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Slab morphology and deformation beneath
Izu-Bonin
Haijiang Zhang1,2, Fan Wang 1,4, Robert Myhill3 & Hao Guo1

Seismic tomography provides unique constraints on the morphology, the deformation, and

(indirectly) the rheology of subducting slabs. We use teleseismic double-difference P-wave

tomography to image with unprecedented clarity the structural complexity of the Izu-Bonin

slab. We resolve a tear in the slab in the mantle transition zone (MTZ) between 26.5° N and

28° N. North of the tear, the slab is folded in the MTZ. Immediately above the fold hinge,

a zone of reduced P-wavespeed may result from viscous dissipation within an incipient

shear zone. To the south of the tear, the slab overturns and lies flat at the base of the MTZ.

The ~680 km deep 2015 Bonin earthquake (Mw~7.9) is located at the northernmost

edge of the overturning part of the slab. The localised tearing, shearing and buckling of the

Izu-Bonin slab indicates that it remains highly viscous throughout the upper mantle and

transition zone.
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The subduction of the oceanic lithosphere into Earth’s
convecting mantle is typically associated with narrow sub-
planar regions of earthquakes called Wadati–Benioff zones.

These earthquakes can be as deep as 650–700 km1, providing
strong evidence that subducting slabs penetrate into the mantle
transition zone (MTZ). Since the early 1990s, independent con-
straints on slab extent and morphology have been provided by
seismic tomography, which has imaged high seismic wavespeed
anomalies associated with regions of subduction2–4. Tomographic
studies have demonstrated that contiguous slabs can extend well
beyond the limits of deep seismicity. Some of these slabs pene-
trate aseismically into the lower mantle, while others stagnate in
the MTZ3,5–8. Slabs exhibit a wide range of morphologies, from
near-planar (e.g., Japan–Kamchatka) to folded and contorted
(e.g., Tonga–Fiji–Kermadec) and from contiguous to torn or
thinned9–12. These variations in slab morphology must be a
function of the history and distribution of forces acting on the
slab, and the material properties of the slab itself. In this study, we
seek to constrain the shape of the Izu–Bonin slab using high-
resolution tomographic images, and use the morphology to make
inferences about the physical characteristics and geodynamics of
the region.

The Izu–Bonin subduction zone (Fig. 1) is a thousand-kilometre
long system, which extends south from Tokyo, where the Pacific
Plate subducts beneath the Philippine Sea Plate. At the northern
end of the zone, the Izu–Bonin Trench meets the Japan Trench and
the Sagami Trench at the Boso Triple Junction. At the southern
end (east of the Volcano Islands), the strike of the Izu–Bonin
trench rotates from north–south to northwest–southeast, marking
the start of the Marianas Trench.

After subduction at the trench, the Izu–Bonin slab descends
westward into the upper mantle and transition zone. At
100–400 km depth, the distribution of earthquakes indicates that
the dip of the slab increases from 40° in the north to 80° in the
south13. This increase in slab dip has been attributed to a higher
velocity of trench advance in the south relative to the north over
the last few million years14–17. At greater depths, earthquake
locations indicate that the dip of the slab decreases to 20–30°
along a fold hinge that deepens towards the south from ~400 km
depth at 33°N to ~550 km depth at 27°N18. Geodynamic mod-
elling suggests that this morphology may be attributable to
westward subduction of the Philippine Sea Plate at the Ryukyu
Trench, 2000–3000 km west of the Izu–Bonin slab19–21. Sub-
duction at the Ryukyu trench induces a slab pull on the shallow
part of the Izu–Bonin slab, and a positive dynamic pressure
between the two subduction systems in the upper mantle and the
transition zone. These should encourage the Izu–Bonin slab to
steepen at intermediate depth and become increasingly convex in
the direction of subduction in the upper mantle. In the MTZ,
some simulations indicate buckling of the slab, while others
indicate overturn19,21, such that the tip of the slab can either face
in, or opposite to, the direction of subduction at the trench.

