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Percolation thresholds for photonic quantum
computing
Mihir Pant1,2, Don Towsley3, Dirk Englund 1 & Saikat Guha1,2,4

Despite linear-optical fusion (Bell measurement) being probabilistic, photonic cluster states

for universal quantum computation can be prepared without feed-forward by fusing small n-

photon entangled clusters, if the success probability of each fusion attempt is above a

threshold, λðnÞc . We prove a general bound λðnÞc � 1=ðn� 1Þ, and develop a conceptual method

to construct long-range-connected clusters where λðnÞc becomes the bond percolation

threshold of a logical graph. This mapping lets us find constructions that require lower fusion

success probabilities than currently known, and settle a heretofore open question by showing

that a universal cluster state can be created by fusing 3-photon clusters over a 2D lattice with

a fusion success probability that is achievable with linear optics and single photons, making

this attractive for integrated-photonic realizations.
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Optical qubits are a promising candidate for scalable uni-
versal quantum computing because of the relative ease of
generating photons, fabricating photonic circuits1–3, and

low decoherence rates. Assembling a universal photonic cluster
state, e.g., by fusing small entangled clusters using linear optical
interferometers into progressively larger ones, is limited by
probabilistic operations because of the limitations of linear optics.
For example, a linear–optical circuit for a two-qubit Bell-state
measurement (BSM)—the smallest primitive to “fuse” two cluster
states—can succeed with at most probability 1/2= 0.54,5. How-
ever, since photons are the base resource to encode qubits any-
way, it is reasonable to allow photons to be used as an ancilla
resource to boost the success probability of linear–optic BSMs6–8.
The maximum known BSM success probability attainable using
linear optics, boosted by injecting eight ancilla single photons, is
25/32= 0.781258. It is not known if a higher BSM success
probability is possible with linear optics boosted with more single
photons. Very little is understood about similar success-
probability limits associated with linear–optical realizations of
larger (three or more qubits) projective measurements, and those
for creating small photonic entangled clusters9. The lack of our
understanding of the maximum efficiency in creating universal
photonic cluster states goes back to the mathematical structure of
manipulations of multiphoton entangled states using linear optics
and photon detection being complex, as evidenced by the hard-
ness of boson sampling10.

Linear optical quantum computing (LOQC) in its widely
known circuit-model form—coined by the seminal KLM paper11

—employs single-photon dual-rail qubits (|0〉≡ |10〉, |1〉≡ |01〉),
probabilistic linear–optical gates, single-photon detection,
and measurement-induced feedforward. Even though KLM’s
scheme in principle can do universal quantum computing, the
overheads are astronomically high. Many variants of KLM were
proposed12–14 that use entangled ancillas to reduce the overheads,
but the hardness was pushed into creating those ancillas. Schemes
for efficient generation of these ancillas from simpler resources
such as single photons remain unknown. Furthermore, the need
for detection-induced feedback creates additional experimental
issues. This resulted in LOQC being largely disfavored in lieu of
other qubit technologies, such as superconducting and trapped-
ion qubits.

Kieling, Rudolph, and Eisert proposed a cluster-model version
of LOQC15, which mitigates these issues. Their scheme places d +
1 photon “star” clusters at nodes of a regular lattice G with
degree-d nodes and stitches them together using two-photon
fusions (BSMs) along the lattice edges (see Fig. 1). If the success
probability of each fusion attempt λ is above the bond percolation
threshold pc(G) of the underlying lattice G, the resulting cluster
state will be a long-range-connected (random) subgraph of G,

which can then be renormalized into a universal cluster state by
identifying a subarray of nodes in the percolated lattice—the
intersection points of vertical and horizontal “percolation
highways”16,17—to serve as the nodes of a logical universal lattice
and identifying paths connecting them through other nodes of
the percolated subgraph as edges of this logical lattice (see
Fig. 2a). The inspiration behind this model is that if small d + 1
photon clusters can be created, and a lattice can be identified
whose bond- percolation threshold is below a practically attain-
able fusion success probability, then the clusters can be
linear–optically fused into a large universal cluster state in a one-
shot (or “ballistic”) fashion, with no detection-induced feedfor-
ward. In order to produce conservative estimates for the fusion
success probability required to produce a renormalizable cluster
state, this work disregarded the “failure modes” of the fusion
attempts, i.e., the leftover cluster states when fusion attempts fail.

Significant progress in this model of LOQC came recently from
Rudolph and collaborators, who by paying closer attention to the
failure modes, and a clever design of 3D lattices with a low-
percolation threshold, e.g., the diamond18 and the pyrochlore
lattice19, were able to show that ballistic creation of a universal
cluster state is possible starting with a large supply of three-
photon-entangled (GHZ state) clusters, with two-photon fusions
that succeed with a probability ≈0.625. Since 0.625 < 25/32=
0.78125, the best-known success probability attainable with linear
optics boosted with unentangled single-photon ancillas8, this gave
the first realizable ballistic construction of a universal cluster if
three-photon GHZ clusters were available as a starting point.

