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MoVE identifies metabolic valves to switch
between phenotypic states
Naveen Venayak1, Axel von Kamp2, Steffen Klamt2 & Radhakrishnan Mahadevan 1,3

Metabolism is highly regulated, allowing for robust and complex behavior. This behavior can

often be achieved by controlling a small number of important metabolic reactions, or

metabolic valves. Here, we present a method to identify the location of such valves: the

metabolic valve enumerator (MoVE). MoVE uses a metabolic model to identify genetic

intervention strategies which decouple two desired phenotypes. We apply this method to

identify valves which can decouple growth and production to systematically improve the rate

and yield of biochemical production processes. We apply this algorithm to the production of

diverse compounds and obtained solutions for over 70% of our targets, identifying a small

number of highly represented valves to achieve near maximal growth and production. MoVE

offers a systematic approach to identify metabolic valves using metabolic models, providing

insight into the architecture of metabolic networks and accelerating the widespread imple-

mentation of dynamic flux redirection in diverse systems.
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B iological regulatory networks allow for metabolic transi-
tions which are apparent in a range of biological pro-
cesses1,2. These regulatory systems are the basis for

ubiquitous cellular phenomena including complex cell cycles,
robustness to changing environments, and eukaryotic develop-
ment through stem cell differentiation and tissue morphogenesis.
The architecture of these systems can vary tremendously, from
regulating short pathways, to having global metabolic effects3,4.
Engineered applications of these systems have been developed to
understand complex cellular processes5, implement genetic
logic6,7, and improve microbes to produce valuable chemicals8–13,
using control points identified by biochemical assay, or intuited
from models of metabolic structure. The choice of such control
points is further complicated for non-natural objectives, such as
chemical production, where few biological examples exist.

Metabolic network structure has been studied using metabolic
models for diverse purposes including consolidating high-
throughput -omics data, identifying drug targets, and predicting
metabolic phenotypes14. In particular, these models have been
used extensively for designing microbial cell factories15. This is
commonly accomplished using mixed-integer linear program-
ming (MILP) techniques to identify network modifications, which
can then be implemented by modulating gene function. In par-
ticular, a large number of algorithms have been developed to
identify such interventions to improve microbes for growth-
coupled chemical production15–18. These strategies rely on the
simultaneous production of both biomass and product; however,
the burden imposed by high-flux production pathways can
severely limit this strategy when producing chemicals at high
yields, which is particularly evident when considering the trade-
offs between yield and productivity9,12,19. Furthermore, growth-
coupling can require specific network features, which may not
exist in all organisms20–22. Instead, growth and production could
be separated, allowing production processes to be operated in two
stages, where biomass is accumulated before high-rate production
is initiated. A phenotypic shift can be realized using a number of
stimuli including inducers23,24, internal metabolites25,26, and cell
density27,28. Although many strain design algorithms exist, these
algorithms identify static interventions to achieve a single steady-
state growth-coupled phenotype. None of these algorithms is
suitable for identifying dynamic interventions, where multiple
phenotypes must be considered. In this paper, we present a novel
and systematic approach to identify metabolic valves and apply it
for the production of 87 metabolites that can be produced by the
genome-scale model of Escherichia coli.

Results
Overview of metabolic valve enumerator (MoVE). The efficient
transition between phenotypes could be achieved by controlling
flux through a set of metabolic valves, effectively decoupling both
phenotypes. By designating a target reaction for each phenotype,
MoVE uses a constraint-based metabolic model to identify (1) a
set of static knockouts and (2) a set of dynamically controlled
valves, to enable the transition between high flux for each of these
targets (Fig. 1a). Static knockouts can be implemented using
genome editing, and valves controlled using responsive genetic
elements6,7 (Fig. 1b) to enable, for example, the transition
between growth and production states. These knockouts mini-
mally impact the first desired target, but prime the network for
the activity of valves. This set of valves can then be used to
eliminate undesired fluxes, and enforce a high production yield
(Fig. 1c). For some products, the phenotype can be shifted using
process conditions such as pH, temperature, or oxygen avail-
ability, which trigger native regulatory systems29,30 (Fig. 1d);
however, these systems may not coincide with engineering

objectives such as chemical production. Instead, internal meta-
bolites or inducers can trigger sensors and metabolic controllers
to manipulate valves and effect a phenotypic shift (Fig. 1e). Since
these strategies enforce a predefined minimum product yield,
adaptive evolution can be effectively applied (Fig. 2).