Although earthquake hypocentres provide good estimates of
slab location wherever they occur, some parts of the slab are
aseismic. Other techniques are required to determine the extent
and orientation of the slab in the MTZ, the nature of slab
deformation and whether the slab directly penetrates into the
lower mantle. High-resolution seismic tomography should be able
to answer these questions, but existing studies have produced
differing tomographic models and thus different interpretations
of the deep slab. For example, tomographic and receiver function
images of the southern end of the Izu–Bonin slab have variously
been interpreted as evidence for direct penetration into the lower
mantle22–25, multiple isoclinal folds26 or “heel”-shape thicken-
ing27. These differing interpretations imply different slab rheol-
ogies; for example, folding without thickening implies that the

slab is much more viscous than the surrounding mantle, while
significant slab thickening indicates a smaller viscosity contrast28.

High-resolution seismic tomography could also help resolve
the mystery of a very enigmatic deep earthquake. The May 30,
2015 Bonin Islands earthquake had a hypocentral depth of ~680
km, one of the deepest in the historical record29. More sig-
nificantly, it ruptured ~100 km beneath and to the east of the
Izu–Bonin Wadati–Benioff zone. Existing attempts to locate the
earthquake relative to the slab disagree on the slab morphology,
but all argue that it occurred close to the bottom of a 100–200 km
thick slab25–27,30. Such a location would probably be both hot and
dry, as water cannot penetrate so deep into the slab, either
before31,32 or after33 subduction. This combination of high
temperatures and dry conditions is a problem for earthquake-
generating mechanisms involving thermally activated shear
instabilities34, transformational faulting35 or dehydration
embrittlement36, all of which require low temperatures in the
region of earthquake nucleation (probably not exceeding 800 °C).

Here, we obtain high-resolution tomographic images for the
Izu–Bonin slab from teleseismic double-difference (DD) tomo-
graphic inversions37,38 (see the Methods section) and present a
structural framework that helps understand its deformation, its
relationship to the tectonic history of the area and the anomalous
nature of deep-focus seismicity. We resolve a tear in the slab,
which can be approximated by a northward-dipping plane that
splits the slab in the MTZ between 26.5° N and 28° N (500–670
km depth). North of the tear, the slab is folded in the MTZ, with
the lower limb dipping shallowly to the west. We also image a
zone of reduced P-wavespeed (Vp) at ~420 km depth in the
slab above the fold hinge, which is apparently due to viscous
dissipation within an incipient shear zone. To the south of the
tear, the slab is completely overturned and lies inverted on
the bottom of the MTZ. The imaged morphology of the
Izu–Bonin slab indicates that it has a strongly non-Newtonian
rheology throughout the upper mantle and transition zone. The
2015 Bonin earthquake occurred at the northernmost edge of the
overturning slab, ~20–30 km from the slab–mantle wedge inter-
face. Relatively low temperatures, high thermal gradients and
high stresses may all have facilitated this large isolated
earthquake.

Results
Seismic tomographic images for the Izu–Bonin slab. In contrast
to conventional tomographic techniques, which rely heavily on a
good distribution of regional stations not present above most
oceanic subduction zone systems, teleseismic DD tomography
minimises the misfit between observed and theoretical travel
times between pairs of earthquakes by simultaneously relocating
those earthquakes and adjusting local seismic wavespeeds.
Because the ray paths from pairs of events mostly overlap outside
the source region, DD tomography is particularly sensitive to the
wavespeed structure close to seismically active areas. As a result, it
produces clearer images of subduction zones throughout the
upper mantle and yields more accurate relative earthquake
locations. It is particularly suited to the Izu–Bonin subduction
zone, which has a good distribution of seismicity from the surface
to >500 km depth. If differential arrival times for event pairs are
not constructed by the waveform cross-correlation technique,
however, they may contain larger random errors due to differ-
encing in absolute arrival times. Thus, outliers in arrival-time
picks should be carefully rejected.

