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Topologically enhanced harmonic generation
in a nonlinear transmission line metamaterial
You Wang1, Li-Jun Lang 1,2, Ching Hua Lee3,4, Baile Zhang 1,5 & Y.D. Chong 1,5

Nonlinear transmission lines (NLTLs) are nonlinear electronic circuits used for parametric

amplification and pulse generation, and it is known that left-handed NLTLs support enhanced

harmonic generation while suppressing shock wave formation. We show experimentally

that in a left-handed NLTL analogue of the Su-Schrieffer-Heeger (SSH) lattice, harmonic

generation is greatly increased by the presence of a topological edge state. Previous

studies of nonlinear SSH circuits focused on solitonic behaviours at the fundamental

harmonic. Here, we show that a topological edge mode at the first harmonic can produce

strong propagating higher-harmonic signals, acting as a nonlocal cross-phase nonlinearity.

We find maximum third-harmonic signal intensities five times that of a comparable con-

ventional left-handed NLTL, and a 250-fold intensity contrast between topologically nontrivial

and trivial configurations. This work advances the fundamental understanding of nonlinear

topological states, and may have applications for compact electronic frequency generators.
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Topological edge states—robust bound states guaranteed to
exist at the boundary between media with topologically
incompatible band structures—were first discovered in

condensed matter physics1. Recently, electronic LC circuits have
emerged as a highly promising method of realizing these
remarkable phenomena2–9. Compared to other classical platforms
like photonics10–13, acoustics14–16, and mechanical lattices17–19,
which have also been used to realize topologically nontrivial
band structures and topological edge states, electronic circuits
have several compelling advantages: extreme ease of experimental
analysis; the ability to fabricate complicated structures via
printed circuit board (PCB) technology; and the intriguing pro-
spect of introducing nonlinear and/or amplifying circuit elements
to easily study how topological edge states behave in novel phy-
sical regimes. Notably, circuits have been used to study the
Su–Schrieffer–Heeger (SSH) chain (the simplest one-dimensional
topologically-nontrivial lattice)4,20, nonlinear SSH chains sup-
porting solitonic edge states8, two-dimensional topological insu-
lator lattices2, and the corner states of high-order topological
insulators5,9.

One of the most interesting questions raised by the emergence
of topologically nontrivial classical lattices is how topological
edge states interact with nonlinear media. Previous studies have
focused on nonlinearity-induced local self-interactions in the
fundamental harmonic, which can give rise to solitons with
anomalous plateau-like decay profiles in nonlinear SSH
chains8,21, or chiral solitons in two-dimensional lattices22–27. It
has also been suggested that topological edge states in nonlinear
lattices could be used for robust traveling-wave parametric
amplification28, optical isolation29, and other applications30–33.

In this paper, we report on the implementation of a nonlinear
SSH chain based on a left-handed nonlinear transmission line
(NLTL)34–41, in which the topological edge state induces highly
efficient harmonic generation. Although previous studies have
emphasized the role of local self-interactions, including in a
previous demonstration of a nonlinear SSH circuit based on
weakly-coupled LC resonators8, an important feature of our cir-
cuit is the decisive role of higher-harmonic signals in modulating

the first-harmonic modes: they can drive the entire lattice, not
just the edge, deeper into the nontrivial regime at the first-
harmonic frequencies. This behavior is aided by the fact that the
left-handed NLTL has an unbounded dispersion curve supporting
traveling-wave higher-harmonic modes38–42.

Our measurements on the nonlinear circuit reveal a first-
harmonic mode that is localized to the lattice edge, similar to a
linear topological edge state, as well as higher-harmonic waves
that propagate into the lattice bulk and have voltage amplitudes
reaching over an order of magnitude larger than the first-
harmonic signal. The intensity of the generated third-harmonic
signal has a maximum of ≈2.5 times that of the input first-
harmonic signal, compared to <0.5 for a comparable conventional
left-handed NLTL without a topological edge state. The impor-
tant role played by the topological edge state is further demon-
strated by the fact that the third-harmonic intensity is 250 times
larger than in a trivial circuit, which has equivalent parameters
but lacks a topological edge state in the linear limit, using the
same input parameters.