Core model strategies in E. coli. We first apply MoVE to identify
strategies to decouple growth from chemical production using a
core reconstruction of E. coli31. We present a strategy for the
production of α-ketoglutarate (AKG), an important intermediate
in the tricarboxylic acid (TCA) cycle with uses as a dietary sup-
plement, to illustrate the role of valves and knockouts for redir-
ecting flux, and their impact on the phenotypic space (Fig. 3).
This strategy achieves theoretical maximum production of AKG
in the production state. Such core model strategies have recently
been applied successfully for the production of itaconic acid using
an iterative approach32. A more efficient two-stage strategy can be
directly identified by MoVE, and this strategy has been shown to
be effective for improving the yield and titer of itaconic acid, in
addition to overcoming the need for media supplementation due
to auxotrophy13. This production strategies illustrates the tight
competition between product and biomass precursors, common
to many target molecules.

Genome-scale strategies in E. coli. Next, we applied this algo-
rithm to a genome-scale metabolic reconstruction of E. coli,
iJO136633. Despite the high computational demand of many
strain design algorithms applied to genome-scale models, recent
algorithmic advancements18, modern MILP solvers, and high-
performance computing clusters can be used to explore a large
range of target metabolites. We use a distributed MILP algorithm
to identify intervention strategies which meet our desired growth
and production thresholds, identifying the optimal feasible solu-
tion within a fixed computational time for each metabolite
(Supplementary Fig. 1).

We searched for intervention strategies for all 87 organic
products that can be derived from glucose in our model
(Supplementary Table 1). In this case, we focus on natural
chemicals; however, this analysis can be trivially extended for the
case of non-natural chemicals by including heterologous reactions
and exchanges in the model. We investigate strategies for two
scenarios: full and partial decoupling. We have proposed that an
optimal operating strategy will generally require full decoupling,
with a switch from maximum growth to maximum production9;
however, substrate uptake rate can decrease in resting cells19 and
the inability to produce biomass precursors could lead to
difficulties for sustained production. For these reasons, it may
be beneficial to sacrifice product yield to maintain some capacity
for cell growth, leading to partially decoupled production. For
these simulations, fully decoupled strategies achieve over 90% of
theoretical maximum product yield at the expense of cell growth,
while partially decoupled strategies achieve over 70% of
theoretical maximum yield, while maintaining a minimum
biomass yield of 0.01 gdw/mmol (approximately 10% of the
maximum biomass yield, allowing a growth rate of 0.1 h−1). Both
strategies achieve over 90% of theoretical maximum biomass yield
in the growth state. Alternatively, an intermediary stage could be
included for high expression of the production pathway at the
end of the growth stage (e.g., using an inducible promoter), to
reduce the need for heterologous protein expression in the
production stage.

First, we explore the ability of single valves to redirect flux for
full decoupling, obtaining over 90% biomass yield and product
yield in their respective states (Fig. 4a). We identified strategies
where controlling single valves could meet the desired flux
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thresholds for 56 products, or 64% of all targets (Fig. 4b,
Supplementary Figs. 3 and 4). Three metabolic subsystems were
highly represented: glycolysis, the TCA cycle, and oxidative
phosphorylation. The top five valves included three from
glycolysis: glyceraldehyde-3-phosphate dehydrogenase (GAPD,
gapA), pyruvate dehydrogenase (PDH, aceE) and phosphogluco-
mutase (PGM, pgm); citrate synthase (CS, gltA) from the TCA

cycle; and oxygen exchange (EX_o2(e), passive) used in oxidative
phosphorylation. These valves were relatively evenly distributed
amongst the degree of reaction connectivity, indicating their high
representation is not solely owed to their branched nature
(Supplementary Fig. 2). However, we noted a high representation
of reactions proximal to the 12 precursor metabolites related to
the naturally evolved bow-tie (hourglass) topology of
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metabolism34,35, indicating this topology may be important to
allow for efficient metabolic transitions.

