculate the coding potential of lnc-TALC.
Prediction of putative proteins encoded by lnc-TALC using ORF Finder. Nuclear
Enriched Abundant Transcript 1 (NEAT1) served as a control non-coding gene.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and β-actin (ACTB) served
as control coding genes. We defined phyloCSF= 063, coding probability= 36.4%61

and coding potential score= 062 as thresholds.

Cell transfection. Cells were transfected with siRNAs, miRNA mimics or plasmids
using Lipofectamine 2000 (Invitrogen, USA). The sequences of siRNAs against
specific targets are listed in Supplementary Table 8. The MET and FOXO3 plas-
mids were purchased from GeneChem (Shanghai, China). For knocking down lnc-
TALC, LV-Cas9 lentiviruses were transfected into cells for 48 h at an MOI of 10
and selected for 7 days with puromycin at a final concentration of 3 μg ml−1. Cells
were subsequently infected with lentiviruses carrying sgRNAs designed for lnc-
TALC. Twenty-four hours later, expression level of lnc-TALC was confirmed by
qPCR. Lentiviruses expressing lnc-TALC, Cas9, sgRNAs targeting lnc-TALC or the
negative control (LV-NC) were prepared by GeneChem. The details of the sgRNA
sequences are shown in Supplementary Table 9.

Cell apoptosis analysis. A total of 1 × 106 cells were resuspended in a single cell
suspension and washed two times with PBS solution. The cell apoptosis analysis
was performed with the Annexin V-FITC or Annexin V-APC Apoptosis Detection
Kit (BD Biosciences, USA) according to the manufacturer’s instructions. The rates
of apoptosis were detected by flow cytometry (BD FACSCanto II, USA).

CCK-8 assay. GBM cell viability was evaluated with the Cell Counting Kit 8
(Dojindo, Japan) and was measured at OD 450 nm with the BioTek Gen5 system
(BioTek, USA).

Colony formation assay. Cells were seeded (0.3 × 103 cells per well) in a six-well
plate and cultured for 11 days. The resulting colonies were then washed twice with
PBS and fixed with 4% formaldehyde for 10 min and stained for 30 min with 0.1%
crystal violet. The number of colonies was then captured by an Olympus camera
(Tokyo, Japan) and counted by ImageJ.

5-Ethynyl-2′-deoxyuridine (EdU) assay. Cell proliferation was detected by an
EdU Cell Proliferation Assay Kit (Ribobio, Guangzhou, China) according to the
manufacturer’s instructions. The proportion of cells that incorporated EdU was
determined with a fluorescence microscope (Nikon C2, Tokyo, Japan).

Effect of molecule inhibitors on GBM cells. Molecule inhibitors, including SGX-
523, SAHA/NaB, decitabine, and azacitidine were used in this study. The cells were
treated with SGX-523, a small-molecule inhibitor of c-Met, with a final con-
centration of 200 nM. SAHA and NaB, inhibitors of histone deacetylase, were
added to the cells at concentrations of 2 μM and 10mM, respectively. Decitabine
and azacitidine are inhibitors of DNA methyltransferase and were added to the
cells at concentrations of 0.5 μM and 10 μM, respectively.
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Public data collection. The CGGA microarray database was obtained from the
website http://www.cgga.org.cn. TCGA microarray and protein databases were
downloaded from the TCGA data portal (http://cancergenome.nih.gov/). The
GSE32466 database was downloaded from the website https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE32466.

Patients and specimens. In this study, fresh GBM tissues were collected from 79
patients by surgical resection (Department of Neurosurgery, The Second Affiliated
Hospital of Harbin Medical University) from 2013 to 2018. The pathological
diagnoses for GBM were determined by pathologists. Recurrent GBMs were
defined as an increase in residual lesions after treatment or the emergence of new
lesions. The clinical characteristics of the GBM patients are presented in Supple-
mentary Table 3–4. Written informed consent for use of the tissues and data for
this research was obtained from the patients or from immediate family members or
guardians. This research was approved by the Clinical Research Ethics Committee
of Harbin Medical University.

Pyrosequencing. Genomic DNA was isolated from the LN229, 229R, 229R Scra,
and 229R KD_lnc groups using a QIAamp DNA Mini Kit (Qiagen, China). The
pyrosequencing analysis was carried out by Gene Tech Company Limited
(Shanghai, China). Methylation values >10% in GBM cells were considered to be
methylated.

