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Customizing supercontinuum generation via on-
chip adaptive temporal pulse-splitting
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Modern optical systems increasingly rely on complex physical processes that require

accessible control to meet target performance characteristics. In particular, advanced light

sources, sought for, for example, imaging and metrology, are based on nonlinear optical

dynamics whose output properties must often finely match application requirements. How-

ever, in these systems, the availability of control parameters (e.g., the optical field shape, as

well as propagation medium properties) and the means to adjust them in a versatile manner

are usually limited. Moreover, numerically finding the optimal parameter set for such complex

dynamics is typically computationally intractable. Here, we use an actively controlled pho-

tonic chip to prepare and manipulate patterns of femtosecond optical pulses that give access

to an enhanced parameter space in the framework of supercontinuum generation. Taking

advantage of machine learning concepts, we exploit this tunable access and experimentally

demonstrate the customization of nonlinear interactions for tailoring supercontinuum

properties.
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Complexity is a key characteristic of numerous physical
systems, ranging from self-organisation to network access.
Based on nonlinear or chaotic dynamics, and relying on a

large number of parameters usually difficult to access, these
complex systems have an ever-growing impact on our everyday
life1. In photonics, numerous systems fall within this category
where, for instance, the development of advanced optical sour-
ces2–4 is of tremendous importance for applications ranging from
imaging to metrology5–7. A relevant example of this problem is
the generation of a supercontinuum (SC)8, a broadband spectrum
produced by an optical pulse propagating in a medium under the
combined actions of dispersion, nonlinearities, and scattering
effects9,10. In fibre-based systems, its underlying formation
mechanisms are now well-understood and described within the
framework of a modified nonlinear Schrödinger equation3. Sig-
nificant work recently focused on studying broadening effects
triggered by modulation instability processes11, initiated by long
(i.e. sup-picosecond, >1 ps) pulses. In this case, the propagation
dynamics are widely influenced by noise effects, ultimately
resulting in incoherent output spectra12,13. However, many
applications, including advanced metrology and imaging, today
rely on coherent supercontinua8, where reproducible and con-
trollable features are particularly required6,7. Specifically, for e.g.
fluorescence imaging, pump-probe measurement techniques,
spectroscopy, as well as coherence tomography, versatile control
of both spectral and temporal SC properties is essential7,14–17.
Yet, reproducible SC generation typically requires ultrashort (i.e.
sub-picosecond, <1 ps) pulses8, where the means for controlling
the propagation dynamics in a reconfigurable manner are
limited10,18 (i.e. control is constrained by the design of the
initial pulse condition and the properties of the propagating
medium19–21). Therefore, in spite of numerous, rigorous studies
of this regime, the optimization of coherent SC continues to be an
experimental challenge14,15,22,23.

Specifically, the properties of single pulses deterministically
seeding the generation of coherent supercontinua can be tuned
over different degrees of freedom using state-of-the-art techni-
ques (via e.g. pulse shaping, polarization control, or acousto/
electro-optic modulation)10,17,18,23–29. However, these approa-
ches typically rely on external devices that present fundamental
limitations in the sub-picosecond regime, on top of being affected
by complexity, bulkiness, and costs. More importantly, these
techniques only allow for the control of very few single degrees of
freedom (e.g. a single pulse’s duration, shape, or power),
restricting the available nonlinear dynamics to intra-pulse effects
such as soliton deterministic ejection and frequency shifts3,30,
thus ultimately hampering the ability to optimize the overall
system output.

In contrast, using more than one pulse to seed SC generation
not only allows the excitation of multiple independent (intra-
pulse) dynamics, but also leads to a richer variety of effects arising
from the interaction of different components, i.e. inter-pulse
effects such as multi-pulse soliton ejections, dispersive wave
radiations, spectral superposition, steering, and collisions3,30–34.
Yet, initial efforts towards this direction32,33,35–38 have only
partially unleashed the potential of this concept. Recent approa-
ches have been limited to the use of long (sup-picosecond)
incoherent seeds, or to mutually-coherent pulses with very
restricted control over their number and properties. Conse-
quently, the full extent of SC control via multi-pulse seeding has
yet to be achieved.