Next, we identify strategies for partial decoupling. These
strategies maintain a growth rate of 0.1 h−1 in the production
state, and target a more modest 70% of maximum product yield
(Fig. 4c). Experimentally determined essential reactions36 were
also blacklisted from being used as valves, corresponding to the
goal of allowing a minimum biomass yield throughout. We
identified valves from similar metabolic subsystems for both full
and partial decoupling, with a few exceptions (Fig. 4d, Supple-
mentary Figs. 5 and 6). First, PGM had a notably higher
representation for partial decoupling, likely due to the essentiality
of many other glycolytic reactions. In addition, more valves from
upper glycolysis and the pentose phosphate pathway are
identified. Lastly, α-ketoglutarate dehydrogenase (AKGDH, sucA)
is the only single valve identified in the TCA cycle, and connected
to AKG, a precursor to amino acids (Fig. 4e). The requirement to
maintain a minimum biomass yield is a strong constraint,
requiring the production of several metabolites as biomass
precursors; thus, more complex strategies are required to ensure
the low production of these metabolites while ensuring high
product yield.

With the optimal valves for each product identified, we
interrogated whether the top five valves from both decoupling
strategies could be used for a broader range of products (Fig. 5).
Although some of these valves could be effective for many
products, this trend was not universal. For example, employing
oxygen exchange as a valve could decouple fewer than 10
products, including known fermentative products such as acetate,
ethanol, lactate, and succinate. This strategy has been applied for
these products by exploiting the natural switch between high yield
aerobic growth and low-yield fermentative growth (coupled to
high-yield product synthesis), triggered by oxygen availability and
controlled at the process-level. Interestingly, these strategies
required relatively few knockouts, indicating that metabolic
networks are structured to readily allow for such natural

transitions. However, these results indicate that employing
oxygen availability as a valve may only be applicable for a small
subset of relevant products, motivating the implementation of
synthetic genetic circuits to control metabolic flux. Similarly,
while GAPD was one of the most frequently identified valves, it
could only decouple 11 products.

Contrarily, we have identified valves which could be applied to
a majority of tested products. For example, CS was identified as
an effective valve to decouple 55 products. It lies at an important
branchpoint which has been successfully dynamically controlled
to improve the production of isopropanol from acetyl-CoA37. It is
an intuitive choice for eliminating the main pathway for flux into
the TCA cycle, leading to overflow production of desired
compounds. We have shown that this valve is applicable to more
than 60% of tested metabolites, making it a good candidate for
modular platform strains. This reaction is also known to be
regulated by global regulators, with reduced flux during anaerobic
growth to compensate for increased flux from pyruvate to
fermentative products38. In addition, two closely related valves:
PDH and PGM, were also both effective for a wide range of
products. They are central to committing phosphoenolpyruvate
or pyruvate to the TCA cycle. PDH is known to be downregulated
in anaerobic conditions due to oxygen sensitivity of the lpdA
subunit, and its activity replaced by pyruvate formate lyase (PFL,
pflAB). These reactions are also important for controlling ATP
generation through pyruvate kinase (PYK, pykAF) and NADH
generation through PDH, allowing alternate routes for entry into
the TCA cycle. These results highlight the importance of the
pyruvate node for controlling metabolic flux.

AKGDH, which produces succinyl-CoA from AKG, was
uniquely identified as a valve for partial decoupling. It is proximal
to a highly regulated branch point for the production of amino
acids from AKG, which also has implications in nitrogen
metabolism and cofactor balance. We identified AKGDH as a
suitable valve for AKG production, as well as glutamate, arginine,
and proline which are derived from AKG. Another important valve
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in amino acid metabolism is phosphoglycerate dehydrogenase
(PGCD), the committing step into serine, cysteine, and glycine
metabolism from 3-phosphoglycerate (3PG). It is regulated through
feedback inhibition by serine, to maintain appropriate concentra-
tions of these amino acids. PGCD and PGM share a common
metabolite (3PG) and were both identified as top valves. By
controlling this node, flux can either be directed through PGM
toward pyruvate and downstream products, or through PGCD to
produce amino acids such as serine and cysteine.

We also identified higher-order strategies which required
actuating multiple valves simultaneously. By applying two or
three valves, we identified strategies for 64 and 68 products,
respectively, compared to 56 products using single valves. This
indicates that multiple valves can be required to decouple growth
and production for some targets. We also identified clusters of
valves which include reactions from a wide range of different
subsystems for both fully (Supplementary Fig. 7) and partially
(Supplementary Fig. 8) decoupled strategies. These non-intuitive
higher-order valves can often be used in conjunction with more
intuitive valves to further improve production. Additionally, we
have shown that knockouts which were commonly identified
amongst all simulations are often found in pyruvate metabolism,
to eliminate alternative fermentative byproducts, as well as amino
acid metabolism, eliminating alternate routes for flux leakage
(Supplementary Fig. 9).