The results of Gimeno-Segovia et al. and Zaidi et al.18,19 on
ballistic (feedback-free) creation of universal clusters, in con-
junction with a host of progress in experimental proposals to
directly create small photonic entangled clusters using quantum
emitters20–22 (rather than starting with single photons and fusing
them probabilistically using heralded methods into larger clus-
ters), have resurrected the optimism in scalable optical quantum
computing. However, the fundamental limits of efficiency and
resource overhead associated with this philosophy—that of direct
generation of a universal cluster state using small photon clusters
and linear optics—remain unanswered. Refs. 18,19 present two
(clever, yet ad hoc) examples of constructions that use three-
photon clusters as the starting point.

The goal of this paper is to explore this fundamental limit. We
address the following general question:

Given an unlimited supply of n-photon-entangled dual-rail-
basis clusters, and repeated use of a linear–optical circuit that
realizes two-qubit fusion with probability of success λ, but with
no restrictions on how the clusters to be fused are aligned in space
and time, what is the minimum value λðnÞc of each fusion’s success
probability that will allow for ballistic creation of a universal
cluster state?

Before we proceed, it should be clear that the two examples we
discussed above—one in Fig. 115 and that in ref. 18—establish the
following bounds:

λð5Þc � 0:5; ð1Þ
and

λð3Þc ≲ 0:625; ð2Þ
where we use ≲ sign instead of ≤ in Eq. (2), since the 0.625
threshold was an approximate numerical estimation of the
threshold using a small-sized diamond lattice18.

We focus on Bell-measurement-based fusion operations.
Although Browne and Rudolph’s original paper that coined the
term “fusion”13 also proposed an alternative linear optical
fusion circuit (called fusion-I), subsequent work has focussed on

Fig. 1 Creating a percolated square lattice with fusion. Fusing five-photon
star clusters into a percolated 2D square lattice is possible with two-qubit
fusion operations, if each fusion attempt succeeds with the probability
more than 0.5, the bond-percolation threshold of the lattice15
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Bell-measurement-based fusion (fusion-II of ref. 13) because of its
natural loss tolerance and recent progress in boosting its success
probability by injecting unentangled single-photon ancillas8.

In this paper, we prove that starting with n-photon clusters, a
fusion success probability of at least 1/(n−1) is required to create
a resource state for universal quantum computation without
feedforward. We map a planned set of fusion operations on
photon pairs among a regular spatial array of n-photon clusters—
the cluster-fusion lattice, G1—to an instance of bond percolation
on a logical lattice G2. We use this map to find new constructions
to produce universal photonic cluster states starting with three-
photon cluster states as the initial resource, without feedforward,
that require a lower fusion success probability than was pre-
viously known. Finally, we settle a heretofore open question by
showing that a universal cluster state can be created by fusing
three-photon clusters over a 2D lattice with a fusion success
probability that is achievable with linear optics and single pho-
tons, making this attractive for integrated-photonic realizations.

Results
Summary of the main results. The main results in this paper are
as follows:

1. We prove a general lower bound λðnÞc >1=ðn� 1Þ, and provide
evidence in favor of our conjecture that it is tight (achievable
as closely as we wish).

2. We develop a systematic graphical construction of a universal
cluster, wherein λðnÞc becomes the usual bond-percolation
threshold of a logical graph that we specify, while accounting
for the fusion failure modes. This is a key realization that was
missing in both Kieling et al.’s construction15 as well as in
refs. 18,19. This not only enabled us to readily generate
achievable thresholds (upper bounds on λðnÞc ) using existing
literature on bond percolation, but also helped us to prove
the aforesaid lower bound. We believe that this logical
construction also naturally generalizes to future extensions
that may employ multi-qubit fusions (projective measure-
ments). We describe this construction systematically in the
section “Reconciling prior results in a new framework”, and
present several improved thresholds using this new formal-
ism. However, we develop a fully axiomatic construction of

this logical graph for the most general case if left open for
future work.

3. Using our logical construction, we prove λð3Þc � 0:5898 as an
achievable threshold, which improves upon the best existing
result in ref. 18. As a by-product of our logical construction
allowing a standard bond-percolation interpretation, we were
able to reinterpret the construction of ref. 18 in our formalism
and used Newman and Ziff’s efficient Monte Carlo algorithm
to refine their threshold (2) to λð3Þc � 0:627.

4. We settle a heretofore open question posed by Rudolph and
collaborators18,19,23 by showing that a universal cluster can
be created by linear–optically fusing three-photon GHZ
clusters over a 2D (brickwork) lattice with fusion success
probability 0.746, which is below 25/32, the maximum
known fusion success probability achievable with a single-
photon-boosted linear–optic scheme8, making this attractive
for integrated-photonic realizations.

In the next section, we will begin with a discussion of the high-
level problem setup and the constraints therein, following which
we will present a logical technical progression leading to our main
results and the key intuitions. Detailed derivations and technical
graphical constructions not central to following the main
arguments in the paper are presented in the Supplementary
Note 2.