In this article, we demonstrate a method to drastically enhance
the control parameter space for the tailoring of nonlinear inter-
actions in guided fibre propagation and achieved SC generation
with highly controllable properties. Using the length scales and
stability available with integrated photonics39, custom sets of

multiple and mutually-coherent ultrashort optical pulses (with
low, 1 ps minimal separation) are prepared using optical pulse-
splitting on a photonic chip, also enabling the adjustment of their
individual properties (e.g. power, shape, chirp). The size of the
control parameter space (i.e. over 1036 unique parameter com-
binations for 256 pulses) makes traditional experimental
approaches, based on trial-and-error or exhaustive parameter
sweeps, impossible. However, using machine learning concepts,
in a similar fashion to approaches demonstrated in a variety of
adaptive control scenarios24,40–43, we are able to optimize dif-
ferent pulse patterns and experimentally obtain the desired SC
outputs. Specifically, we measure the spectral output and employ
a genetic algorithm (GA)44,45 to modify the integrated pulse-
splitter settings in order to optimize the nonlinear fibre propa-
gation dynamics towards a selected SC criterion (for instance,
maximizing the spectral intensity at one or more targeted wave-
lengths). The results of this proof-of-concept demonstration
exhibit versatile control of the output spectra, allowing us to
experimentally achieve a seven-fold increase of the targeted SC
spectral density when compared to a single pulse excitation with
the same power budget. Additionally, we numerically show the
potential of this technique, not only for spectral shaping, but also
towards the full temporal control of SC generation.

Results
Experimental setup. The approach proposed for the customiza-
tion of nonlinear interactions via multiple pulse seeding is illu-
strated in Fig. 1. Our experimental setup (see Fig. 1c) comprises
custom pulse train preparation via an integrated pulse-splitter
and subsequent optical amplification, after which the multiple
ultrashort pulses (~200 fs duration) were sent through 1 km of
highly-nonlinear fibre (HNLF) in order to generate a SC. The
spectrum of the pulse train measured at the HNLF input was
centred around 1550 nm and had a 25 nm bandwidth (full-width
at half maximum), corresponding to a 59 nm bandwidth at −10
dB. The input spectrum exhibited a small asymmetry (see Sup-
plementary Fig. 1, 3 and Supplementary Discussion for details on
the initial conditions) as well as an envelope modulation, whose
properties depended on the pattern (i.e. number and separation)
of the pulses generated by our integrated systems. Following fibre
propagation and spectral broadening, the SC output was mea-
sured using an optical spectrum analyser and assessed with
respect to target criteria (see Methods). The integrated device
consists of a concatenation of balanced and unbalanced Mach-
Zehnder interferometers (MZI), as illustrated in Fig. 2 (see
Methods for details). The interferometers are electronically con-
trolled via the use of integrated electrodes, which are responsible
for thermally inducing an optical phase difference between the
two arms of the interferometer. By adjusting the interferometers’
splitting ratio, an input femtosecond pulse is divided into mul-
tiple fractions. Those will follow different path combinations
within the waveguide structure of the CMOS-compatible photo-
nic chip, allowing the preparation of a coherent train of multiple
pulses with adjustable peak powers and relative delays (with as
low as 1 ps pulse separation, see Fig. 2b–e). The device exhibits
low losses (~3 dB overall, see Methods) and the interferometers’
integrated push-pull configuration provides excellent repeatability
and stability against environmental perturbations. More impor-
tantly, the photonic chip enables versatile control of the pulse
train (i.e. power, delay, pulse duration, chirp, etc.): Specifically,
the large Kerr nonlinearity and weak anomalous dispersion in the
device waveguides46 can bring about path- and power-dependent
nonlinear phase shifts and temporal broadening. These control
properties are very important for the optimization of coherent SC
features: the ability to adjust multiple pulse shapes, chirps,
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powers, as well as their relative delays and phases constitutes the
key ingredient required for the efficient control of independent
and variable deterministic soliton radiation processes (i.e. intra-
pulse dynamics) at the basis of spectral broadening in the current
propagation regime. This control of the initial parameter space
(and the corresponding intra-pulse dynamics leading to sub-
sequent soliton radiation) is also expected to condition inter-
pulse dynamics during further fibre propagation, including the
tuning of multiple soliton interactions such as repulsion, collision,
or spectral superposition8,9,30–33. The use of multiple yet coherent
pulse excitations is thus foreseen as a simple way to customize a
wide variety of nonlinear interactions which are otherwise hard to
tune using conventional pulse shaping techniques. Remarkably,
they are here accessible in a simple yet efficient integrated
platform.

