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Comparative expression profiling reveals
widespread coordinated evolution of gene
expression across eukaryotes
Trevor Martin1 & Hunter B. Fraser1

Comparative studies of gene expression across species have revealed many important

insights, but have also been limited by the number of species represented. Here we develop

an approach to identify orthologs between highly diverged transcriptome assemblies, and

apply this to 657 RNA-seq gene expression profiles from 309 diverse unicellular eukaryotes.

We analyzed the resulting data for coevolutionary patterns, and identify several hundred

protein complexes and pathways whose expression levels have evolved in a coordinated

fashion across the trillions of generations separating these species, including many gene sets

with little or no within-species co-expression across environmental or genetic perturbations.

We also detect examples of adaptive evolution, for example of tRNA ligase levels to match

genome-wide codon usage. In sum, we find that comparative studies from extremely diverse

organisms can reveal new insights into the evolution of gene expression, including coordi-

nated evolution of some of the most conserved protein complexes in eukaryotes.
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Many cellular functions are carried out by groups of
proteins that must work together, such as pathways and
protein complexes. When one of these functions is no

longer needed by a particular species, then there is no longer any
selection to maintain the genes needed specifically for this func-
tion, and they will eventually deteriorate into pseudogenes or be
lost altogether. A method known as phylogenetic profiling (PP)
leverages this idea, correlating patterns of gene presence/absence
across species to identify functionally related genes1. For example,
this technique has been used to discover novel genes involved in
Bardet–Biedl syndrome2–4 and mitochondrial disease5, since
these diseases involve genes that have been lost in multiple
independent lineages. In these studies, patterns of gene con-
servation across species are typically represented by their binary
presence/absence, and knowledge of the species phylogeny is used
to identify genes whose losses have coincided with those of well-
characterized genes6. Coordinated gene losses can then be ana-
lyzed for gene pairs individually or gene groups as a whole to
reveal functional relationships7.

In addition to the correlated gene losses that are the focus of
PP, functional similarity is also suggested by conserved coex-
pression, where gene pairs are coexpressed across various envir-
onmental conditions in multiple species8–10. A complementary
approach is to search for correlated expression across species,
rather than across environments within species. For example,
coordinated evolutionary changes have been observed between
computationally predicted expression levels (based on codon
usage bias) in yeast and other microbes11,12. Experimentally
measured gene expression levels could also potentially uncover
genes with correlated evolution, including genes that are never
lost and thus not amenable to PP; however, in practice this has
not been possible because of the small number of species, and
the narrow phylogenetic breadth, in previous studies of gene
expression evolution. The largest such studies have been limited
to a few dozen species and have focused exclusively on
mammals13,14 or yeast15, in contrast to recent PP studies that
utilize hundreds of complete genome sequences from widely
divergent species6,16,17.

The Marine Microbial Eukaryotic Transcriptome Project
(MMETSP)18 recently generated what is by far the largest mul-
tispecies gene expression data set to date, both in terms of the
number of species and the phylogenetic diversity, with RNA-seq
for 657 samples from 309 species. These species are eukaryotic
marine microbes collected from across the world, spanning most
major eukaryotic lineages, including many rarely studied phyla
that lack even a single sequenced genome (Fig. 1a)18. To put this
diversity in perspective, most pairs of MMETSP species are even
more diverged than fungi and animals. All RNA samples were
prepared, sequenced, and analyzed following a standardized
pipeline established by the MMETSP. Some of these data have
been examined in studies of specific species19–22, but the data
have not previously been analyzed collectively.

In this work we identified ortholog groups and assembled the
hundreds of transcriptomes into a single matrix, which we hope
will be a valuable resource for future studies of gene-expression
evolution. We illustrate two applications made possible by these
data: identifying coordinated evolution of gene expression in
protein complexes, and detecting gene expression adaptations to
both intra- and extracellular environments. We have also made
the full data set available in an interactive website at http://
mmetspdata.appspot.com.