Co-Immunoprecipitation (Co-IP). In the coimmunoprecipitation assay, LN229,
229R, 229R Scra, and 229R KD_lnc cells were first lysed with IP lysis buffer. The
lysates were incubated with 5 µg of anti-p-Stat3 or anti-p300 overnight at 4 °C. Ten
microliters of protein A agarose beads were then added to the samples and incu-
bated at 4 °C with gentle shaking for 3 h. After incubation, the bead–protein
mixtures were centrifuged and washed three times with lysis buffer. The immu-
noprecipitated samples were further analyzed by western blot.

Protein preparation and western blot. Total proteins were prepared from GBM
cells or clinical GBM tissues using prechilled RIPA buffer with proteinase and
phosphatase inhibitor cocktails (Selleck.cn, Shanghai, China). The PVDF mem-
branes were incubated overnight at 4 °C with primary antibodies (Supplementary
Table 10) and were then incubated with an HRP-labeled secondary antibody (Zsbio
Store-bio, Beijing, China) at room temperature for 1 h. The protein bands were
visualized using a chemiluminescence reagent (ECL) kit (Boster, Wuhan, China).
Uncropped scans of these blots are reported in Supplementary Fig. 9.

RNA isolation and PCR. The total RNA of the GBM cells or clinical GBM tissues
was extracted using TRIzol (Invitrogen, USA) according to the manufacturer’s
instructions. The nuclear and cytoplasmic components were separated using 0.5%
NP-40 (Solarbio, Beijing, China) with an RNAase inhibitor (Promega, USA),

followed by extraction using TRIzol reagent (Sigma, USA). One microgram of total
RNA was used as a template for cDNA synthesis using a PrimeScript RT Reagent
Kit (Takara, Japan). Real-time quantitative PCR was performed on triplicate
samples in a reaction mix of SYBR Green (Takara, Japan) with a CFX96 Touch
Real-Time PCR Detection System (Bio-Rad, USA). Quantification of the miRNA
was performed with a stem-loop real-time PCR miRNA kit (RiboBio, Guangzhou,
China). The levels of total RNA were normalized to β-Actin. The levels of miRNA
RNA were normalized to U6 snRNA (small nuclear RNA). The expression of the
indicated genes was normalized to the endogenous or exogenous reference control
by using the 2−ΔΔCt method. Sequences of the primers used for qRT-PCR in this
study are listed in Supplementary Table 11. The molecular numbers of lnc-TALC,
miR-20b-3p and MET were measured using the standard curve method and were
calculated by relating the Ct value to the standard curve. Plasmids containing lnc-
TALC or MET were purchased from GeneChem (Shanghai, China) and synthetic
miR-20b-3p polynucleotide was purchased from RiboBio (Guangzhou, China).

Luciferase reporter assay. Cells were seeded into 96-well plates and were
transfected with the GV272 luciferase vector (GeneChem, Shanghai, China). Lnc-
TALC and MET wild type with potential miR-20b-3p/miR-335-3p binding sites or
mutants of each binding site (Supplementary Table 12) were generated and fused to
the luciferase reporter vector GV272. The firefly luciferase activity in each well was
measured with a Dual Luciferase Reporter Assay System (Promega, USA) and
normalized to Renilla luciferase activity, according to the manufacturer’s protocol.

Immunofluorescence. Cells were plated on a cell smear (WHB-24-CS, Shanghai,
China) in 24-well tissue culture plates. The cells were stained using standard
procedures. Primary antibodies, including FOXO3, MGMT, and c-Met, were
diluted in 1% BSA in PBS. After overnight incubation at 4 °C, the cells were washed
three times with PBS and incubated with FITC-labeled anti-IgG antibodies (Alexa
Fluor 488 and 594, Thermo Fisher) for 1 h at room temperature. The DNA was
stained with DAPI (Sigma, USA) and visualized with a fluorescence microscope
(Nikon C2, Tokyo, Japan) and a laser scanning confocal microscope (LSCM)
(ZEISS LSM700, Germany).

In situ hybridization. ISH was performed with the RNA ISH Kit (BersinBio,
Guangzhou, China), according to the manufacturer’s instructions. Briefly, the
samples were treated with pepsin for 10 min at 37 °C and incubated with 500 nM of
probe at 55 °C for 4 h. The cells were subsequently incubated with 3% hydrogen
peroxide to block potential endogenous peroxidase, and the probes were then
detected with peroxidase-conjugated anti-DIG-Ab. Finally, the sections were
stained with diaminobenzidine (DAB) for detection. The probe sequences are listed
in Supplementary Table 13.