Genome-scale strategies S. cereivisae. Finally, we applied MoVE
to a genome-scale model of S. cerevisiae, a common eukaryotic

production host, to assess the method’s effectiveness in a more
complex multi-compartment model. Using a similar procedure,
we searched for partially decoupled strategies for all 84 metabo-
lites producible from glucose in our model, targeting a minimum
biomass yield of 0.001 gdw/mmol (achieving a growth rate of
0.01 h−1) and a minimum product yield of 70% of theoretical
maximum in the production state. Strategies also targeted over
90% of theoretical maximum growth rate in the growth state. We
identified solutions for 61 of the 84 targets using single valves
(Supplementary Table 2). Mitochondrial succinate dehy-
drogenases (SUCD1m, SUCD2_u6m, SUCD3_u6m) were found
for over 20 targets, making this an important target in S. cerevi-
siae. In addition, several valves were identified at important
branchpoints, similar to E. coli (Supplementary Fig. 10).

Discussion
Here, we have developed a method that can be generically applied
to identify metabolic valves to redirect metabolism between phe-
notypic states, using readily available metabolic models. Using this
method, we have shown that decoupling of growth and production
phenotypes is possible for a majority of natural chemicals in E. coli
and S. cerevisiae. We have identified strategies to achieve near
theoretical maximum product and biomass yield by manipulating
three or fewer valves with over 60% of strategies requiring 15 or
fewer knockouts (Supplementary Fig. 11), demonstrating the fea-
sibility of two-stage production strategies for diverse targets. Stra-
tegies identified by MoVE can be refined through iterative rounds

G
A

P
D

P
D

H

P
G

M

E
N

O

C
S

F
R

D
3

E
X

_o
2_

e

P
P

K
r

A
T

P
S

4r
pp

G
N

D

T
K

T
2

R
P

I

E
D

A

D
R

P
A

P
P

M

R
15

B
P

K

N
D

P
K

1

P
F

L

P
P

C

G
LU

D
y

0

2

4

6

8

P
G

M

P
D

H

P
G

I

T
P

I

H
E

X
1

G
6P

D
H

2r

T
K

T
2

R
P

I

G
N

D

E
D

A

T
K

T
1

T
A

LA

E
X

_o
2_

e

A
K

G
D

H

P
G

C
D

D
S

E
R

D
H

r

H
E

X
7

D
H

A
P

T

M
G

S
A

P
P

C

0

5

10

V
al

ve
 o

cc
ur

re
nc

es
a

b

c

e

d

56 products

55 products

G6PDH2r*

PGI

F6P

DHAP

6PG Ru5P

GA3P

RPERPI

TPI
TKT2

X5PR5P

S7P

F6P E4P

TKT1*

TALA*

DPG

2PG

PEP

PYR AcCoA

GAPD†

PGK

PGM

PYK
PDH

PPC

PPCK

AC
CIT

AKGICIT

OAA

SUCCoA

MAL FUM

GLX

MDH

CS†

ACN

ICDH

AKGDH*

SUCOAS

SUCDi

FUM

ICL

MALS

AcCoA

FRD3†

GLC

G6P

GLC

PFL†

FORM

GLCptspp

HEX1*

ACKr

FDP

PFK

FBA

Energy metabolism

3PG

ENO†

PGCD*
SER, GLY, CYS

HIS

PHE, TRP, TYR

ALA,VAL, LEU

ASP, ASN, ILE

LYS, MET, THR

ARG, GLU,
GLN, PRO

EDD
EDA

PYR  GA3P

Fully decoupled

90% yield

Y
pr

od
uc

t

Ybiomass

Partially decoupled

0.1h–1 growth

70% yield

V
al

ve
 o

cc
ur

re
nc

es

Glycolysis/Gluconeogenesis

Pentose phosphate pathway

Oxidative phosphorylation

Citric acid cycle

Amino acid metabolism

Alternate carbon metabolism

Anaplerotic reactions

Pyruvate metabolism

Subsystems

Nucleotide salvage pathway

†  Unique to fully decoupled strategies

*  Unique to partially decoupled strategies

Y
pr

od
uc

t

Ybiomass

GA3P

SUCC

G6P

Fig. 4 Valve occurrences in intervention strategies, categorized by metabolic subsystem. a Fully decoupled strategies target over 90% theoretical
maximum production without cell growth in the second (production) state. b Single valves identified for fully decoupled strategies, single valves can
independently redirect flux. c Partially decoupled strategies achieve over 70% theoretical yield while maintaining a biomass yield of 0.01 gdwmmol−1.
d Single valves identified for partially decoupled strategies. e Central metabolic map highlighting identified valves and associated subsystems. Bolded
reactions refer to the top five valves for each decoupling strategy. Bolded metabolites refer to metabolites at the center of the bow-tie architecture of
metabolism34