We assembled arrival-time data for earthquakes occurring in
the Izu–Bonin region for the period of 1960–2008 from the
Engdahl–van der Hilst–Buland (EHB) catalogue located by the
single-event method of Engdahl et al.39. A DD tomographic
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model was constructed for Vp beneath the Izu–Bonin region, for
which several cross sections are shown in Fig. 2. The spatial
resolution is on the order of 30–40 km in longitude and depth
and 100–200 km in latitude. Resolution tests show that the slab is
robustly resolved by the data, but wavespeed amplitudes may be
underestimated due to smoothing and damping regularisations
applied to the DD tomographic system (see Supplementary
Information). Our DD tomographic inversion also simulta-
neously relocates the 2015 Mw 7.9 Bonin earthquake at latitude
27.741°N, longitude 140.572°E and depth 679.9 km, which is
deeper than the location (latitude 27.740°N, longitude 140.590°E
and depth 667.2 km) given by Zhao et al.25, but with a similar
epicentre. The restoration test shows that our location uncertainty
in depth is about 1.4 km (see Supplementary Information).

In the north of the area (around 31.5°N; Fig. 2a), a continuous
high Vp anomaly dips with an angle of ∼50° towards the west at
intermediate depths (100–400 km). The Wadati–Benioff zone in
this region is ~20 km thick, and is located close to the maximum
wavespeed anomaly. At about 400 km depth, the dip of the high-
wavespeed anomaly decreases to 20–30°. Further south (Fig. 2b, c),
the dip of the high-wavespeed anomaly increases at intermediate
depths and decreases in the MTZ, in agreement with previous
studies13. At 28°N, the high-wavespeed anomaly abruptly bends
through 80° to lie almost horizontally in the MTZ. The deepest
relocated outboard earthquakes along this section have depths of
about 540 km. At about 27°N (Fig. 2d), the flat-lying high-
wavespeed layer becomes less prominent at the western end of the

section, and a stubby high-wavespeed anomaly appears below the
bend in the Wadati–Benioff zone. In Fig. 2e, the flat-lying
anomaly to the west becomes even shorter, and the wavespeed
anomaly to the east becomes longer and merges with the shallower
anomaly. Finally, in Fig. 2f, a high-wavespeed anomaly dips
almost vertically from 200- to 500 km depth and then overturns
towards the east to lie flat at the base of the MTZ.

Discussion
Although the slab appears to be stagnant in the MTZ in the study
region, it is possible that a small fraction of the slab in the north
of the study region may penetrate through the 660-km interface,
as indicated by relatively well-resolved high-wavespeed anomalies
below 660 km in sections AA’ and BB’ (Fig. 2). To the east of the
main Wadati–Benioff zone, there exists a high-wavespeed zone at
depths from 0 to 400 km that dips away from the slab. The
resolution tests (see Supplementary Information) show that at
depths from 0 to 200–400 km around the eastern edge of the
study region where the high-wavespeed anomaly is located, the
model is not well resolved due to poor angular coverage of ray
paths. Therefore, it is likely that the high-wavespeed anomaly at
the edge of the model is not robust, and no further interpretation
is attempted here.

We interpret the high-wavespeed anomalies in Fig. 2 as a single
contiguous slab undergoing tearing. In Sections AA’–CC’, the
locations of the high-wavespeed anomalies are in excellent
agreement with previous interpretations based on seismicity and
tomography. This good agreement is probably due to the rela-
tively simple shape of the slab in the north of the study region,
and the proximity to the dense Japanese seismic network. At the
southern end of the study area, the improved resolution of the
DD tomography method yields the first clear image of the mor-
phology of the slab. The abrupt change in orientation of the high-
wavespeed anomalies in the MTZ seen in Sections CC’–EE’
requires the presence of a narrow slab tear at least 500 km long.
Our interpretation is shown in Fig. 3. The northern edge of the
tear marks the southern termination of the sub-horizontal slab,
while the southern edge of the tear dips at an angle of ~45° to the
NNE, beneath the bend in the main Wadati–Benioff zone. The
tear decouples the northern and southern parts of the deep slab,
allowing the southern end to overturn, making Izu–Bonin the
first reported subduction zone where the slab lies inverted on top
of the upper–lower mantle boundary. The overturned slab frag-
ment in Fig. 2f appears to be about 300 km long. We propose that
the relatively low wavespeeds observed over a similar distance
further west in the same cross section correspond to the slab gap
created during tearing (Fig. 3). A similar interpretation was made
by Zhao et al.25.