Single-wavelength optimization. In order to illustrate the ver-
satility of our scheme for controlling nonlinear pulse propagation,

we first demonstrated the enhancement of the power density at a
single wavelength of the SC. For this, we limit our study to two
cases. As a reference, we used the simplified case of a SC spectrum
generated by a single pulse with adjustable power (Fig. 3a). Here,
spectral broadening was mediated by the radiation of multiple
solitons and dispersive waves, which subsequently experienced
Raman self-frequency shifts9,30. For comparison, our second case
used multiple excitation pulses (prepared using the integrated
splitter), possessing the same power budget as in the single pulse
study (50 mW), but with input parameters refined via genetic
algorithm optimization (see Methods).

We found that, for target wavelengths across the SC
bandwidth, the use of multiple pulses enabled 20–700% spectral
density enhancement relative to the reference (see Fig. 3b, c).
Examples of optimized spectra for three particular target
wavelengths are shown in Fig. 3d–f and illustrate how the
resulting spectra can vary significantly for a similar input power
but drastically different pulse configurations (see insets). Note
that, in this work, we restricted our study to a limited number of
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Fig. 1 Concept of supercontinuum spectral customization via multiple pulse seeding. a Example of spectro-temporal properties (spectrogram53) of a single
sub-picosecond pulse after propagation in a nonlinear optical fibre (see Methods). The newly-created spectral components experience progressive
temporal walk-off9,30. At a given distance, only a few of the components temporally overlap, limiting nonlinear effects to intra-pulse interactions and
restricting spectral shaping capabilities. b Using several pulses, more complex intra- and inter-pulse dynamics can be excited. Pulse-to-pulse separations on
the order of the temporal walk-offs (~ps), enable the interplay of various spectral components generated from different pulses, thus providing enhanced
nonlinear control over the spectral shaping. c Experimental setup: An integrated pulse-splitter is used to generate a custom train of pulses with ps-
separation. After amplification with an erbium-doped fibre amplifier (EDFA), these are injected into a 1 km-long, highly-nonlinear fibre (HNLF) to form a
supercontinuum, monitored using an optical spectrum analyser (OSA). A feedback loop is used to optimize the seed pulse train and tailor the
supercontinuum output

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-07141-w ARTICLE

NATURE COMMUNICATIONS |          (2018) 9:4884 | DOI: 10.1038/s41467-018-07141-w | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


pulse seeds (either 16 or 32 pulses in the pattern instead of the
256 maximally-achievable with the chip). Nevertheless, in the
propagation regime studied (where SC spectral broadening above
2000 nm is intrinsically limited by fibre losses), the use of such a
subset of the available parameter space is sufficient to exhibit
notable spectral enhancement while ensuring fast convergence in
the optimization process (see Methods and Supplementary Fig. 4,
for discussion). As expected, the use of 32 pulse seeds was found
to outperform the use of 16 pulse seeds (see Fig. 3c). In this
regime, such expected behaviour can be explained by the
potential of multiple pulse seeds to judiciously condition the
spectral steering and, ultimately, the superposition of indepen-
dently generated spectral components (see Supplementary Fig. 2).
It is foreseen that for other applications and target SC outputs, a
greater number of pulses, and consequently larger parameter
spaces, will enable even better performances.