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-018-07719-4 ARTICLE

NATURE COMMUNICATIONS |          (2018) 9:5332 | https://doi.org/10.1038/s41467-018-07719-4 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


of experimentation, model refinement and strain design given the
inherent biological uncertainty within these models.

We have made this data set fully available to be used as a guide
for metabolic engineering endeavors, or to be used as seeds to
identify strategies for related compounds. These strategies can be
combined with recent methods for strain design prioritization,

based on metrics such as robustness39, to effectively guide
experimental implementation of such dynamic metabolic engi-
neering strategies. Using this comprehensive data set, we identi-
fied a high proportion of valves in energy metabolism and near
important metabolic bottlenecks, indicating that these bottleneck
metabolites are important targets for both natural and synthetic

Xanthosine
Xanthine
L-Valine
Uridine
Urea
Uracil
L-Tyrosine
L-Tryptophan
Thymidine
Thymine
L-Threonine
Succinate
L-Serine
Quinate
Pyruvate
Putrescine
L-Proline
Protoheme
L-Phenylalanine
Ornithine
Methanol
L-Malate
L-Lysine
Cold adapted KDO(2)-lipid (A)
KDO(2)-lipid (A)
L-Leucine
L-Lactate
D-Lactate
KDO(2)-lipid IV(A)
Inosine
Indole
L-Isoleucine
L-Idonate
Hypoxanthine
Hexanoate (n-C6:0)
L-Homoserine
L-Histidine
Guanine
Reduced glutathione
Glycolate
Glycerol 3-phosphate
(R)-Glycerate
Glycerol
D-Glyceraldehyde
Glycine
L-Glutamate
D-Gluconate
Glycerophosphoglycerol
Sn-Glycero-3-phosphoethanolamine
Formate
Fe-enterobactin
Ethanol
Ethanolamine
Enterochelin
Phosphoethanolamine KDO(2)-lipid (A)
(enterobacterial common antigen)x4 core oligosaccharide lipid A
Dihydroxyacetone
Cytidine
L-Cysteine
Core oligosaccharide lipid A
CO2
Citrate
Cys-Gly
L-Aspartate
L-Asparagine
L-Arginine
N-Acetyl-D-glucosamine(anhydrous)N-Acetylmuramic acid
Allantoin
D-Alanyl-D-alanine
L-Alanine
D-Alanine
2-Oxoglutarate
Agmatine
Adenosine
Adenine
O-Acetyl-L-serine

Acetaldehyde
4-Amino-4 deoxy-L-arabinose modified core oligosaccharide lipid A

Acetate
L-alanine-D-glutamate-meso-2,6-diaminoheptanedioate-D-alanine
L-alanine-D-glutamate-meso-2,6-diaminoheptanedioate
5-Dehydro-D-gluconate
4-Aminobutanoate
3-Hydroxypropanoate
1,5-Diaminopentane
(S)-Propane-1,2-diol
(R)-Propane-1,2-diol

No
solution

5

10

15

20

25

30

35

40

45
63 55 50 39 555 46 30 11 9

N
um

be
r 

of
 p

re
di

ct
ed

 k
no

ck
ou

ts

Number of products solved

Fully decoupleda b Partially decoupled

CS PDH PGM GAPD EX_o2(e) PDH AKGDH PGCD EX_o2(e)PGMValve

Fig. 5 Decoupling potential for top five most frequently identified metabolic valves. Columns correspond to strategies employing specified metabolic
valves. Rows correspond to specific products. The color scale represents the number of knockouts in the identified strategy for each product and given
valve, black indicates no solution was found. a Strategies for fully decoupled production. b Strategies for partially decoupled production

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-018-07719-4

6 NATURE COMMUNICATIONS |          (2018) 9:5332 | https://doi.org/10.1038/s41467-018-07719-4 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


control. Furthermore, we have identified valves which can be
applied to a wide range of products, making them strong can-
didates for modular platform strains. The location of these valves
highlight important architectural traits of metabolism34, and
provide insight into important control points.