Generality and constraints of our problem setup. Figure 3 and
its caption explains our high-level problem setup. It follows from
our discussion above that we are limiting ourselves to only those
multimode linear–optical unitaries U that can be pieced together
using a sequence of two-qubit linear–optic BSMs. Our problem
formulation, however, subsumes the special cases of the con-
structions in refs. 15,18,19. Furthermore, our formulation allows
for yet-undiscovered fusion circuits that may be boosted with up
to n-photon entangled clusters (which may attain a success
probability greater than the currently best known, 25/32). It also
admits generalizations to multi-qubit fusion, i.e., m-qubit GHZ-
state projections, the theory behind optimal linear–optical reali-
zations of which it remains not well understood.

The detectors shown in Fig. 3 are those corresponding to the
linear–optical fusion gates pushed (deferred) all the way to the

Cluster fragments: efficiently simulable classically Resource for universal quantum computing
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Fig. 2 Bond-percolation threshold of a square lattice. a Each bond in a regular lattice of m bonds is activated with probability p. If p < pc (the subcritical
regime), where pc is the bond-percolation threshold, the size of the largest connected component is O(log m). At p= pc, a sharp transition occurs, and for
1≥ p > pc, the size of the largest connected component is O(m). In this (supercritical) regime, O(m) criss-crossing edge-disjoint paths (percolation
highways) exist from left to right and from top to bottom17, using which one can identify a logical lattice whose nodes are the intersection points of the
highways, and edges are paths connecting those nodes. b Size of the largest connected component, expressed as a fraction of m, as a function of p ∈ [0, 1]
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right with no loss of generality. Similarly, any photons or photon
clusters used to boost any fusion gate are pushed to the left of U.
This way, one can envision the cluster preparation as a
multimode linear optical circuit presented with individual
photons and photon clusters as input, and producing (determi-
nistically) a renormalizable universal cluster state as its output.
The individual detector outputs are random, but if we design U in
a way that the percolation condition is met, the undetected
outputs of U would, with high probability, carry a random
instance of a universal long-range-connected (percolated) cluster
and the vector of detector outputs would simply tell us what
cluster state got created on the undetected outputs, and thus give
us the necessary data to compute criss-crossing edge-disjoint
paths through the percolated lattice to renormalize it into a
universal logical cluster state24.

General lower bounds. In this section, we present an intuitive
explanation of our lower bound on λðnÞc . A detailed formal proof is
provided in Supplementary Note 1.

We have the following general lower bound:

λðnÞc � 1
n� 1

; 8n � 2: ð3Þ
Proof sketch—starting with n-photon clusters, and any

sequence of fusion attempts, the resulting instance of the logical
graph is a bond-percolation instance, with bond success
probability λ, on some graph of maximum degree n. Of all
infinite graphs of maximum degree n, the minimum bond-
percolation threshold is that of the degree-n Bethe lattice, and
equals 1/(n−1). This implies that if λ < 1/(n−1), the percolation
condition cannot be met no matter what. Hence,
λðnÞc � 1=ðn� 1Þ.

Since the Bethe lattice is a tree and since trees are not a
universal resource, this does not prove 1/(n−1) to be an
achievable threshold for universal cluster creation (see Supple-
mentary Note 3 for more details). However, we conjecture (and
provide evidence in its favor) that λ= [1/(n−1)] + ε with any ε >
0 that may suffice to create a universal cluster state. This

conjecture is supported by the fact that starting with N copies of
photon clusters of size n and probabilistic operations that succeed
with any probability greater than 1/(n−1), it is possible to obtain
an O(N)-sized tree graph (detailed in Supplementary Note 3). We
also present a random graph construction, which provides
intuition for why probabilistic operations on photon clusters of
size n may provide enough connectivity to obtain a large
connected cluster when λ > 1/(n−1) (Supplementary Note 3).

We also show that if m-qubit fusions are used to fuse n-qubit
clusters for m ≥ 2, the optimum threshold on the fusion success
probability required to generate a universal cluster ballistically
must satisfy

λðn;mÞ
c � 1

ðn� 1Þðm� 1Þ ; 8n � 2;m � 2: ð4Þ

Very little is known about linear–optical circuits for m > 2
qubit fusion9 (e.g., projecting three qubits to one of the eight
orthogonal three-qubit GHZ states), their associated success
probabilities, and various failure outcomes. Thus, it remains
unclear if the above bound on λðn;mÞ

c is tight.

Reconciling prior results in a new framework. Our next con-
tribution is a reinterpretation of the constructions in refs. 15,18,19

as a standard bond-percolation problem on a logical lattice, which
lets us identify (and sharpen) the 0.627 threshold found in ref. 18

as the standard bond-percolation threshold of a 3D-modified
(10,3)-b lattice25.

We first describe the mapping of a spatially regular arrange-
ment of fusion attempts among photons in n-photon clusters—
the cluster-fusion lattice G1—to a logical lattice G2, each of whose
nodes correspond to an n-photon cluster. We then show that the
standard bond-percolation threshold of G2 equals the threshold
on the success probability of fusion attempts in G1 exceeding,
which generates, with high probability, a long-range-connected
(random) photonic lattice G′

1 among the unmeasured photons in
G1, which is renormalizable for universal quantum computing.
The mapping is illustrated via an example shown in Fig. 4. We
will restrict, for simplicity, to n= 3 photon-line clusters as the
initial resource to explain the mapping. But the G1-to-G2

mapping we describe below, holds for clusters of any size n and
shape.