Dual-wavelength optimization. Remarkably, the ability to gen-
erate multiple pulses with specific delays and properties further
enables the control and optimization of typically complex and
interdependent dynamics. This feature is illustrated in Fig. 4,

where simultaneous enhancement of the power density at two
distinct SC wavelengths can be obtained with our scheme (see
Methods). Here, we specifically targeted cases where both wave-
length intensities were equivalent (see Methods), but further
tunability is accessible depending on the exact optimization cri-
teria used for the algorithm (see Supplementary Discussion and
Supplementary Fig. 5). Indeed, arbitrary optimization criteria can
be implemented44, in stark contrast to what can be obtained with
a single pulse seed. Spectral broadening mediated by soliton
radiation is highly deterministic and typically leads to strong
spectral correlation in the resulting SC3,31,32,47. In our case
however, multiple pulse excitation can seed both independent
dynamics and customized nonlinear interaction. This, alone,
manifests a powerful example of how our integrated system,
along with the implementation of machine learning concepts, can
be efficiently used to tailor complex nonlinear processes without
extensive system design.

Advanced spectro-temporal control. Additionally, our approach
has the potential of controlling the SC temporal properties, which
we confirmed by numerical simulations using a shorter fibre
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propagation length (in order to ensure reliable and reasonably
fast computation of the pulse propagation dynamics—see Meth-
ods for details). In particular, by assuming a 200 fs pulse (2 kW
peak power), which was randomly split into a train of 64 pulses
by our integrated device and propagated through a 50 m-long
HNLF, we show how solitons, radiating from the excitation
pulses, can individually experience different Raman self-
frequency shifts and temporal walk-offs leading to collisions,
steering and the generation of novel frequency components14,32,33

(see Fig. 5a). Overall, such an enhanced parameter space can
ultimately drive different propagation scenarios and thus provide
a high degree of reconfigurability in terms of SC properties (see
Supplementary Fig. 2 for different examples of propagation
dynamics). Indeed, depending on the initial conditions, highly
variable yet coherent SC output spectra3 can be obtained
(Fig. 5b), with the additional possibility for selecting the delay and
order with which specific spectral components emerge from the
fibre (see Fig. 5c)14.

Continuous control of the relative delay between two spectral
components can thus be obtained over a large temporal window
of ±40 ps (Fig. 5d—see Methods). This ability, obtained by

exploiting the multiple pulses of the system, provides a higher
flexibility and tuning range with respect to conventional shaping
techniques applied to a single pulse (see Fig. 5d and Methods for
details)10,17,18,22,26,28. In particular, when considering the
propagation regime studied here, single pulse seeding always
leads to the formation of soliton(s) and associated dispersive
waves, the temporal walk-off of which is intrinsically related to
their wavelength (i.e. the most red-shifted solitons will typically
exhibit a larger delay due to Raman scattering8,9). In this
framework, even conventional shaping techniques are inherently
limited to slightly adjusting the absolute value of the relative
delays between different spectral components (see Fig. 5d). On
the other hand, the use of multiple pulse seeding has shown that
versatile temporal control between two (or eventually more)
pulses at arbitrary wavelengths of the output spectrum can be
obtained. This additional temporal tunability, typically required
e.g. in advanced imaging systems14,16,17, will complement the
experimentally-demonstrated spectral shaping, and is expected
to be further enhanced (e.g., by activating additional inter-
ferometers and thus exponentially expanding the accessible
parameter space).

5

10

15

20

25

30

35

40

45

50
A

ve
ra

ge
 in

pu
t p

ow
er

 (
m

W
)

1300 1500 1700 1900

Wavelength (nm)

0

N
or

m
al

iz
ed

 in
te

ns
ity

 (
dB

)

–25

0
M

ax
im

al
 in

te
ns

ity
(c

ou
nt

s 
×

10
,0

00
)

0
0.5

1
1.5

2
2.5

3
3.5

S
pe

ct
ra

l i
nt

en
si

ty
en

ha
nc

em
en

t (
%

)

0
100
200
300
400
500
600
700
800

16 pulses
32 pulses

Selected optimization wavelength (nm)

1300 1400 1500 1600 1700 1800 1900 2000

P
um

p 

1700 nm

1400 1600 1800 2000

Pulse-splitting optimization results

In
te

ns
ity

 c
ou

nt
s 

(×
10

,0
00

)
1800 nm

0

0

1

2

3.5

2.5

1.5

0.5

3

4

0

1

2

3.5

2.5

1.5

0.5

3 Pin = 18.1 mW

Wavelength (nm)