Results
Circuit design. The transmission line circuit is shown schema-
tically in Fig. 1a. It contains inductors of inductance L and
capacitors of alternating (dimerized) capacitances Ca and Cb. We
will shortly treat the case where the Cb capacitors are nonlinear
(the L and Ca elements are always linear). First, consider the
linear limit where Cb is a constant. We define the characteristic
angular frequency ωa= (LCa)−1/2, and the capacitance ratio

α ¼ Ca=Cb: ð1Þ

The case of α= 1 corresponds to a standard (non-dimerized) left-
handed transmission line. This type of transmission line is
characterized by having sites separated by capacitors, and con-
nected to ground by inductors, rather than vice versa. Left-
handed NLTLs have been shown to be useful for parametric
amplification and pulse generation38–41.
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Fig. 1 Design and implementation of SSH-like left-handed transmission line. a Schematic of the transmission line circuit with alternating capacitances: linear
capacitors with capacitance Ca, and back-to-back varactors with nonlinear capacitance Cb. The capacitances act like hoppings in a nonlinear
Su–Schrieffer–Heeger (SSH) model. An input voltage is applied at points A or B to probe the topologically trivial or nontrivial lattice. b Photograph of
the printed circuit board. c Capacitance Cb versus bias voltage. Dots are calculated from varactor manufacturer data, and the solid curve is the fit based
on Eq. (5). d, e Calculated eigenfrequencies of a finite closed linear circuit, versus the capacitance ratio α= Ca/Cb. The characteristic frequency is fa=
ωa/2π≈ 19MHz, and the lattice has 40 sites. Two cases are shown: d Ca-type capacitors at the edge, for which the α > 1 gap is topologically nontrivial;
e Cb-type capacitors at the edge, for which the α > 1 gap is trivial. Red dotted curves indicate the band-edge frequencies fa=

ffiffiffi
2

p
and

ffiffiffiffiffiffiffiffi
α=2

p
fa. Blue dashes

indicate the operating regime of the nonlinear circuit, with α≈ 1.3 in the linear (low-voltage) limit and α effectively increasing with voltage amplitude
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Let us treat the points adjacent to the capacitors as lattice sites,
indexed by an integer k, and close the circuit by grounding the
edges [the left edge is the site labeled A in Fig. 1a]. Using
Kirchhoff’s laws, we can show that a mode with angular
frequency ω satisfies (see Supplementary Note 1):

H� 1
α

� � v1
v2
v3

..

.

0
BBBB@

1
CCCCA ¼ 1� ω2

a

ω2

� � v1
v2
v3

..

.

0
BBBB@

1
CCCCA; ð2Þ

where vk denotes the complex voltage on site k. The matrix H has
the form of the SSH Hamiltonian:

H ¼

0 1
α

1
α 0 1

1 0 1
α

1
α 0 . .

.

. .
. . .

.

0
BBBBBBBB@

1
CCCCCCCCA
: ð3Þ

Thus, the eigenfrequency modes of the circuit have a one-to-one
correspondence with the SSH eigenstates.

The band diagram for the linear closed circuit is shown in
Fig. 1d. The lack of an upper cutoff frequency is a characteristic of
left-handed transmission lines40. There is a bandgap in the range
ωa=

ffiffiffi
2

p
<ω<

ffiffiffiffiffiffiffiffi
α=2

p
ωa. For α > 1, the bandgap contains edge states,

which are zero-eigenvalue eigenstates of H that can be
characterized via a topological invariant derived from the Zak
phase1. The edge state’s angular frequency is

ωes ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α=ð1þ αÞ

p
ωa: ð4Þ

Note that the edge state are not at zero frequency, nor do they
lie at precisely the middle of the bandgap; this is due to
the aforementioned mapping from the circuit equations to the
SSH model—specifically, the fact that ω is not the eigenvalue
in Eq. (2).

For α < 1, there is a finite bandgap below ωa=
ffiffiffi
2

p
, which is

topologically trivial and contains no edge states. If we swap
the two types of capacitors, so that the Cb-type capacitors are the
ones at the edge, then the α > 1 bandgap is trivial and the α < 1
bandgap nontrivial, as shown in Fig. 1e.

Next, consider a nonlinear circuit with each Cb capacitor
consisting of a pair of back-to-back varactors. The nonlinear
capacitance Cb decreases with the magnitude of the bias voltage
(the voltage between the end-points of the capacitor), as shown in
Fig. 1c. For theoretical analyses, it is convenient to model this
nonlinearity by

αnlðtÞ � Aþ B ΔVðtÞ½ �2; ð5Þ

where αnl(t)≡ Ca/Cb(t), and ΔV(t) is the bias voltage. The key
feature of the nonlinearity is that at higher voltages, the effective
value of α increases. Depending on the chosen boundary
conditions, this drives the circuit deeper into the topologically
trivial or nontrivial regime.

Experimental results. The implemented NLTL, shown Fig. 1b,
contains a total of 40 sites, or 20 unit cells. The linear circuit
elements have L= 1.5 μH and Ca= 47 pF, so that ωa/2π ≈
19MHz. By fitting Eq. (5) to manufacturer data for the varactors
at low bias voltages (see Supplementary Note 3), we obtain

A= 1.32 and B= 0.51 V−2 (thus, in the linear limit, α ≈ 1.3 > 1).
The fitted capacitance–voltage relation is shown in Fig. 1c.