G1 represents the pattern of pairwise fusion attempts we intend
to perform on a subset of photons across many three-photon
clusters. To construct G1, we begin with (1) a (two- or higher-
dimensional) spatial arrangement of three-photon line clusters,
(2) identifying pairs of photons (belonging to distinct clusters),
upon which fusions will be attempted, and (3) one of two types
for each of those fusions: blue or green, linear optical circuits to
realize, which are shown in Figs. 2 and 3 of ref. 18, respectively.
Success and failure outcomes of an example green and blue fusion
are shown in Fig. 4a, b.

We thus form the cluster-fusion lattice G1:

● The nodes of G1 are photons, colored white or black: referring
to whether the photons will be left unmeasured vs. will be
measured (and hence destroyed) in fusion attempts.

● The edges of G1 are of three kinds: black corresponding to the
pre-existing entanglement between photons within a three-
photon cluster, and, blue and green (dashed) edges connect-
ing black nodes corresponding to two types of (planned)
fusion attempts.

Now, we construct the logical graph G2, each of whose nodes
correspond to one three-photon cluster of G1. The color of a node
of G2—white, red, blue, and black, is determined based on the
number of black (measured) photons in the corresponding

Detectors

Percolated lattice

Renormalized lattice

Input
microclusters

Linear optical unitary

Logical qubit   

U

Fig. 3 Ballistic photonic cluster state generation for quantum computing. A
steady stream of entangled clusters of n-photons or less (n= 3 shown) is
incident on a linear–optical interferometer (i.e., a multimode unitary
transformation U), which produces an entangled cluster of photons at its
output. If the percolation condition is met, the output can be renormalized
into a fully connected logical cluster for universal cluster-model quantum
computing. The detector outputs are not used to herald whether or not the
undetected outputs are in a universal cluster state. They always are. The
detector outputs carry complete information on the location of missing
edges in the random graph, and thus how to renormalize it

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-08948-x

4 NATURE COMMUNICATIONS |         (2019) 10:1070 | https://doi.org/10.1038/s41467-019-08948-x | www.nature.com/naturecommunications

www.nature.com/naturecommunications


photonic cluster in G1: (i) zero, (ii) one, (iii) two, or (iv) three,
respectively (see Fig. 4c). There are two kinds of edges in G2: blue
or green, corresponding to the two types of fusion attempts.

We impose four conditions on the graphs we consider, which
are not required for the above G1 →G2 mapping, but needed for
our percolation-threshold equivalence to hold. Each condition
can be stated either for G1 or G2.

● Condition 1: Any loop in G2 must contain at least three
nonblack nodes.

● Condition 2: One endpoint of a blue-dashed edge in G1 must
be the degree-2 (middle) node of a three-photon cluster. We
will call this node A. The other end node is a degree-1 (leaf)
node of a three-photon cluster. We call this node B.

● Condition 3: Both endpoints of a green-dashed edge in G1

must be degree-1 (leaf) nodes of two three-photon clusters.
● Condition 4: For each cluster in G1, all whose photons are

measured in fusion attempts, there is at least one cluster with
one unmeasured photon at a constant distance (number of
hops) away. Translated to G2, this implies that every black
node has a nonblack node at a constant distance from it (e.g.,
one bond away for the example shown in Fig. 4e).

We now describe the action of the blue and green fusion
operations on photonic cluster states. In the following discussion,
we will use “cluster edge” and “cluster node” to refer to edges and
nodes in a photonic cluster state, to avoid any confusion with the
logical graph. A “cluster edge” refers to entanglement between
neighboring photons (e.g., black edges in G1) and not fusion
attempts (e.g., blue and green-dashed edges of G1). A “cluster
node” is a photon.

After the fusion attempts in G1 have been made, all the black
cluster nodes in G1 are destroyed. If a fusion attempt is successful,

then additional cluster edges (depicting a newly created
entanglement) appear among cluster nodes that were former
neighbors of the measured (black) cluster nodes. Each fusion
attempt succeeds or fails with probability λ or 1−λ, respectively.
Depending upon the success–failure outcomes of all the fusion
attempts, a new photonic lattice is created—a random graph state
G′

1—whose cluster nodes are the white cluster nodes (unmea-
sured photons) of G1.

In order to describe the G1 ! G′
1 mapping, we need to

describe the success and failure outcomes of both kinds of fusion.
To do so, we need a few additional definitions:

● Cluster edge parity (of a pair of cluster nodes): The parity of a
cluster edge is 1 if the cluster edge exists, and 0 otherwise.

● Neighborhood inversion (on a cluster node): A unitary action
on a cluster node in a photonic cluster state, which flips the
cluster edge parity between every pair of neighbors of the
cluster node. So, some cluster edges can be deleted, and new
cluster edges can be created.

Let us now describe the action of the two fusion operations.
Either type of fusion attempt destroys the two photons fused,
regardless of whether the fusion succeeds.