We anticipate the application of this algorithm will drive the
development of dynamically controlled microbial production
hosts and allow the design of more efficient genetic engineering
strategies. Furthermore, given the rapidly growing number of
curated genome-scale models, and the improving ability for
metabolic model generation from -omics data40–42, MoVE could
be applied to elucidate important natural regulatory branchpoints
in diverse metabolic systems. This will include more complex
microbial and multicellular organisms, such as mammalian sys-
tems, where extremely complex regulatory networks exist43,44.

Methods
Stoichiometric metabolic models. Stoichiometric metabolic models are defined
by the reactions present in a given organism, based on genome sequences and
experimental validation. Central to this metabolic model is the stoichiometric
matrix N, with m rows representing metabolites and n columns representing
reactions. Steady state is assumed in constraint-based models, demanding that
there is no net accumulation or consumption of internal metabolites:

N � r ¼ 0 ð1Þ

where r is the steady-state flux vector. The network is often further constrained by
setting (known) flux bounds for certain reactions, i, to define upper bounds on
uptake rates (e.g., glucose or oxygen), or fix parameters such as ATP maintenance:

αi � ri � βi ð2Þ

These flux bounds also include flux directionality constraints for irreversible
reactions:

ri � 0 8 i 2 Irr ð3Þ

We assume here that all fluxes in the network are explicitly or implicitly
bounded by these constraints (Eqs. 1–3).

Two-state problem formulation. The MoVE algorithm aims to find a minimal set
of knockouts and a set of dynamically regulated valves to allow switching between
two distinct metabolic phenotypes. Here, we have applied this algorithm to achieve
efficient switching between two relevant phenotypes for two-stage bioproduction
processes: growth and production. This is accomplished by formulating a mixed-
integer linear program, which can then be solved using a range of commercial or
open-source solvers. Diverse optimization problems, including those relying on
stoichiometric models, have been solved in this fashion.

To consider multiple phenotypes in a dynamic context, we require the
specification of flux vectors for both of these states and variables describing both
static (knockout) and dynamic (valve) interventions. Furthermore, this method
must remain scalable to genome-scale models, given these additional variables and
constraints. In MoVE, r denotes the production state (state 2) flux vector and a
second flux vector, f, is introduced to represent the growth state (state 1), subject to
similar flux bounds: γi ≤ fi ≤ δi, and steady-state constraints: N · f= 0.

We introduce the parameters T (t × n) and t (t × 1) to formulate linear
inequality constraints for undesired flux vectors in the production state (state 2,
e.g., low product yield, Fig. 1c):

T � r � t ð4Þ

For convenience, these inequalities can be formulated to eliminate flux vectors

below a minimum yield threshold YP=S
min;state2

� �
, where rP, rS, rB represent the

production or consumption rates of product, substrate and biomass, respectively:

rP
rS

� YP=S
min;state2 , rP � YP=S

min;state2 � rS � 0 ð5Þ

Hence, the matrix T has a single row of zeros derived from Eq. (5), except for a ‘+1’

in the column for the product reaction, and ‘�YP=S
min;state2 ’ in the column for the

substrate reaction. The vector t accordingly contains only one element, ‘0’.
Similarly, the parameters D (d × n) and d (d × 1) impose constraints for the

desired flux vectors in the production state (state 2, e.g. high product yield, Fig. 1c):

D � r � d ð6Þ

Again, these constraints are formulated to describe desired product yield:

rP
rS

� YP=S
min;state2 , YP=S

min;state2 � rS � rP � 0 ð7Þ

and biomass yield, in the case of partial decoupling (where some minimum growth
rate, rB, is maintained in the production state):

rB
rS

� YB=S
min;state2 , YB=S

min;state2 � rS � rB � 0 ð8Þ

In this case, D consists of two rows derived from Eqs. 7 and 8: the first contains

zeros except for a ‘−1’ in the column for rP and ‘YP=S
min;state2 ’ in the column for rS, the

second contains non-zero values only for the rB (−1) and again for the substrate

uptake rate rS YB=S
min;state2

� �
. Accordingly, the vector d is of size 2, and contains ‘0’

elements.
In addition, we also introduce the parameters G (g × n) and g (g × 1) to

represent desired phenotypes in the growth state (state 1, e.g., high biomass yield,
Fig. 1c), which now relies on the growth state flux vector, f:

G � f � g ð9Þ

and is again formulated for yield constraints:

fB
fS
� YB=S

min;state1 , YB=S
min;state1 � fS � rB � 0 ð10Þ

Furthermore, constraints are added to describe desired flux vectors in the
production (Eq. (6)) and growth (Eq. (9)) states, to ensure ATP maintenance
(rATPM ≥ATPMmin and fATPM ≥ATPMmin) and substrate uptake rates (rS ≤ rS,max

and fS ≤ fS,max).
MoVE applies the constraints defining the undesired (Eq. 4) and desired (Eqs. 6

and 9) flux spaces, to identify valves and knockouts.