The slab morphology observed in our tomographic images
closely resembles the morphologies produced by geodynamic
simulations, which model two closely spaced (<3000-km) slabs
subducting with the same polarity19–21, like the Izu–Bonin and
Philippines slabs. These simulations impose similar plate velo-
cities to those seen in the Izu–Bonin–Philippines region, but do
not use output from tomographic inversions as input to the
simulations. Over time, the simulations show the equivalent of
the Izu–Bonin Trench advancing, with the slab increasing in dip
and either flattening20,21 or becoming overturned19 in the MTZ.
The time evolution in the 2D geodynamic models can be used as
an approximation for the spatial evolution southwards along the
arc, as the cumulative distance of trench advance is greater at the
southern end of the Izu–Bonin system.

The magnitude of the high-wavespeed anomaly to the north of
the slab tear decreases by ~1% above the tight bend in the slab
(Sections BB’, CC’, DD’), but not further north (Section AA’). A
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similar observation has been made in previous tomographic
studies23,40, and interpreted as an approximately 300 km-wide
extensional tear in the slab. This interpretation is paradoxical, as
this part of the slab is currently in compression18,41,42. The higher
resolution of our study suggests that the low-wavespeed anomaly
is quasi-horizontal, and no more than ~50 km wide. Directivity
analysis on several earthquakes43 contained within the anomaly
indicates that co-seismic rupture preferentially takes place on
planes aligned with this zone (Fig. 2). This combination of rela-
tively low wavespeeds and evidence of simple shear suggests that
the low-wavespeed anomaly may demarcate an incipient shear
zone. We propose that the sequence of events, which led to the
formation of the shear zone, are as follows: (1) A fold formed in
the slab at ~400 km depth (e.g., Myhill18). (2) The deep slab met
increasing resistance to motion at the bottom of the MTZ. (3)
Continued trench advance resulted in the shallower part of the
slab advancing over the deeper part of the slab (e.g., Cizkova and
Bina19; Holt et al.21). (4) Localisation of deformation has resulted
in formation of a shear zone.

Reductions in P-wavespeed in shear zones could be the result
of shear heating (increasing temperatures lowers the wavespeeds
of elastic waves) or grain-size reduction (which lowers wave-
speeds by increasing grain boundary attenuation44,45). Heating
could further reduce seismic wavespeeds by creating hydrous
fluids through the dehydration of hydrous minerals, which can
potentially reside in the cold core of the slab36. Other hypotheses
for the low-wavespeed anomaly, such as the localised presence of
metastable olivine46, seem less likely, as there is no evidence from
plate reconstructions for an increase in lithosphere age or sub-
duction velocity in this region, which would increase the pre-
servation potential of olivine (see Supplementary Information).

If shear localisation is the cause of the low-wavespeed anomaly,
the slab must have a composition and rheology that permits
observable reductions in Vp. For example, if the slab were weak,
viscous dissipation would not be sufficient to increase the tem-
perature of the slab or effectively reduce grain sizes. The tem-
perature derivative of P-wavespeed (∂VP/∂T|P) in ultramafic
rocks in the deep upper mantle and MTZ is ~−0.4 m/s/K47, such
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that a VP reduction of 1% by shear heating alone corresponds to a
temperature increase of ~200 K (VP ~9 km/s), which must have
been generated over at most a few million years. A simple Couette
flow model (see Supplementary Information) suggests that this
amount of heating requires a viscosity on the order of 1023–1024

Pas. At reasonable strain rates of 10−14–10−13/s, this viscosity is
similar to laboratory estimates for dry olivine48 (see also Sup-
plementary Fig. 22). This high apparent strength is supported by
a lack of thickening of the high-wavespeed anomalies in the
tomographic cross sections within the upper mantle (Fig. 2).

Our tomographic images place further constraints on the
rheology of the slab. Newtonian rheologies (where stress and
strain have a simple linear relationship) do not result in the
formation of narrow shear zones. Thus, our observations of
buckling, tearing and shear zone formation suggest that the
Izu–Bonin slab is strongly non-Newtonian. Accurate geodynamic
simulations of the region must therefore use material models with
nonlinear rheologies49–51.