Results
Creating a single expression matrix for comparative study. A
major challenge in asking evolutionary questions with the

MMETSP data is that orthologous genes must first be identified
across hundreds of species. Although many databases of ortho-
logs exist, these cannot be easily applied to the de novo assembled
transcriptomes of the MMETSP. Therefore, we developed an
approach to identify orthologous groups, allowing us to create a
single gene expression matrix to facilitate large-scale comparative
studies.

To identify orthologous groups, we utilized a two-step
approach: first matching each transcript to a group of related
proteins (represented by UniProt100 IDs, which are nonredun-
dant clusters of protein sequences; see Methods), and then
merging redundant hits in an iterative process (Fig. 1b). The step
of merging had several complexities. For example, if a transcript’s
top UniProt100 match was only observed once across all RNA-
seq samples, then it was deemed uninformative for comparative
studies, and the next best match (ranked by BLASTP alignment
scores) was then tested. Up to five UniProt100 IDs were tested for
each transcript. In addition, if a single sample had multiple
matches to the same UniProt100 ID—potentially representing
transcript isoforms or paralogs—these were merged and their
read counts were summed within each sample, to reflect the total
expression level of this gene or gene family in each sample. For
further details, see the Methods and Supplementary Figure 1.

This approach resulted in a single unified expression matrix of
4219 genes by 657 samples, where every gene had detectable
expression in at least 100 samples (Fig. 1c; Supplementary
Table 1). This matrix is available for download or interactive
search at http://mmetspdata.appspot.com. For example, users can
search by gene symbol, and visualize the relationship between
expression of a gene across all samples compared to variables
such as each sample’s latitude, longitude, depth, temperature,
salinity, or pH.

Detecting coordinated evolution of gene sets. Having generated
the unified expression matrix, we next turned to the question
of whether we could identify signals of coordinated evolution.
We term this approach—which focuses on coexpression between
species, rather than within species8–10—“phylogenetic expression
profiling” (PEP). This is conceptually similar to PP (Fig. 2a), but
it does not require that genes have been lost from any lineages,
and thus is applicable to any gene whose expression can be
measured across many species.

We first calculated all pairwise Spearman correlations between
genes in the expression matrix. Because of the complex
phylogenetic structure of the data, which can inflate correlations
due to non-independence, we did not attempt to assign p values
to individual pairwise PEP correlations; rather we focused on
detecting coordinately evolving groups of genes, for which we can
create a random permutation-based null distribution that
precisely captures the effects of phylogenetic structure, even
when the phylogeny is not known23. In brief, we selected random
sets of genes which may have correlated expression due to
phylogeny, but should not have any effect of shared function, thus
providing an estimate of PEP correlations expected due to
phylogenic structure (see Methods). Any gene set whose PEP
correlation exceeds this expected distribution was deemed
significant after correction for phylogenetic structure. For the
purposes of comparing our results to PP, we restricted our
analysis to samples in which a given pair of genes were both
detectably expressed, so that PEP does not utilize gene presence/
absence information that is the basis of PP. However, for other
applications the samples with zero expression of a gene could be
included to add more information for many gene sets.

To test the performance of PEP, we compared our results to PP
in two ways. First, we examined genes with a known role in cilia,

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-07436-y

2 NATURE COMMUNICATIONS |          (2018) 9:4963 | DOI: 10.1038/s41467-018-07436-y | www.nature.com/naturecommunications

http://mmetspdata.appspot.com
http://mmetspdata.appspot.com
http://mmetspdata.appspot.com
www.nature.com/naturecommunications


since this organelle is one of the most significant gene sets
implicated by many PP studies6,16,24. We found this gene set was
also enriched for high PEP correlations (Supplementary Figure 2;
permutation p= 5.1 × 10−5), indicating that the ciliary genes
show coordinated evolution of gene expression, in addition to
gene loss. We then compared the two methods at a finer scale, by
asking whether the specific ciliary gene pairs with the strongest
PP signal also show coordinated evolution by PEP. Comparing
the PEP correlations to the binary presence/absence PP correla-
tions, we found a high level of agreement (Fig. 2b; permutation
p= 3.4 × 10−22), suggesting that the specific ciliary gene pairs
most likely to be lost together also tend to have coordinately
evolving expression levels.