● Blue fusion: Fig. 4a shows an example of a blue fusion on a
pair of photons in two three-photon clusters. The blue fusion
is asymmetric across the two cluster nodes it acts upon. Let us
label the measured cluster nodes A and B. If the fusion
succeeds, it flips the cluster edge parity between every
neighboring pair of A and B. In other words, if one
neighboring cluster node of A and one neighboring cluster
node of B had no direct cluster edge between them prior to
the fusion attempt, after successful fusion, they get a direct

Blue fusion (example)
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Fig. 4 Mapping two-photon fusions with many three-photon clusters to bond percolation on a logical graph. a, b Examples of two types of two-photon
fusion operations, and their post-measurement states for success and failure outcomes. The linear–optical circuits for these (blue and green) fusions are
shown in Figs. 2 and 3 of ref. 18, respectively. From a graph connectivity point of view, two-photon fusion can be interpreted as coloring the measured
photons black, and if the fusion succeeds, drawing a new bond between the black photons. c We map three-photon clusters to nodes of a logical graph of
color based on how many photons in the cluster are left unmeasured. d An example of a cluster-fusion lattice G1 with both kinds of fusions, and (e) the
corresponding logical graph G2. f The bond-percolation curve and threshold (λc≈ 0.672) of G2. If each fusion attempt in (d) succeeds with probability λ >
λc, it results in a random graph G′

2 which is a giant-connected component (GCC) consisting of red nodes of G2. This implies the creation of a random
photonic cluster state G′

1, which is a GCC of G1 comprising the unmeasured photons—a resource renormalizable for universal cluster-model photonic
quantum computing
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cluster edge between them. Also, if a neighbor of A and a
neighbor of B had a direct cluster edge between them before
fusion, this cluster edge is removed after successful fusion18.
Condition 1 above prevents the latter to ever happen, i.e., we
never attempt to fuse two cluster nodes whose neighbors had
a direct cluster edge prior to the fusion attempt. If a blue
fusion fails, we first perform a neighborhood inversion on
cluster node A, i.e., we flip the cluster edge parity between
every pair of neighbors of cluster node A and then remove
both cluster nodes A and B from the graph.

If the blue fusion shown in Fig. 4a succeeds, we obtain a
four-photon cluster state. If it fails, we perform a neighbor-
hood inversion on cluster node A and remove both measured
cluster nodes, leaving the two cluster fragments with two
photons in each. Condition 2 above ensures that one of the
two cluster nodes for blue fusions is a leaf cluster node of a
cluster. This is the B cluster node, which does not undergo
neighborhood inversion after a fusion attempt failure.

● Green fusion: The green fusion, shown in an example in
Fig. 4b, has the same behavior as the blue fusion when it
succeeds. As in the case of the blue fusion, we never fuse two
cluster nodes whose neighbors already have a direct cluster
edge, due to Condition 1 we imposed above. In the case of
failure, we simply remove the two measured cluster nodes and
all their cluster edges. The green fusions are symmetric, and
as stated above in Condition 3, always used between a pair of
leaf cluster nodes of two clusters.

We introduced above the (deterministic) lattice G1 denoting
cluster-fusion attempts, and mapped it to a (deterministic) logical
lattice G2, whose edges denote fusion attempts. The probabilistic
success–failure fusion outcomes map G1 to a (random) photonic
lattice G′

1 among the unmeasured photons, and map G2 to a
(random) lattice G′

2, which is a standard bond-percolation
subgraph of G2 where each edge is missing (independent of the
other edges) with probability 1−λ.

Under a given success–failure fusion outcome pattern, we will
now argue that if G′

2 has a giant-connected component (GCC),
which will happen if λ > pc(G2), the bond-percolation threshold of
G2, then G′

1—the photonic lattice involving the unmeasured
nodes—will also have a GCC, which is a lattice renormalizable for
universal cluster-model quantum computing.

The black nodes in G2 disappear after fusion attempts (they
have no photons left in them), but help provide connections
between (the unmeasured photons within) the nonblack nodes.

If N is the number of nodes in G2, bond percolation on G2, i.e.,
λ > pc(G2) ensures that G′

2—the random bond-percolation
instance (subgraph) of G2—contains a unique GCC, i.e., a single
subgraph of G′

2 has O(N) nodes (black and nonblack nodes
combined). However, since every black node has a nonblack node
at a constant distance from it (Condition 4 above), the probability
of a nonblack node being connected to the nearest black node is a
constant. Therefore, the presence of O(N) black nodes in the GCC
implies the presence of O(N) nonblack nodes in the GCC, and
hence, there must be O(N) nonblack nodes in the GCC of G′

2.
Given any success–failure pattern of all the fusion attempts, two

unmeasured photons, i.e., nodes of G′
1, have a connected path in G′

1
if and only if the corresponding white nodes in G1 have a connected
path, via black edges and successful fusion (green or blue-dashed)
edges. This can be seen through the examples shown in Fig. 4a, b.
This, and the fact that nonblack nodes of G2 map to unmeasured
(white) nodes of G1, a GCC with O(N) nonblack nodes in G′

2
implies the presence of a GCC of O(N) (white) nodes in G′

1.
Hence, if λ > pc(G2), the leftover photonic lattice G′

1 will have a
GCC, which is a lattice renormalizable for universal cluster-model

quantum computing. For the G2 in Fig. 4e, we numerically get
pc(G2) ≈ 0.672. See plot in Fig. 4f. This establishes that
λð3Þc � 0:672.