Algorithm. To identify interventions allowing an efficient switch between growth
and production states, MoVE applies the concept of minimal cut sets (MCS)45, a
minimal set of knockouts to eliminate undesired functionality. For computation of
MCS, the primal problem described above (Eqs. 1–4) is transformed into its
dual18,46–48 and constraints for desired functionality (Eqs. 6 and 9) are applied.
Finally, an objective function is used to find solutions requiring a minimal number
of interventions. The full formulation of the MoVE optimization problem thus
reads:

minimize
P

zi
s:t:

NT
Irr IIrr 0 0 TT

Irr 0 0

NT
Rev 0 IRev �IRev TT

Rev 0 0

0 0 0 0 0 N 0

0 0 0 0 0 D 0

0 0 0 0 0 0 N

0 0 0 0 0 0 G

0
BBBBBBBB@

1
CCCCCCCCA

u

vpIrr
vpRev
vnRev

w

r

f

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

�
¼
¼
�
¼
�

0

0

0

d

0

g

0
BBBBBBBB@

1
CCCCCCCCA

tTw � �c

u 2 R
m

r;f 2 R
n

w 2 R
t

α;β;γ;δ 2 R
n

zpi; zni; yi 2 f0; 1g
8 i 2 Rev : zi ¼ zpi þ zni; zi � 1

8 i 2 Irr : zi ¼ zpi
vpIrr; vpRev ; vnRev ;w � 0

c > 0

ri � 1� zið Þ � αi
ri � 1� zið Þ � βi
yi � 1� zið Þ
fi � yi � δi
fi � yi � γiP

i
yi � 1� zið Þ � max valves

ð11Þ
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To enable efficient calculation of MCS, new dual variables are introduced, u, w,
vpIrr, vpRev, vnRev and the production state variables are further separated into
reversible and irreversible components. Following, the stoichiometric matrix N, the
identity matrix I, and the undesired flux matrix T are split into two submatrices
containing the reversible (NRev, IRev, TRev) and irreversible (NIrr, IIrr, TIrr) reactions
(columns).

This makes it possible to use Boolean indicator variables zpi= 0⇔ vpi= 0, zpi=
1⇔ vpi ≠ 0 for all reactions, and additionally zni= 0⇔ vni= 0, zni= 1⇔ vni ≠ 0 for
reversible reactions. If the value of an indicator variable is 1, then its associated
reaction is in the cut set and can carry no flux as demanded by the constraints for ri.

Although identified MCSs will successfully eliminate undesired functionality
(Eq. 4), these MCSs do not guarantee any desired functionality will remain feasible.
To do so, the additional constraints for the production (Eq. 6) and growth (Eq. 9)
states are applied. In addition, new constraints are added to ensure that metabolic
valve reactions are a subset of the reaction knockouts (i.e., flux through valves is
ON in the growth state, and OFF in the production state):

yi � 1� zið Þ ð12Þ

and to limit the number of possible valves:
X
i

yi � 1� zið Þ � max valves ð13Þ

The Boolean variables yi thus indicate whether a reaction can carry flux (yi= 1)
or not (yi= 0) in the growth state. Up to max_valves reactions of a MCS (as
determined by the values of the zi variables) are allowed to carry flux in the growth
state. Hence, the valve reactions are those for which yi= 1 and zi= 1. The reactions
for which yi= 0 and zi= 1 are static knockouts and are disabled in both production
and growth state, whereas all other reactions are available in both states.

Finally, these variables and constraints are combined to allow the direct
identification of optimal combinations of valves and knockouts (with a minimal
number of interventions). It is important to note that since any feasible solution
will achieve desired functionality (in both states) and eliminate undesired
functionality, solving the algorithm to optimality is not absolutely essential.

Implementation. Simulations were performed in MATLAB 2010b using the
COBRA toolbox49 and CellNetAnalyzer v2017.4 (CNA)50. Mixed-integer linear
programs were solved using ILOG CPLEX (IBM, v12.6), via the provided Java
virtual machine interface in CNA.