We then asked whether PEP and PP agree at a more broad
scale, by testing whether the 327 coordinately evolving modules
identified in a recent PP study6 showed increased PEP signal as
well. We found significant (permutation p= 2.9 × 10−47; see
Methods) enrichment for PEP correlations in these previously
identified PP modules (despite our exclusion of samples with no
detectable expression of a given gene), suggesting that PEP detects
many of the same gene sets implicated by PP. For example, some
of the strongest PEP correlations were among genes involved in
the ribosome, spliceosome, and cilia.

To identify additional coordinately evolving modules not
detected by PP, we applied PEP to a collection of 5914 previously

characterized gene sets, including both pathway and disease
databases (see Methods). Of these, we found 662 gene sets with
significant coordinated evolution, compared to only ~33 expected
at this level by chance (Fig. 2c; 5% false-discovery rate (FDR);
Supplementary Table 2). Most of these had no previous evidence
of coordinated evolution from PP studies, such as RNA
degradation, the proteasome, and the nuclear pore complex.
Examining all pairwise PEP correlations within each of these gene
sets revealed that the coordinated evolution was shared across
most gene pairs, rather than only driven by a small subset of them
(e.g., as shown for proteasome genes in Fig. 2d). Many of these
coordinately evolving gene sets have not been detected by PP
because of the extreme rarity of losing these genes (Supplemen-
tary Figure 3).

We also compared these coordinately evolving gene sets from
PEP to coexpression analysis within a single species, the yeast
Saccharomyces cerevisiae, across environmental or genetic
perturbations. Using a compendium of expression profiles
measured in 121 environments25 we calculated the median
coexpression correlations for each pair of genes within gene
sets that were found as significant using PEP and compared
the two (Fig. 3a). There was an overall weak correlation
between the two sets (Pearson r=−0.08, p= 0.14), suggesting
that the PEP method and coexpression across environments are
largely orthogonal. Repeating this analysis for genetic
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perturbations—coexpression across 1484 yeast gene deletion
strains26 (Fig. 3b)—we observed a similarly low correspondence
(Pearson r= 0.03, p= 0.62). From the environmental yeast data,
we identified the deadenylation dependent mRNA decay gene set
as having evidence for coordinated evolution by PEP but not for
coexpression across environments (Fig. 3c). Conversely, the
ribosome gene set was significant in both PEP and in the cross-
environment analysis, but had a stronger signal in the environ-
mental analysis (Fig. 3d).

We then asked whether we could also detect coordinated
evolution between, rather than within, gene sets. To identify
these, we calculated the PEP correlation between each pair of
genes in a given pair of gene sets (excluding any genes present in
both; see Methods). Among the 218,791 pairs of gene sets we

tested, 22,665 had evidence of coordinated evolution (with <1
expected by chance; Supplementary Table 3). For example, we
found that genes involved in the Golgi apparatus had strong
evidence (permutation p= 2.9 × 10−5) of coordinated evolution
with genes downregulated in Alzheimer’s disease (Supplementary
Figure 4A). Previous studies have implicated Golgi fragmentation
in the pathogenesis of Alzheimer’s27,28 and this coordinated
evolution suggests that these gene sets may be functionally
associated even in microbes.

In addition to identifying coordinated evolution within and
between known gene sets, PEP can also implicate novel genes
evolving in tandem with a known gene set. For this analysis, we
calculated the PEP correlation between the genes in a given set
and every other gene; those with the strongest median
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correlations are most likely to be functionally related to that set.
For example, TULP2—a member of the tubby-like gene family—
had the highest PEP correlation with the diabetes pathway gene
set (Supplementary Figure 4B; permutation p= 3.0 × 10−4), and
it is also a candidate gene for severe obesity, a closely related
trait29. More broadly, genes coordinately evolving with diabetes
pathways were enriched for type 2 diabetes GWAS associations
(permutation p= 2.3 × 10−2 for the top 10 genes, and permuta-
tion p= 2.6 × 10−2 for the genome-wide trend; see Methods),
suggesting that the PEP correlations may be at least somewhat
predictive of genes involved in T2D.

