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In a recent article1, Li et al. reported the current-induced spin
polarization (CISP) on topological insulator (TI) Bi2Se3 and on
InAs (100) samples by spin potentiometry and compared the

sign of the measured signals using a theoretical model to conclude
the origin of the observed CISP in their TIs. Spin potentiometry
has been used to electrically measure CISP in spin-orbital coupled
(SOC) materials, such as TIs2–8, and semiconductor-based two-
dimensional electron gases (2DEG)9–11,12, where a ferromagnetic
(FM) voltage probe with magnetization (M) collinear to the
induced non-equilibrium spins is used to determine the CISP.
The theoretical model by Li et al. consists of two key components:
(a) a spin-dependent electrochemical potential diagram and (b)
an argument that FM probe with magnetization along up (down)
spin direction will measure the down (up) spin electrochemical
potential. However, we bring attention to the inconsistencies in
their paper. First, their (spatially varying) spin-dependent elec-
trochemical potential diagram is incorrect and inconsistent with
their topological surface states (TSS) band diagram to reflect the
same experimental condition. The corrected potential diagram in
conjunction with their model argument (b) is inconsistent with
their assigned origin of CISP based on the sign of the measured
signal. Second, they incorrectly stated that the experiment on (Bi,
Sb)2Te3 reported by Lee et al.7 gave the same sign as their mea-
surements, whereas it is opposite. Finally, we point out that the
comparison of the sign of the measured signal from TI with that
of InAs may not be sufficient to draw a conclusion on the origin
of CISP in their measurements.

Li et al.1 adopted a model similar to our prior model5,13,14 to
explain their observed CISP in terms of the spin-momentum
locking (SML) of TSS (see Fig. 1). However, there is a qualitative

difference regarding the electrochemical potentials between the
model described by Li et al. in ref. 1 (Fig. 1b, c taken from Fig. 5 of
ref. 1) and our model (Fig. 1d, e). First, their electrochemical
potential diagram (see Fig. 1c) is inconsistent with their band
diagram (see Fig. 1b) which is supposed to reflect the same
experimental situation (see Fig. 1a). In Fig. 1c, the chemical
potential of up-spin (μ↑) is lower than that of down-spin (μ↓),
whereas μ↑ is higher than μ↓ in Fig. 1b. The relative order and the
magnitude of the two opposite spin-dependent electrochemical
potentials should be self-consistent between the band diagram
(energy versus momentum) and their spatial distribution plot
(energy versus distance), namely μ↑ should be higher than μ↓ in
both Fig. 1b, c. We have drawn the corrected versions of Fig. 1b, c
in Fig. 1d (band diagram) and Fig. 1e (spatial variation),
respectively, under the same bias condition as Fig. 1b, c. Fur-
thermore, Li et al.1 used the absolute values of the electrochemical
potentials (|μ↑| and |μ↓|) in the band diagram (see Fig. 1b), which
is also incorrect since it changes the actual physics depending on
the choice of the ground or zero energy level. Generally speaking,
which spin state of electrons is more occupied should be governed
by the difference (μ↑− μ↓) between μ↑ and μ↓, not by their
absolute values. Moreover, unlike what is depicted in Fig. 1c, the
choice of the reference position for zero potential (µ= 0) is not
important for determining which spin state is more occupied (or
which spin chemical potential is higher). Since the electrons are
injected by the right contact and flow from right to left in Fig. 1c,
the chemical potential (μR) of the right contact is higher than that
(μL) of the left contact (see Fig. 1c). Meanwhile, this also means
that in the channel there should be more occupation of the left-
going electron states (corresponding to up-spin states in a TI
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channel with the SML of TSS) than the right-going states (cor-
responding to the down-spin states), thus μ↑ (equivalently the
chemical potential of left-going electrons) should be higher than
μ↓ (the chemical potential of right-going electrons), whereas μ↑ is
incorrectly drawn to be lower than μ↓ in Fig. 1b. Based on the
above arguments, the sign of the spin voltage expected from the
corrected potential diagram (seen Fig. 1d, e) in conjunction with
their model argument b is opposite to the signal sign on Bi2Se3
reported by Li et al. Thus, the origin of the CISP observed in their
Bi2Se3 samples is inconsistent with the expected CISP from the
TSS.