The refined shape of the slab also helps to explain a variety of
observations of the 2015 Mw 7.9 deep-focus Bonin earthquake.
We estimate that the event occurred <30 km south of the tear in
the slab, near the fold hinge where the slab rotates from near-
vertical to overturned (Figs. 2d and 3). This location explains the
lack of a protracted P-wave coda30 and the lack of ground motion
amplification in Japan52, both of which would have required a
continuous high-wavespeed layer extending north of the event to
act as a waveguide. The absence of waveform triplications from
the “660 km” discontinuity from this event, argued to be because
the event was confined to the lower mantle53, may alternatively be
the result of multiple phase transitions associated with strong

temperature gradients around the hypocentre (c.f. Cottaar and
Deuss54). Our interpretation is also largely consistent with the
data of Porritt and Yoshioka26, whose P to S receiver function
data indicated that seismic energy passing upwards through the
source region of the 2015 earthquake traversed more than one
region of high seismic wavespeeds.

There are similarities and also important differences between
our interpretation and that of previous studies. We agree with
Zhao et al.25 and Ye et al.29 (their Model 2) that the slab must be
torn, and that the 2015 earthquake ruptured the northern edge of
the southern part of the slab. However, in our interpretation, the
tear in the slab is not a vertical E–W-striking plane, but instead
dips at a moderate angle towards the north. A vertical E–W tear
could not explain the presence of the westward-dipping
Wadati–Benioff zone about 150 km to the southwest and 150
km above the 2015 Bonin earthquake (Fig. 1). Secondly, we
advocate for complete overturn of the slab within the MTZ.
Figure 2d–f indicate that the 2015 Bonin Islands earthquake
ruptured the lower edge of the imaged high-wavespeed anomaly.
Assuming that the highest wavespeeds correspond to the coldest
parts of the slab, and using thermal modelling results, which
indicate that the coldest parts of the Izu–Bonin slab are about 30
km from the slab surface (e.g., Emmerson and McKenzie55), the
earthquake occurred <25 km from the crustal section of the slab.
This interpretation differs from other analyses of the 2015 Bonin
earthquake, which locate the earthquake close to the “bottom” of
the subducting slab about 100 km from the crustal section, and
therefore in a high-temperature region25–27,30. As all potential
mechanisms for deep-focus earthquake generation require rela-
tively low temperatures56, our new interpretation resolves what
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was a major problem for theories of deep earthquake generation.
Nevertheless, our results indicate that the 2015 Bonin Islands
earthquake joins a growing list of large, isolated deep-focus
earthquakes, which are believed to lie close to the edges of sub-
ducting slabs: Spain 1954; Peru, 1963; Colombia, 1970; Bolivia,
1994; Tonga, 199457 and more recently Okhotsk, 201358. For this
reason, the 2015 Bonin Islands Earthquake may have ruptured a
region experiencing high thermal gradients and more rapid
heating than most of the slab.

In this study, we have shown that DD tomography can resolve
much finer-scale structures than conventional tomographic
techniques. It is particularly suited to imaging tears and other
heterogeneities in subducting slabs, which are well illuminated by
seismic sources. The new images provide estimates of the relative
slab thickening and the kinematics of slab disruption, thus pro-
viding much-needed reference data for geodynamic models51. In
the case of the Izu–Bonin slab, the localised shearing and tearing
revealed by our Vp images suggest that the slab is highly viscous,
and that nonlinear rheology plays a fundamental role in gov-
erning slab deformation and morphology. Finally, the simulta-
neous relocation of earthquakes during DD inversions provides a
robust method to link deep earthquakes directly to the thermal
conditions in their source regions.

Methods
Teleseismic double-difference tomography. In this study, we use the teleseismic
double-difference tomography software (teletomoDD)38, which is an imple-
mentation of the DD tomography algorithm of Zhang and Thurber37,61, extended
from the regional scale to the global scale. It uses differential arrival times from
event pairs observed at global seismic stations to simultaneously determine seismic
event locations and wavespeed structure38. It can image the source region structure
by cancelling the effect of model anomalies away from the source region. It can
therefore image the fine-scale structure of a seismically active area even if the
coverage of regional stations is sparse.