Genome-scale E. coli simulations were performed on the SciNet general purpose
cluster51. The cluster is composed of 3864 nodes using Infiniband interconnect.
Each node contains 2x Intel Xeon E5540 processors for a total of 8 cores or 16
threads per node, with 16 GB of RAM. Simulations were performed in parallel for
each metabolite and set of parameters. Each simulation was performed on 4 nodes,
using 16 threads per node, for 8 h. The MILP was solved in two steps, ramp-up and
distributed tree search. In the ramp-up phase, the same problem is solved on each
node using different startup parameters for two hours. Following the ramp-up
phase, the optimal startup parameters are used to start a distributed search tree for
the remaining 6 h. The optimal feasible solution from this process is returned.

Genome-scale S. cerevisiae solutions were solved for two hours using 4x Intel
Xeon CPU E7-4830 processors, for a total of 32 cores.

Model and MILP parameters. The E. coli core model31 was derived from
iAF126052 and is available from the BiGG database53 (http://bigg.ucsd.edu/models/
e_coli_core). Maximum glucose uptake rate was set at 10 mmol gdw−1 h−1 and
minimum ATP maintenance at 8.39 mmol gdw−1 h−1.

The E. coli genome-scale model iJO136633 was used for all genome-scale
simulations and available from the BiGG database (http://bigg.ucsd.edu/models/
iJO1366). Maximum glucose uptake rate was set at 10 mmolg dw−1 h−1 and
minimum ATP maintenance at 3.15 mmol gdw−1 h−1. Target reactions were
chosen from the total set of export reactions by eliminating non-organic molecules
and those which were not producible from glucose based on a flux variability
analysis. A set of exchange reactions, excluding the target reaction, common
fermentation products, and non-organic molecules, was removed from the model
to improve computational feasibility; this list is provided in Supplemental
Information.

Strategies for the E. coli core model were solved to optimality using an upper
bound of three valves in negligible computational time. Strategies for the genome-
scale model were solved using the distributed MILP search method with an equality
constraint on the number of valves. Searches explicitly specified one, two, or three
valves. To identify the optimal valve for each metabolite, all reactions were allowed
to be used as valves for fully coupled strategies, and only non-essential valves for
partially coupled strategies. To identify valves which could be applied to many
products, we ran independent optimizations with each valve explicitly specified (no
other valve was allowed to be identified as a valve).

Strategies for the S. cerevisiae genome-scale model were identified using
iMM90454 which is available from the BiGG database (http://bigg.ucsd.edu/
models/iMM904). Maximum glucose uptake rate was set at 10 mmol gdw−1 h−1

and minimum ATP maintenance at 1 mmol gdw−1 h−1. A set of exchange

reactions, excluding the target reaction and reactions required for wild-type
growth, was removed from the model to improve computational feasibility; this list
is provided in Supplemental Information.

Reaction connectivity. Reaction connectivity was determined in Python 3.5 using
the COBRApy package55. Connectivity for each reaction was determined as the
sum of the connectivities of all metabolites involved in that reaction. The con-
nectivity of each metabolite is determined as the number of reactions in which it
partakes.

Clustering of higher-order valve strategies. Intervention strategies were deter-
mined using one, two, or three metabolic valves. Higher-order valves which
improved the objective (e.g., a solution was only found with a larger number of
valves, or the required number of knockouts was decreased) were used to generate
an adjacency matrix for clustering, using the co-occurence frequency as a similarity
metric. The resulting sparsely connected matrix was clustered using an iterative
spectral clustering approach. Several iterations of spectral clustering were per-
formed using the scikit-learn package (v0.19.0). Following, a new similarity matrix
was generated based on the mutual information available between clustering
solutions to identify the most represented solution, this clustering result is
returned. The numbers of clusters was chosen to ensure clusters contained at least
two members.

Code availability. The MoVE algorithm is available at https://github.com/lmse/
move and as Supplementary Software 1.

Data availability
The authors declare that the data supporting the findings of this study are available
within the paper and are included as Supplementary Information. A summary of
simulation results is provided as Supplementary Data 1, raw results (knockouts and
valves) of all simulations are available as Supplementary Data 2, Python-readable
data is provided as Supplementary Data 3, and the list of knocked out reactions in
simulations to improve computational efficiency is provided as Supplementary
Data 4.
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