We further note that Li et al.1 incorrectly stated that another
experiment on (Bi,Sb)2Te3 by Lee et al.7 (which is ref. 29 in ref. 1)
gave a consistent sign as theirs, whereas it is opposite. We point
out that the sign reported by Lee et al.7 is consistent with several
other reports (see, refs. 5,6,8) while opposite to Li et al.1,2, as
summarized in Table 1.

Li et al.1 also attempted to infer the origin of CISP in their
Bi2Se3 by making a comparison with SOC semiconductor InAs,

where a Rashba-type 2DEG normally exists on the surface. We
caution that such a comparison may not be sufficient to draw a
conclusion on the origin of CISP. For example, it is known that,
depending on the direction of the effective electric field (potential
gradient) perpendicular to the 2DEG9–11,12, the spin helicity of
the outer Rashba band (which dominates the signals measured in
transport) can be either opposite to or the same as that of TSS.
Without a careful consideration of various parameters (e.g., an
independent determination of the spin texture, for example by
ARPES, and consideration of capping surfaces, interfaces, etc.) of
their samples, spin potentiometric measurements in their InAs
sample cannot provide an unambiguous “calibration” to deter-
mine the direction of the CISP measured by spin potentiometry
in their Bi2Se3.

Further complications can arise from the fact that in addition
to the nontrivial spin-momentum-locked TSS, Bi2Se3 often con-
tains multiple bands and conducting channels with spin-orbit
coupling that can affect CISP. For example, the trivial surface
2DEG derived from bulk states and often observed by ARPES15 in
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Fig. 1 Comparison of the models depicting the sign of the spin signals expected from TSS. a The schematic structure of a device with a charge current (I)
flowing from left (L) to the right (R); b The band structure diagram of TSS, taken from the left panel shared by Fig. 5b, c in ref. 1; c Diagram showing spatially
varying spin-dependent electrochemical potential, taken from the top panel of Fig. 5c in ref. 1. d, e Our understanding of the spin-dependent electrochemical
potentials of TSS in 3D TIs under the same bias current as that shown in b, c. The chemical potential (μ↑) of up spins is higher than that (μ↓) of down spins
in both d and e

Table 1 Comparison of the reported results on CISP in 3D TIs measured by spin potentiometry

Li et al. (refs.1, 2) Tian et al. (ref. 5) Dankert et al. (ref. 6) Lee et al. (ref. 7) Yang et al. (ref. 8)

Charge current direction (Ic) +x +x +x +x +x
Electron current direction (Ie) −x −x −x −x −x
Magnetization direction of FM (M) +y +y +y +y +y
Sign of spin signal (VS) − + + + +
Channel spin polarization direction (sc) −y +y +y +y +y
Spin polarization from TSS (s) +y +y +y +y +y
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Bi2Se3 possesses strong Rashba-type spin-orbit coupling and
typically has two fermi surfaces with opposite spin helicities12.
We note that the model (Fig. 1d, e) we developed is only for TSS
in the ideal case of bulk-insulating TI materials where the Fermi
level is inside the bulk band gap. If the TI samples have metallic
bulk with their Fermi levels located in the conduction band where
the multiple bands coexist, our model may not be sufficient to
determine the sources of the measured CISP.

In conclusion, the model used by Li et al.1 is erroneous and
inconsistent with their TSS band diagram, and also inconsistent
with the expected CISP due to TSS. The sign of the CISP signal
experimentally observed in their Bi2Se3 is opposite to that pre-
dicted by a corrected model based on TSS and that observed in
other experiments on various TI materials5–8. Owing to the
existence of multiple bands in the bulk-metallic TI samples, the
source of the measured CISP can be complicated, possibly
involving competition between different bands (e.g., TSS and
Rashba bands). Identifying the origin of CISP in bulk-metallic TI
samples such as the Bi2Se3 used by Li et al.1 may require analysis
beyond the simple model (Fig. 1c, d) we developed.

Data availability
All relevant data are available from the authors upon request.
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