For each station k that records event pairs i and j, the misfits between the
observed and predicted arrival times are linearly related to the desired
perturbations to the hypocentre location, origin time and wavespeed structure
parameters of both global and regional models along the ray path. Mathematically,
the relations are as follows:
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where rik and rjk are the arrival-time residuals for event pair i and j at station k, x
and Δx are hypocentre coordinates and their perturbations, Δτi and Δτj are the
origin time perturbation for event i and j, δuGn and δuLn are slowness perturbations
for global (G) and local (L) models, respectively. wG

n and wL
n are the weighted ray

lengths for the global and local model nodes, and sk is the station correction.
By subtracting Eq. (2) from Eq. (1), we obtain

rik � rjk ¼
X3

l¼1

∂Ti
k

∂xil
Δxil þ Δτi þ

Xik

n2L
wL
nδu

L
n �

X3

l¼1

∂Tj
k

∂xjl
Δxjl þ Δτj þ

Xjk

n2L
wL
nδu

L
n

 !

ð3Þ

where rik � rjk ¼ Ti
k � Tj

k

� �obs
� Ti

k � Tj
k

� �cal
is called the double difference. Since

teletomoDD includes all possible body-wave arrival and differential time data
observed at any distance, a nested regional–global method is utilised to properly
constrain wavespeed anomalies along portions of seismic rays outside the regional
model38. In this method, a finely gridded regional model enclosing the target area is
built into a coarser global model (Supplementary Fig. 2). A nonuniform node
parameterisation is used for the regional model (Supplementary Fig. 2).

Due to differencing in travel times for pairs of events on common stations,
differential arrival times may contain larger random errors. Conversely, the
differencing operation can greatly reduce the effect of systematic errors in absolute
arrival times37. Waveform cross-correlation can be used to determine relative
arrival times among events much more accurately than absolute times62, as long as
the two events are close together and have similar focal mechanisms. Finally, in the
DD tomographic method, absolute arrival times are used in addition to double-
difference measurements, in order to improve absolute event locations37.

Modelling viscous dissipation in a slab shear zone. We consider a simple
Couette flow model for a slab shear zone of thickness w (m), where the difference
in velocity between the two sides of the zone is equal to vx (m s−1). In such a
model, the strain rate is constant within the shear zone:

_εxz ¼
vx
w

ð4Þ
Neglecting diffusion and phase transitions, and assuming that all energy is

dissipated by heat (ignoring processes such as grain-size reduction), the rate of
viscous dissipation is

_E ¼ ρCp
_T ¼ σII _εII ð5Þ

_εII ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

_εii _εjj � _εij _εij

� �r
ð6Þ

σII ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

σ iiσ jj � σ ijσ ij

� �r
ð7Þ

where ρ and Cp are the density and isobaric heat capacity (approximated as
constant, ρ= 3750 kg m−3 and Cp= 1200 J K−1 kg−1), Ṫ is the heating rate and εİI
and σII are the square roots of the second invariant of the strain rate (s−1) and
stress (Pa) tensors. The relationship between the stress and strain invariants is
given by the following expression:

_εII ¼
X

i

Aiσ
ni
II d

�pi exp
� Eiact þ pViactð Þ

RT

� �
1� σ

σ i

� �qi
� �si

ð8Þ

where p is the pressure (Pa), R the gas constant (J K−1 mol−1), T the temperature
(K) and d is the grain size (m). For each flow law i (diffusion, dislocation and
Peierls Law creep), Ai is a flow law prefactor, ni and pi are constant exponents and
Eiact and Viact are the activation energy (J mol−1) and volume (m3 mol−1). Values
for these variables are given in the Supplementary Information. Experimental
prefactors Aexpt are often derived from the deviatoric stress (σ11−σ33) and axial
strain (ε11) recorded during uniaxial compression experiments. Therefore, a
correction is needed to convert these into the prefactors Ai:

Ai ¼
3
niþ1
2

2
Aiexpt

ð9Þ
The derivation of the correction is given in the Supplementary Information

(S1.3) of Dannberg et al.63.

Code availability
The code teleTomoDD realising teleseismic DD tomography is available upon request.

Data availability
The EHB catalogue used in this study can be accessed via the website www.isc.ac.uk/isc-
ehb.
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