1300 1400 1500 1600 1700 1800 1900 2000

1600 nm

Single pulse
Pulse splitting

1

2

3

2.5

1.5

0.5

Pin = 19.7 mW

Pin = 20.1 mW

In
te

ns
ity

 c
ou

nt
s 

(×
10

,0
00

)
In

te
ns

ity
 c

ou
nt

s 
(×

10
,0

00
)

Output spectra (single pulse - adjustable power) Examples of optimized spectra

P
um

p 

Single pulse
Pulse splitting

Delay (5 ps.div–1)

Delay (5 ps.div–1)

Delay (5 ps.div–1)

a

b

c

d

e

f

Fig. 3 Supercontinuum spectral intensity optimization at selected wavelengths. a Spectral intensity map measured at the highly-nonlinear fibre output,
generated by a single pulse seed as a function of its average power. b Maximal spectral intensity reached as a function of the selected optimization
wavelength, considering either a single pulse seed case (dashed black line—i.e. the maximal intensity retrieved from panel a), or using the pulse-splitting
optimization technique (with up to 16 pulses—red circles) for the same power budget—see Methods. c Spectral intensity enhancement (relative to the
single pulse seed case as a reference), for pulse-splitting performed with 16 (red dots) or 32 (blue diamonds) seed pulses. For reference, the input pump
spectral location is shown as grey shadings in (b) and (c). d–f Examples of spectra obtained following intensity maximization at target wavelengths (blue
shadings), using single pulse seeding (dashed black lines), or pulse-splitting optimization (red lines—with up to 16 pulses). The insets show the
autocorrelation traces of the corresponding, optimal input pulse trains and average powers Pin

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-07141-w ARTICLE

NATURE COMMUNICATIONS |          (2018) 9:4884 | DOI: 10.1038/s41467-018-07141-w | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Single pulse

Pulse splitting

Wavelength (nm)

1400 1600 1800 2000
0

1

2

0.5

1.5

Wavelength 1 (nm)

1600

1700

1800

1700

1600

1800

Wave
length 2 (n

m)

A
ve

ra
ge

 s
pe

ct
ra

l i
nt

en
si

ty
en

ha
nc

em
en

t (
%

)

400

0

300

200

100

Spectra for dual-wavelength optimization Dual-wavelength optimization results
In

te
ns

ity
 c

ou
nt

s 
(×

10
,0

00
)

0

1

2

0.5

1.5

Wavelength (nm)

1400 1600 1800 2000

1650 nm1600 nm

1750 nm1650 nm 1850 nm1650 nm

1750 nm1600 nm

ba

Fig. 4 Supercontinuum spectral intensity optimization for different wavelength pair combinations. a Examples of spectra obtained following simultaneous
intensity maximization at two target wavelengths (blue shadings), using single pulse seeding (dashed black lines), or pulse-splitting optimizations (red
lines—with up to 16 pulses). Note that we used here the same setup and power budget as in Fig. 3, and simply modified the algorithm optimization criteria
(see Methods). b Optimization matrix for wavelength pair combinations, showing normalized intensity enhancement obtained for combinations of
wavelength pairs. Such enhancement (see colour bar on the left axis) is calculated as the average intensity at both wavelengths and is normalized relatively
to the single pulse seeding case (see Methods). For clarity, we only report results where the intensity at one wavelength is less than twice as large as the
intensity at the other wavelength (see Supplementary Fig. 5, for a complete analysis)

Wavelength (nm)Time (ps)

0

10

50

30

20

40

HNLF input HNLF input

Temporal intensity output Spectral intensity output

P
ow

er
 (

W
)

0

200

600

Time (ps)

200 604010 30 50

1300 1400 1500 1900
Wavelength (nm)

2000

� = 1700 nm
� = 1800 nm

Δt

200 604010 5030 70 1300 1600 1900 2,200

400

1600 1700 1800 23002100 2200

70

Integrated 
pulse-splitter

R
el

at
iv

e 
de

la
y 

Δt
 (

ps
)