It is instructive to note here that if the logical graph is
composed only of black and red nodes, the post-fusion random
photonic cluster state G′

1 is a random subgraph of G3: the
effective lattice formed by the red nodes alone (each of which are
three-photon clusters with one photon unmeasured). The nodes
of G3 are the red nodes of G2. In the example shown in Fig. 4e,
even though G2 is a nonplanar two-layer lattice, G′

1 is a random
subgraph of G3, a planar (2D) square lattice. All the logical graph
examples in this paper will have the aforesaid property, i.e.,
composed of black and red nodes only.

Further intuition regarding the development of the above
construction, and an alternative way to view the generation of G′

1
as a modified site–bond percolation on G1 directly, are provided
in Supplementary Note 2.

Equipped with this new formalism, we construct a 3D logical
lattice G2—a modified (10,3)-b lattice—shown in Fig. 5. In this
case, G3, the lattice connecting the red nodes of G2 if all the
fusions were to succeed, is the 3D diamond lattice. The bond-
percolation threshold of the modified (10,3)-b lattice, and hence
the threshold on fusion success probability that would ensure G′

1
to be long-range connected, is pc(G2) ≈ 0.627. Therefore,
λð3Þc � 0:627, which gives a better (lower) upper bound than the
example we examined above.

Let us see how and why G3 for this example is in the diamond
lattice. Let us assume that all the fusion attempts succeed, so that

z

x

�c= 62.7%

La
rg

es
t c

om
po

ne
nt

 s
iz

e

Fusion success probability, �

1

0.8

0.6

0.4

0.2

0
0 0.2 0.4 0.6 0.8 1

y

Fig. 5 Bond percolation on the modified (10,3)-b lattice. The (x, y)-plane
layers of parallel 1D line lattices of black (degree-3) nodes are stacked
along the z direction. The layers alternate between the line lattices pointing
in the x and y directions. Neighboring layers are straddled by a layer of red
(degree-2) nodes. Along each line lattice of black nodes, the blue bonds
alternate between the +z and −z directions. The adjective “modified” we
use in the name of this lattice refers to the fact that in the standard (10,3)-b
lattice, the red nodes are not present, i.e., the adjacent (x, y) planes of
parallel lattices in alternating directions are directly connected via bonds
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the black nodes of G2 in Fig. 5 are gone. Let us pick any red node
and follow the blue-dashed edge up to the neighboring black
node. The black node has two neighboring black nodes, each of
which is connected to a red node via blue-dashed edges. Once the
photons within the black nodes have disappeared after the
fusions, the red node we started with will inherit these two red
nodes as its immediate neighbors. Similarly, if we followed the
blue-dashed edge down from the original red node we picked, we
would find two other red-node neighbors of that red node after
the fusions are done. So, if all the fusion attempts were to succeed,
we will get a regular 3D lattice of red nodes, where each node has
degree 4. This is the diamond lattice.

The authors of ref. 18 did exactly the above, attempting to
create a percolated instance of the 3D diamond lattice as a long-
range-connected photonic lattice. But our reinterpretation of
their (nonstandard) percolation threshold as a standard bond-

percolation threshold of the modified (10,3)-b lattice not only
provides a natural way to account for failure modes of fusion
attempts, but allows one to exploit existing literature on efficient
Monte Carlo methods (viz., the Newman–Ziff method26) to
calculate sharper percolation thresholds. More importantly, this
interpretation also opens the door for new constructions and
improved thresholds, which we describe next.

Improved thresholds. Leveraging this new insight, we embark
upon a progression of improved achievability thresholds for n=
3, using higher-dimensional generalizations of the modified
(10,3)-b lattice.

First, we consider a 4D extension of the (10,3)-b lattice (see
Fig. 6). It consists of a doubly infinite stack of (x, y)-plane layers
—of parallel 1D line lattices of black (degree-3) nodes—stacked
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Fig. 6 Schematic of the 4D extension of the (10,3)-b lattice. The inner plots with x and y axes represent projections of the lattice on the (x, y) plane at the z
and w values shown on the outer axes
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along the z and w directions, respectively. Of the three
neighboring bonds of a black node, two (green) bonds—
connecting to neighboring black nodes in the line lattice to
which it belongs—are in the (x, y) plane, whereas one (blue) bond
—connecting to a red node, which in turns connects via another
blue bond to a black node in a neighboring (x, y)-plane layer—
points in either the z direction or in the w direction. Along each
line lattice of black nodes, the blue bonds alternate between
directions +z, +w, −z, −w,…, and so on. The graph has a period
of four in each of the x, y, z, and w dimensions. One period of the
lattice is depicted in Fig. 6. The inner axes represent an (x, y)
plane at a given value of z and w. This construction results in
longer loops compared with the 3D case discussed above, while
retaining the 3D graph’s coordination number (average node
degree), which in turn lowers the bond-percolation threshold. We
find, using a Newman–Ziff simulation performed on a 4D-
modified (10,3)-b lattice of size N ~ 107 nodes, that