We supply a continuous-wave sinusoidal input voltage signal,
with tunable frequency fin and amplitude Vin, to either of the
points labeled A and B in Fig. 1a. This allows us to study the cases
corresponding to Fig. 1d, e, which we refer to as the “nontrivial”
and “trivial” lattices, respectively (see Methods). In both cases,
the input site is denoted as k= 0.

A typical set of measurement results is shown in Fig. 2a–c, for
fin= 16MHz and Vin= 2.5 V. On each site k, the spectrum of the
voltage signal is shown in Fig. 2c, with prominent peaks at odd
harmonics (fin, 3fin, 5fin, etc.); even harmonics are suppressed due
to the symmetry of the capacitance–voltage relation39. Focusing
on the first and third harmonics, we define the respective

peak values as v f
k

��� ��� and v3fk

��� ���, and use these to plot Fig. 2a, b. We

verified that these experimental data agree well with results
from the SPICE circuit simulator (see Supplementary Note 5).

From Fig. 2a, b, we see that the nontrivial and trivial lattices
exhibit very different behaviors for both the first- and third-
harmonic signals. First, consider the first-harmonic signal. In
both lattices, there is an exponential decay away from the
edge, but the decay is sharper in the nontrivial lattice, which
may be attributed to the enhanced intensity arising from the
coupling of the input signal to the topological edge state. As
a quantitative measure of the localization of the first-harmonic
signal, Fig. 2d, e shows the inverse participation ratio (IPR)
P

k v
f
k

��� ���4= P
k v

f
k

��� ���2
� �2

; a larger IPR corresponds to a more

localized profile43. We see that the IPR is substantially larger in
the nontrivial lattice than in the trivial lattice, over a broad range
of fin and Vin. The strong difference in localization is a key
signature of nonlinearity: in the linear regime, a driving voltage
on the edges of the nontrivial and trivial lattices would produce
different overall amplitudes, but the same exponential decay
profile (see Supplementary Note 1). It is interesting to note that
the region of enhanced IPR, shown in Fig. 2d, closely resembles
the nontrivial bandgap in Fig. 1d.

We can also see from Fig. 2a, c that strong higher-harmonic
signals are present in the nontrivial lattice. Moreover, Fig. 2a
indicates that the third-harmonic signal is extended, not localized
to the edge. To understand this in more detail, we define

χ ¼ v3fk

��� ���2
� �

=V2
in; ð6Þ

which quantifies the intensity of the third-harmonic signal
relative to the input intensity at the first harmonic. Here, 〈⋯〉
denotes an average over the first ten lattice sites. Figure 3a, b plots
the variation of χ with fin and Vin. In the nontrivial circuit, the
maximum value of the normalized intensity is χ ≈ 2.5 for fin ~ 16
MHz and 1 V≲Vin≲ 4 V. The fact that χ peaks over a relatively
narrow frequency range, as shown in Fig. 3a, may be a finite-size
effect: the high-frequency modes of the lattice form discrete sub-
bands due to the finite lattice size [see Fig. 1d, e]. In computer
simulations, we obtained a similar maximum value of χ ≈ 2.4
for the nontrivial lattice, whereas a comparable left-handed
NLTL of the usual design (containing only identical nonlinear
capacitances) has maximum χ ≈ 0.47 (see Supplementary Note 7).

The trivial lattice exhibits a much weaker third-harmonic
signal. As indicated in Fig. 3c, for certain choices of fin and Vin,
the value of χ in the nontrivial lattice is 200 times that in the
trivial lattice. Figure 3d plots the normalized third-harmonic
signal intensities versus the site index k, showing that they do not
decay exponentially away from the edge. In the nontrivial lattice,
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the normalized third-harmonic signal increases with Vin (i.e.,
stronger nonlinearity).

Discussion
Our results point to a complex interplay between the topological
edge state and higher-harmonic modes in the SSH-like NLTL.
When a topological edge state exists in the linear lattice, it can
be excited by an input signal at frequencies matching the bandgap
of the linear lattice. The importance of the edge state is evident
from the comparisons between the topologically trivial and
nontrivial lattices (Figs. 2, 3). Note also that when the excitation
frequency lies outside the linear bandgap, the two lattices behave
similarly and the harmonic generation is relatively weak.

In the topologically nontrivial lattice, the resonant excitation
generates third- and higher-harmonic signals that penetrate deep
into the lattice, unlike the first-harmonic mode which is localized
to the edge. Away from the edge, the higher-harmonic signals
become stronger than the first harmonic, and hence dominate

the effective value of the nonlinear α parameter. In the linear
lattice, α is the parameter that drives the topological transition,
and increasing α leads to a larger bandgap and hence a more
confined edge state. In the nonlinear regime, Fig. 2 shows an
order-of-magnitude increase in the third-harmonic signal
amplitude in the nontrivial lattice, relative to the trivial lattice;
this implies an effective increase in α, and indeed we see that
the first-harmonic mode profile is more strongly localized. A
more localized edge state, in turn, produces a stronger response
to an input signal.