RNA immunoprecipitation. RIP was performed with a Magna RIP RNA-Binding
Protein Immunoprecipitation Kit (Millipore, Massachusetts, USA), according to
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the manufacturer’s instructions. The antibodies used in the RIP assays of Ago2
were purchased from Abcam. MS2-based RIP assay with anti-GFP antibody in
LN229 cells 48 h after transfection with MS2bp-YFP plasmid along with MS2bs-
lnc, MS2bs-lnc Mut, or MS2bs-Rluc (GenScript, Nanjing, China). The RNA frac-
tion precipitated by RIP was analyzed via qPCR.

Chromatin immunoprecipitation. ChIP assays were performed with an EZ-ChIP
kit (Millipore, USA), according to the manufacturer’s instructions. The ChIP-PCR
products were detected with 4.8% agarose gel electrophoresis. Sequences of the
primers used for ChIP-PCR in this study are listed in Supplementary Table 14.
Uncropped scans of these blots are reported in Supplementary Fig. 9.

Immunohistochemistry. Immunohistochemistry was carried out in 4 μm paraffin
sections with a three-step process and a DAB staining kit (ZSGB-BIO, Beijing,
China). In brief, formalin-fixed, paraffin-embedded tissue sections were incubated
at 80 °C for 15 min, dewaxed in xylene, rinsed in graded ethanol, and rehydrated in
double-distilled water. For antigen retrieval, the slides were pretreated by steaming
them in sodium citrate buffer for 15 min at 95 °C. After washing with PBS for
3 min, the sections were immunostained with primary antibodies to c-Met, p-
MAPK, p-Stat3, p-AKT, and MGMT, and incubated at 4 °C overnight. After being
washed in PBS buffer, the tissues were covered by an antimouse/rabbit polymer
HRP-label for 30 min. The staining reactions were performed by covering the tissue
samples with the prepared DAB chromogen solution and incubating them for ~1
min to allow for proper brown color development.

Xenograft model in vivo. Four-week-old female athymic BALB/c nude mice were
purchased from Beijing Vital River Laboratory Animal Technology Co., Ltd.
(Beijing, China). A total of 3 × 105 GBM cells (LN229/229R and 229R Scra/229R
KD_lnc) per mouse were stereotactically injected into the brain. After the surgery,
the mice were treated for 2 weeks with DMSO or TMZ (60 mg kg−1 day−1). The
intracranial tumors were measured with bioluminescence imaging. The mice were
sacrificed, and the brain tissues were removed. The mouse brain tissue was
embedded in paraffin and sectioned at a thickness of 4 μm for immunohis-
tochemistry assays. All procedures were approved by the Committee on the Ethics
of Animal Experiments of Harbin Medical University.

Statistical analysis. Significant differences between the groups were estimated by
Student’s t-test. One-way analysis of variance (one-way ANOVA) was used for at
least three groups. The overall survival curves were used to describe the survival
distributions, and the log-rank test was applied for assessing statistical significance
between different groups. The survival data were further processed by using uni-
variate and multivariate Cox regression analysis. The Pearson correlation coeffi-
cient was used to analyze the correlations between variables. GO and KEGG
Pathway analysis was performed using the DAVID website (http://david.abcc.
ncifcrf.gov/home.jsp). Statistically significant gene sets were visualized by Cytos-
cape, and GSEA was used to analyze biological processes. SsGSEA was used to
calculate the enrichment score of every gene set for every sample64. Heatmaps were
constructed and produced using Gene Cluster 3.0 and Gene Tree View software.
All results are expressed as the mean ± SD. A value of p < 0.05 was considered to be
statistically significant. All statistical analyses were performed using GraphPad
software version 7.0 (GraphPad Software, CA, USA) or IBM SPSS Statistics 23.0
(SPSS, Chicago, USA).

Study approval. We have complied with all relevant ethical regulations for animal
testing and research. All research performed was approved by the Institutional
Review Board at the Second Affiliated Hospital of Harbin Medical University and
was in accordance with the principles expressed at the Declaration at Helsinki.
Written informed consent was received from all participants. All animal experi-
ments were performed according to Health guidelines of Harbin Medical Uni-
versity Institutional Animal Use and Care Committee.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All relevant data are available from the authors. Gene expression data reported in this
study have been deposited with the Gene Expression Omnibus under the accession
number GSE113510. The nucleotide sequences of lnc-TALC have been deposited in the
NCBI GenBank nucleotide database under the accession number MK600515. All the
other data supporting the finding of this study are available within the article and
its Supplementary Information files or from the corresponding author on reasonable
request.
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