λð3Þc � 0:611: ð5Þ

Next, we consider an infinite-dimensional modified (10,3)-b
lattice, which becomes locally tree-like, as shown in Fig. 7.
However, note that for any finite dimension of this family of
modified (10,3)-b lattices, no matter how large the dimension is,
it is not a tree, and a percolated subgraph of it will give us a
renormalizable universal cluster. Similar to the 3D- and 4D-
modified (10,3)-b lattices, each black node has two green bonds
and one blue bond (which in turn leads to a black node via a red
node and another blue bond). We denote the expected number of
children of a node when approached via a green bond as E1 and
the expected number of children of a node when approached via a
blue bond as E2. When counting the number of children of a
node, we only count red nodes since they are the only nodes with
unmeasured qubits. Counting children from the top of Fig. 7,
each black node is labeled as 1 or 2 depending on the bond from
which it is approached. Counting children at the points labeled E1
and E2 yields the equations E1= λE1 + λ + λ2E2 and E2= 2λE1,
where λ is the bond probability. For percolation, E1 →∞ and
solving the equations with this condition, we find that
λc þ 2λ3c ¼ 1, which leads to λc ≈ 0.5898. Therefore,

λð3Þc � 0:5898; ð6Þ
thereby bringing the best-known achievable threshold with three-
photon clusters as the initial resource closer to our general lower
bound applied to n= 3, λð3Þc � 0:5.

Universal cluster creation on a 2D planar lattice. We found
a 2D logical lattice, a modified brickwork (see Fig. 8), for which
λc= 0.746. This gives a bound λð3Þc � 0:746, which is looser,
compared with the ones we obtained from the constructions in

the previous section. However, since 0.746 < 25/32, this result
shows that single-photon-boosted linear optical fusion and three-
photon GHZ-state clusters are sufficient to generate a universal
lattice ballistically by fusing the clusters on a two-dimensional
lattice. Fusion on a 2D lattice is significantly simpler, compared
with 3D (or higher-dimensional) lattices from an experimental
standpoint, since 2D programmable linear optics is a fast-
maturing technology. Whether or not the above is possible was
posed as a challenging problem by Rudolph and colleagues in
refs. 18,19.

Effects of photon loss on the thresholds. We prove an extension
of our lower bound on λðnÞc . We use a loss model inspired by
proposals to produce photonic microclusters using quantum
emitters21,27,28, which have been recently realized experimen-
tally22. In these proposals, since each node of the microcluster is
added sequentially, we assume that the total transmissivity of the
photon in its lifetime is of the form η ¼ ηn0 (the loss is 1−η)
where n is the size of the microcluster and η0 represents the
transmissivity in one step. Hence, the total loss seen by the
photon increases with the size of the microcluster. The import
fidelity of the clusters generated due to unheralded photon losses
and other forms of errors (e.g., mode mismatch, detector dark
clicks) have not been considered. To obtain a lower bound, we
only look at loss in the photons undergoing fusion and observe
that a fusion gate only succeeds if both input photons
are detected. Furthermore, for our bound, we treat loss as the
removal of the corresponding node from the cluster state or a
measurement in the Z basis. In general, loss of a qubit is not
equivalent to a Z-basis measurement. Loss results in tracing out
the qubit, but treating it as a Z-basis measurement leads to a
lower value of λc (Z-basis measurement gives us more informa-
tion than tracing out over the Z basis) and is sufficient for a lower
bound on λðnÞc . Hence, if λη2n0 <1=ðn� 1Þ, there cannot be a giant-
connected component in the cluster, and we obtain the loss-
dependent lower bound of λc � 1=½ðn� 1Þη2n0 � � λðLBÞc . Figure 9
plots λðLBÞc as a function of n for different values of η0 and we find
that there is an optimum value of n for any η0 < 1, which gives the
lowest λðLBÞc . In other words, there is an optimum size of the
starting microcluster, for which the required fusion probability is
minimized.

Conversely, for a given fusion success probability λ, there exists
a threshold η0c, s.t., if η0 < η0c, the post-fusion cluster cannot be

percolated. We thus have a lower bound η0c � ηðLBÞ0c , where

ηðLBÞ0c ¼ 1=λðn� 1Þ½ �1=ð2nÞ. In Fig. 9b, we plot ηðLBÞ0c for different
values of n, for λ= 0.75 and λ= 1. There is an optimum value of
n which gives the best lower bound on loss tolerance, e.g., for λ=
0.75, six-photon microclusters give the lowest bound of ηðLBÞ0c ¼
0:8957 which corresponds to a loss (1− η) of 48.36% seen by
each photon. Furthermore, we find that going from λ= 0.75,
which is attainable using four single- ancilla photons and

(lossless) linear optics8 to deterministic fusion (λ= 1), ηðLBÞ0c only
decreases slightly, i.e., the equivalent per-photon loss threshold
increases from 89.6 to 87.1%. Hence, when losses are accounted
for in ballistic cluster state creation, the advantage in having a
fully deterministic fusion may be relatively small. It is important
to note, however, that the numbers presented here are only lower
bounds on η0c and λ0c, and may not be tight. For example,
our results show that any ballistic cluster creation process that
starts with six-photon microclusters and uses destructive fusion
with λ= 0.75 cannot tolerate more than 48.36% loss. However,
these results do not prove that 48.36% loss is sufficient for ballistic
cluster creation.