The above interpretation is supported by a more detailed
analysis of the coupled equations governing the different circuit
mode harmonics (see Supplementary Notes 2–4). These equa-
tions involve an effective α parameter whose approximate value,
in the n-th unit cell, is αnh i � Aþ 2B

P
m Wm

n

�� ��2, where Wm
n

�� ��
is the m-th harmonic of the bias voltage on the nonlinear capa-
citor in the n-th unit cell, and m= 1, 3, 5, … We are able to show
that propagating waves can be self-consistently realized for higher
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(m ≥ 3) harmonics in the presence of non-linearity, even if the
fundamental (m= 1) mode only has decaying solutions. The first-
harmonic mode is localized to the edge, with localization length
decreasing with 〈αn〉 in a manner similar to the linear SSH-like
lattice. The generation of the higher-harmonic signals occurs
mainly near the edge of the lattice, where the first-harmonic
mode is largest. The nonlinearity-induced harmonic generation
is aided by the well-known fact that the SSH edge state changes
sign in each unit cell, corresponding to the fact that the gap
closing in the SSH model takes place at the corner of the
Brillouin zone20. This feature increases the bias voltages across
the nonlinear capacitors, which can thus exceed the values of the
voltages at individual sites.

The input signal can also be applied to the middle of the lattice.
In this context, it is interesting to note that when we choose to
excite a single site in the bulk of an SSH-like lattice, the sections
to either side of the excitation have different topological phases:
either trivial on the left and nontrivial on the right, or vice
versa, depending on the two possible choices of excitation site.
If the source impedance is sufficiently low, the effect is similar
to exciting independent chains to the left and right; thus, the
enhanced higher-harmonic signal is preferentially emitted toward
the topologically nontrivial side (see Supplementary Note 6).

The presence of higher-harmonic signals distinguishes our
system from previous studies of nonlinear topological edge states,

which were based on nonlinear self-modulation at a single har-
monic. For instance, in a nonlinear SSH lattice where the cou-
pling depends on the local intensity of a single mode, soliton-like
edge states with anomalous mode profiles were predicted21, and
subsequently verified using a NLTL-like circuit8. That circuit,
unlike ours, had narrow frequency bands and thus did not sup-
port propagating higher-harmonic modes. Topological solitons
based on nonlinear self-modulation are also predicted to exist in
higher-dimensional lattices22–27. In our case, the effective value
of α away from the edge is dominated by the higher-harmonic
signals; from the point of view of the first-harmonic mode, these
act as a nonlocal nonlinearity, driving the entire lattice deeper
into the topologically nontrivial regime, not just the sites with
large first-harmonic intensity.

Our work opens the door to the application of topological edge
states for enhancing harmonic generation, not just in transmis-
sion line circuits, but also a variety of other interesting systems.
These include two-dimensional electronic lattices, where topolo-
gical edge states have already been observed in the linear regime2,
and the unidirectional nature of the edge states may be even more
beneficial for frequency-mixing28. Higher dimensional circuit
lattices may possess different thresholds for bulk propagation in
different directions, with an extreme generalization being that of
a corner mode circuit constructed in ref. 4. Electronic circuits
incorporating amplifiers and resistances may also be able to
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explore behaviors analogous to topological lasers44–48, combining
topological states with both nonlinearity and non-Hermiticity.
Finally, circuits containing varactors that are explicitly time-
modulated may be suitable for generating synthetic dimensions
to realize topological features in higher dimensions49–54.

Methods
Sample fabrication and experimental procedure. The NLTL was implemented
on a PCB (Seeed Tech. Co.), with each nonlinear capacitor consisting of a pair of
back-to-back varactors (Skyworks Solutions, SMV1253-004LF). The transmission
line, as fabricated, is topologically nontrivial, as shown in Fig. 1a. To probe the
trivial circuit, we use a switch to add one sublattice unit cell at the rightmost end of
the transmission line, and disconnect the leftmost Ca and L in Fig. 1a. This yields a
nontrivial circuit of same length, with the Ca and Cb capacitors swapped.

A function generator (Tektronix AFG3102C) supplies the continuous-wave
sinusoidal input voltage, and the voltages on successive lattice sites, k ≥ 1, are
measured by an oscilloscope (Rohde & Schwarz RTE1024) in high-impedance
mode. Numerical results were obtained using the SPICE circuit simulator.

Data availability
Raw experimental data and Python code used to generate all plots can be found at
https://doi.org/10.21979/N9/I74ZP1. All other data are available from the authors upon
reasonable request.
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