Identifying potential gene-expression adaptations. Correlations
between genotypes or phenotypes and environmental variables
can potentially indicate local adaptation to the environment,
though this approach is usually applied either within species or
between closely related species35,36. We sought to determine if the
same strategy could be applied to our diverse set of microbes, to
generate candidate examples of adaptive evolution.

Latitude is a major driver of local adaptation, resulting in
trends such as smaller animals close to the equator (Bergmann’s
Rule)30. In addition, latitudinal gradients in skin pigmentation
and gene expression have been observed in recent human
evolution23,31. To investigate whether any gene expression levels
show a latitudinal gradient across the diverse set of MMETSP
species, we correlated absolute latitude (where each sample was
collected) with expression levels of every gene. Although we did
not find any functions enriched in the latitude-associated genes,
some genes showed significant associations; the most strongly
correlated gene was the translesion DNA polymerase POLH

(Fig. 4a; Spearman’s ρ=−0.52, p= 2.4 × 10−24), which is
required for accurate replication of ultraviolet (UV)-damaged
DNA. Expression was generally higher closer to the equator, as
expected if its mRNA level has evolved in response to the local
levels of UV radiation. Indeed, average UV radiation was also
predictive of POLH expression across MMETSP samples
(Supplementary Figure 5; Spearman’s ρ= 0.47, p= 2.4 × 10−7).

Other characteristics that might drive adaptations of each
species can be estimated directly from the assembled transcrip-
tomes. For example, in each species we calculated the genome-
wide fraction of codons encoding each amino acid, and tested
whether these fractions predict the expression levels of the
corresponding tRNA ligases—enzymes that “charge” tRNAs
with the appropriate amino acid. Of the ten tRNA ligases with
expression data, all ten had a higher than median correlation
with the relative abundances of their respective codons (binomial
p= 9.8 × 10−4). For example, the association between the
expression of the aspartate-tRNA ligase (DARS) and aspartate
codon abundance is shown in Fig. 4b (Spearman’s ρ= 0.40,
p= 4.8 × 10−15). This supports our hypothesis of adaptive
matching between tRNA ligase levels and genome-wide codon
usage.

Discussion
Over the past 20 years, the rapid proliferation of genome
sequences and genome-wide gene expression data from across the
tree of life has led to a plethora of methods aimed at extracting
information about genes from their evolutionary patterns. We
hope that by assembling the largest comparative gene-expression
data set to date in a convenient format, other researchers might
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use these data to answer a wide range of questions. We provided
two examples of topics that can be explored with these data:
coordinated evolution of gene expression, and adaptive evolution
of gene expression.

The PEP method builds on traditional PP as well as com-
parative gene-expression studies11,12, and together with the most
phylogenetically diverse gene-expression data set available to
date, it revealed widespread evidence for coordinated evolution of
gene expression. This is related but distinct from conserved
coexpression within species8–10 since such conservation could
result from a lack of change in expression, whereas changes across
many species are required for PEP to detect coordinated evolu-
tion. Interestingly, PEP—which in our initial implementation
only relies on species where a gene is present—identified many
gene sets previously implicated by PP, in addition to many novel
sets of coordinately evolving genes. One explanation for why gene
sets such as mismatch repair have not been identified by PP is
that PP is substantially underpowered to detect these gene sets
because of the rarity of their loss.

Further, our analysis of coordinated evolution between gene sets
allowed us to infer potential functional linkages between known
biological pathways. In particular, Golgi fragmentation in Alzhei-
mer’s disease has been linked to promotion of amyloid beta pro-
duction27 and potential phosphorylation of the tau protein, which
underlies the formation of neurofibrillary tangles32. Since the Golgi
genes are not themselves misregulated in Alzheimer’s disease33, a
differential expression analysis of the Alzheimer’s patient samples
vs. controls could not provide this connection.