E1

2

2
1

1

11 1

E 2

Fig. 7 Schematic of the ∞-D extension of the (10,3)-b lattice. This lattice
when used as the logical graph with node colors as shown yields λc≈
0.5898. Percolation threshold was evaluated analytically
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Discussion
Despite recent progress in LOQC making it resurface as a strong
contender to scalable quantum computing, many questions
remain, whose answers will be crucial to its eventual success. A
major challenge, as expounded in ref. 23 as well, is an experi-
mental scheme to build an on-demand source of high-fidelity
small entangled cluster states, e.g., three-photon GHZ states. The
other big experimental challenge is to realize high-quality quan-
tum interference of the photon clusters using a linear optical
interferometer that minimizes in-line losses and mode mismatch.

A few immediate problems we leave open in this paper are as
follows: (a) proving our conjecture on the achievability of
λðnÞc ¼ 1=ðn� 1Þ þ ε; and (b) for a given n, finding the con-
struction that gives the smallest overhead (i.e., edge length of an
optimally chosen renormalized universal lattice), while not lim-
iting only to those linear–optical unitaries U that can be assem-
bled with two-qubit fusion gates (i.e., allow for higher-
dimensional linear–optical projective operations to potentially
fuse more than two clusters at once).

On the theoretical front, some of the most important open
problems are as follows: (1) extending this work to include mode
mismatch within the linear optic fusion circuits; (2) finding the
minimum size clusters and the most resource-efficient schemes
for ballistic cluster creation that are immune to unheralded losses.

In this paper, we only considered losses in photons undergoing
fusion. This was sufficient for obtaining bounds on λðnÞc and η0c.
However, any losses in photons that do not undergo fusion are
unheralded, i.e., we do not know which photons were lost. The
strategy of renormalizing by finding criss-crossing highways and
choosing the intersection of these highways to be logical qubits,
which gives us a perfect universal cluster state in the lossless case,
fails in the presence of such unheralded loss. This is because even
if we have a percolated cluster, we need to know the obtained
graph state exactly in order to compute the highways. In order
to correct for these unheralded photon losses (and other forms
of qubit errors), an additional layer of error correction is nee-
ded29–33. Let us consider five-photon GHZ states as a starting
point, which correspond to five node clusters in the “star”
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Fig. 8 Bond percolation on the modified 2D brickwork lattice. This 2D lattice has a bond-percolation threshold of 0.746, which is less than the fusion
success probability achievable with single-photon boosting. This shows that single-photon-boosted linear optical fusion and three-photon GHZ- state
clusters are sufficient to generate a universal lattice ballistically by fusing the clusters on a two-dimensional lattice
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configuration, and place them at the nodes of a Raussendorf
lattice (which has degree-4 nodes). The central photon of the star
is placed on a node of the Raussendorf lattice and the four leaf
nodes of the star are placed along the four neighboring bonds. We
now attempt two-qubit fusion on each bond, attempting to
construct a bond-percolated instance of the Raussendorf lattice
following the recipe in ref. 15. If each fusion attempt succeeds
with probability λ, we obtain a subgraph of the Raussendorf
lattice where each bond is present independently with probability
λ. Recent work has shown that a subgraph of the Raussendorf
lattice with 0.145 or a smaller fraction of missing bonds33 (or with
0.249 or a smaller fraction of missing qubit sites30) can be used
for universal quantum computation while correcting for unher-
alded qubit errors. The amount of unheralded error on each
physical qubit that can be corrected using such a thinned Rau-
sendorf lattice depends upon how far below 0.145 the actual
fraction of missing bonds is. While unheralded photon losses can
be accounted for with such a construction starting with five-
photon clusters as described above, it requires a fusion probability
exceeding 0.85, which is greater than the best known linear optic
Bell measurements boosted with single photons or squeezing.
Future work should look at ways of reducing the required fusion
probability to within 0.78—which is achievable with single-

photon boosting—by using more efficient constructions and with
smaller clusters as the starting point, and one should investigate
experimentally realizable methods that improve upon the
achievable fusion success probability beyond 0.78. It will also be
important to extend the error-correction method to account for
mode-mismatch errors in the linear optic mixing in the fusion
gates, as well as detector excess noise, such as dark clicks.

Code availability. All the numerical data presented in this paper
are the results of C simulations conducted by M.P. The code used
to generate thiese data will be made available to the interested
reader upon reasonable request.

Data availability
The data sets generated during and or analyzed during the current study are available
from the corresponding author on reasonable request.
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