Previously, within single species or genera, many latitudinal
gradients of traits have been reported, which are often attributed
to local adaptations to climate23,34–36. This study has expanded
such analyses to a much larger phylogenetic breadth. POLH is a
strong candidate gene for local adaptation to UV, considering its
role in the repair of UV-induced damage which leads to xer-
oderma pigmentosum when mutated in humans37. One caveat of
this analysis is that it relies on the latitude of isolation of each
strain and does not represent the breadth of latitudes where a
species lives or the culture conditions. Other methods, such as
directly measuring gene expression from environmental samples
without culturing, could further elucidate these types of rela-
tionships. Additionally, our identification of tRNA ligase levels as
associating with codon abundance suggests that tRNA ligase
levels may adaptively evolve in response to species-specific codon

usage, and is consistent with patterns of tRNA gene copy number
and codon usage in bacteria38–40.

Overall, applying our PEP framework to a gene expression
data set of unprecedented phylogenetic diversity, we identified
many novel examples of coordinated evolution. These included
thousands of cases of coordinated evolution within and between
gene sets, and also coordinated evolution implicating novel
genes related to diabetes pathways. Although it may at first
seem surprising that unicellular eukaryotes could shed light on
complex diseases like Alzheimer’s and T2D, the fact that the
genes are present throughout eukaryotes suggests that the
underlying cellular functions are far more conserved than the
specific human disease phenotypes—consistent with previous
work, for example using yeast to study Parkinson’s disease41

and plants to study neural crest defects42.
We expect that as the diversity of species with publicly avail-

able gene expression data continues to grow, PEP will become a
powerful approach for detecting coordinated evolution at the
molecular level, and for leveraging these patterns to inform us
about functional connections between genes conserved through-
out the tree of life.

Methods
Data filtering and normalization. Raw reads and transcriptome assembled coding
sequence (CDS) data for 669 individually annotated samples and 119 jointly
annotated sample sets from the MMETSP were downloaded from the CAMERA
database (http://camera.crbs.ucsd.edu/mmetsp/index.php). Details on each anno-
tation method (performed by the MMETSP project) can be found on the MMETSP
website (http://marinemicroeukaryotes.org/resources). All raw reads were then
normalized using the Transcripts per Million (TPM) normalization technique43.
Up to five Swissprot ID annotations provided by MMETSP for each CDS were then
culled for IDs that had a BLASTP alignment score of at least 80% the maximum
alignment score for that CDS (based on the observation that typically there is a
steep dropoff of alignment scores after roughly this point), and converted to
UniRef100 IDs (UniRef IDs are comprehensive nonredundant clusters of UniProt
sequences44). In order to create vectors of expression across samples for a set of
UniRef100 defined “genes”, normalized read counts were combined within a
sample for CDSs that had at least three matching UniRef100 IDs and then across
samples by ranking the UniRef100 IDs by alignment score and then creating an
expression vector for an annotation by matching the unique top ranked annota-
tions against the top ranked annotation for each CDS in each sample with ties
resolved by annotation score. Iterative matching is required as some CDSs do not
share top ranked annotations, but do share lower ranked annotations. This initial
round of matching was then followed by matching successively lower ranked
annotations of still unmatched normalized read counts until all read counts are
combined into expression vectors. Note that only unmatched read counts are
carried over into each new iteration. For details see Supplementary Figure 1. The
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expression vectors with at least 100 samples with measured expression were then
combined into a matrix with each column as a sample (669 and 387 samples, for
the individual and jointly annotated sets respectively) and each row as a gene (4995
and 1051 genes).

For the individually annotated samples, this expression matrix was then
normalized by dividing each sample by the total number of genes in that sample
and then adjusting for batch effects by regressing out the MMETSP transcriptome
pipeline used (the two pipelines used differed in the method for transcriptome
assembly), the day the sample was processed, and the lab that submitted the
sample, setting the value of samples missing expression to zero for the regression
step. All variables were regressed out as binary factors. Any samples missing any of
these variables were dropped from the analysis.

For both sample annotations, the UniRef100 ID for each gene was converted to
a UniRef50 ID (a more lenient across-species gene clustering than the UniRef100
ID) and any expression vectors with the same ID were collapsed by sum. The
resulting individual annotation matrix has 4219 genes and 657 samples and the
combined annotation matrix has 1031 genes and 387 samples.

Phylogenetic-expression profiling. Gene sets from the Online Mendelian
Inheritance in Man (OMIM) database45, the Human Phenotype Ontology (HPO)
database46, the Mouse Genome Informatics (MGI) database47, and the Molecular
Signatures Database (MSigDB)48 were downloaded to create a list of 5914 gene sets
with at least three genes that mapped to UniRef50 IDs in the individual annotation
data set.

PEP tests for coordinated evolution of gene expression levels by calculating the
median Spearman correlation between all pairwise combinations of genes in a gene
set. Importantly, each pairwise correlation was calculated using only the samples
that had expression measured for each gene and the genes that had at least 20 such
samples. To calculate the significance of this median correlation, it was compared
to 10,000 null median correlations created by random gene sets with the same
number of genes, drawn from the 25 genes that most closely match the data
missingness profile of the gene they replace. The data missingness profile for a gene
pair was quantified by the Euclidean distance between the presence/absence vector
of each gene across samples. The significance was then given by:

p value ¼
P10;000

i¼1 ϕρi þ 1
� �

10; 001ð Þ : ð1Þ

ϕρi �
1; ρi � ρobs
0; ρi � ρobs

�

: ð2Þ

The FDR is then determined by treating each of the 10,000 permutations as the
real data and calculating 10,000 sets of p values as above. A sliding p value cutoff is
then instituted and the ratio of p values below this cutoff in the real data to the
mean of the number of p values below this cutoff in the 10,000 null permutations is
the FDR.

Comparison with PP. Evolutionarily conserved modules (ECMs) from the clus-
tering by inferred models of evolution (CLIME) algorithm applied to human
pathways were downloaded from the CLIME website (http://www.gene-clime.org/).
The 327 ECMs with an ECM score of greater than five and at least two genes in the
individual annotation matrix were used for the validation test. To validate the PEP
method, we calculated the median correlations for these ECMs in the same way as
PEP, and the median of this distribution across ECMs was then compared to
10,000 null medians calculated using the same null strategy as PEP. The per-
muation p value for enrichment for high PEP scores is then:

p value ¼
P10;000

i¼1 ϕmedianρi
þ 1

� �

10; 001ð Þ : ð3Þ

ϕmedianρi
� 1;median ρi � median ρobs

0;median ρi � median ρobs

�

: ð4Þ

Since the observed statistic was more extreme than all 10,000 permutations, a z-
score based p value was estimated:

z � score ¼
E 10; 000 median ρperm

h i
�median ρobs

� �

SD 10; 000 median ρperm

h i� � : ð5Þ

p value ¼ 2
ffiffiffiffiffi
2π

p � z�scorej j
�1 e�x2=2dx: ð6Þ

The PP correlation of a gene set was calculated by taking the median of the
Pearson correlation of each pairwise presence/absence vector for each gene in the
set. For a gene set, the PP correlation was then compared to the PEP correlation for

each gene by calculating the Pearson correlation between the PEP and PP
correlations for each gene pair. The significance of this correlation was then
calculated by permuting the presence and absence vectors for each gene in the set
and then recalculating the PEP vs. PP correlation 10,000 times; the number of
times a permutation beat or matched the observed value divided by the number of
permutations was then the permutation p value which was then converted to a z-
score based p value as above.

Phylogenetic tree construction. The 18S sequence available for 655 samples was
downloaded from the CAMERA database as above and aligned using the multiple
sequence alignment tool Clustal Omega49. This alignment was then used to create a
maximum likelihood based tree using the program RaxML50 with parameters: −fa
−x 12345 −p 12345 −# 100 −m GTRGAMMA. 18S sequences that did not have
available sample meta data were then dropped, leaving a total of 635 samples.

Comparison with yeast coexpression. Preprocessed expression data for 6423
Saccharomyces cerevisiae genes for yeast grown across 121 different conditions was
downloaded from Caudy et al.25, and yeast expression data for 6170 S. cerevisiae
genes across 1484 deletion strains was downloaded from Kemmeren et al.26. Yeast
gene IDs were matched to human gene names using Biomart and then mapped to
the same gene sets used for the PEP analysis described above51. For each gene set,
yeast median gene set correlations were calculated by taking the correlation for all
pairwise combination of genes within that set, either across environments or across
deletion strains.

Gene-set pairwise comparison. The correlation score between two gene sets was
calculated by taking the median of the pairwise gene PEP correlations, excluding
any genes present in both gene sets. A dendrogram relating the gene sets with
significant PEP scores at a 5% empirical FDR as calculated above was created by
calculating the matrix of correlation scores between all the significant gene sets,
taking the Euclidean distance between the rows of this matrix, and then hier-
archically clustering these distances using the complete linkage algorithm in R’s
hclust function52. Significance of individual gene set pairwise comparisons was
calculated in two steps by first computing the p value for the observed correlation
between each of the gene sets in the comparison and 10,000 gene sets matched by
phylogenetic profile and size as in the PEP method above. The maximum of these
two p values for random gene set associations was then taken to give the p value for
the gene set comparison.

Subsets of this dendrogram were then created by cutting the tree at the height
which gives 15 unique groups. We tested these subsets for gene set enrichments
with the DAVID online enrichment tool53 using all genes in the individual
annotation matrix as background.

Gene-expression/environment comparison. Sample meta data were downloaded
from the CAMERA database as described above and included data on 12 measured
variables. Additionally, using the downloaded CDS data for each sample, we cal-
culated the genome-wide usage of codons encoding each amino acid.

Significance of expression/environment associations was calculated using the
combined annotation matrix data and calculating the Spearman correlation
between all the samples with both expression and environmental data. These
correlations were converted to p values by permuting the environmental data
10,000 times and calculating the number of permuted correlations with an absolute
value greater than or equal to the observed correlation, divided by the number of
permutations as described above. These permutation p values that beat all
permutations were then converted to z-score p values as described above.

Expression correlation with UV radiation was measured by downloading the
radiation data from NCEP and mapping the latitude values to the values for
downward solar radiation flux in the winter at each latitude54.

Addition of genes to gene sets. The correlation of a gene with a gene set was
calculated by finding the median PEP correlation of the gene with all the genes in
the gene set. The significance of this correlation was calculated by finding the
median PEP correlation of the gene with 10,000 permuted gene sets, created as
described above, and summing the number of permuted medians with a greater
correlation and dividing by the total number of permutations.

To test for genome-wide association study (GWAS) hit enrichment, a list of
GWAS SNPs with p value less than 0.05 was downloaded from the Genome-Wide
Repository of Associations Between SNPs and Phenotypes (GRASP) database55.
This database was then culled for SNPs with a type II diabetes association and
GWAS SNPs in genes were matched to genes in this data set using human gene
IDs. Enrichment of GWAS hits in the list of genes added to a gene set was
calculated by taking the top ten genes by PEP p value (with secondary ordering by
correlation) with the set and comparing these GWAS p values to 10,000 random
samplings of the same number of GWAS p values, asking how often a set of p
values smaller than all of the observed p values was found by chance. To test for a
genome-wide trend, the list of genes added to a gene set was divided into 1000 gene
bins ordered by the p value of PEP association and correlation to calculate the
percent of human genes in each bin with a GWAS p value in the database.
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The absolute value of the Pearson correlation between gene bin and percent GWAS
gene was then compared to 10,000 random permutations of gene ordering.

Code availability. Scripts used in this analysis were written using the R pro-
gramming language (3.0.0) and are available upon request.

Data availability
All original MMETSP data are available at http://camera.crbs.ucsd.edu/mmetsp/
index.php. Our processed expression matrix is available at http://mmetspdata.
appspot.com.
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