0

20

40

–20

–40

–60

60

P
ro

pa
ga

tio
n 

di
st

an
ce

 in
 th

e 
H

N
LF

 (
m

)

Spectro-temporal evolution of a customized pulse train in HNLF SC spectral tunability (200 simulations with different pulse patterns)

SC filtered temporal profiles SC temporal tunability

Single pulse
(adjustable properties)

Realization number

2000 600400 800

Δt

F
ilt

er
ed

 in
te

ns
ity

 (
10

 W
.d

iv
–1

)

In
te

ns
ity

 (
5 

dB
.d

iv
–1

)

In
te

ns
ity

(5
 d

B
.d

iv
–1

)

In
te

ns
ity

 (
10

 d
B

.d
iv

–1
)

a b

c d

Fig. 5 Numerical simulations showing control of the supercontinuum spectral and temporal properties. a Example of supercontinuum (SC) temporal (left)
and spectral (right) evolution in 50m of highly-nonlinear fibre (HNLF). A train of 64 pulses, prepared using the integrated pulse-splitter (bottom), is
injected into the HNLF to generate a broadband supercontinuum (top). b SC spectra obtained by simulating the propagation of 200 randomly prepared
pulse patterns (grey). The average spectrum of these is plotted in black. Additional numerical analysis shows that despite different evolution dynamics, the
respective spectra individually retain a high average degree of coherence <g> thanks to the (coherent) optical splitting method employed (The average
coherence of each individual spectrum illustrated, computed over a 20 dB bandwidth, was <g>= 0.973—see Methods)3,7,39. c Examples of two different
SC temporal profiles (top and bottom panel—obtained from two different input pulse patterns) after narrowband filtering at two specific wavelengths (i.e.
1700 and 1800 nm—see blue and red shadings in (b), respectively), showing that the differently-coloured pulses can exhibit diverse arrival times. d The
relative delay between these filtered output pulses is computed for various integrated pulse-splitter configurations (brown dots). We found an enhanced
temporal tunability compared to SC generated from a single input pulse with randomly adjusted properties (grey squares)—see Methods
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Discussion
We demonstrate how adjustable, integrated path-routing can be
used to access a wide and controllable optical parameter space. In
combination with the use of genetic algorithms (GAs), we showed
the generation of supercontinua with broadly reconfigurable
characteristics. Most importantly, this is achieved with the same
power budget, meaning no additional amplification was used, and
therefore the benefits of pulse splitting far exceed the drawbacks
due to the additional optical loss of the integrated device. In
particular, the improvements provided by the additional degrees
of freedom in the multi-pulse excitation regime can condition the
interleaving, superposition, and nonlinear interaction between
multiple phase-locked pulses, which in turn significantly expands
the controllable SC properties by allowing the customization of
both their spectral and temporal power distribution. Besides this
demonstration in the telecom range, our approach could be
extended to other typical laser wavelengths (e.g. 800 or 1064 nm)
and/or fibre designs. Using for instance an optical source to seed a
fibre with a judiciously chosen dispersion profile (in order to
circumvent the loss-induced spectral broadening limitations
observed in the current HNLF), coherent and reconfigurable
octave spanning SC generation is expected to be readily obtained
with our proposed systems. Similarly, the nonlinear fibre used in
our experiments for SC generation could be shortened or readily
integrated on a photonic chip46,48,49, thus providing a compact
and stable system for the deployment of advanced optical func-
tionalities (such as on-chip f-2f interferometry based on coherent
SC50). In this context, we foresee this approach as an invaluable
tool for the development of novel optical sources for, e.g. state-of-
the-art imaging and metrology applications requiring both
spectral and temporal tunability (e.g. pump-probe measurement
techniques, hyperspectral imaging, or various schemes for
coherent control)4–8,14,16,34.

Additionally, it is worth underlining that we restricted our
attention to the use of sub-picosecond pulses (<1 ps) in order to
avoid temporal overlap between adjacent excitation pulses during
propagation in our integrated system. Yet, the design of a pulse-
splitter with shorter relative delays or, equivalently, the use of
longer pulses is also expected to unlock novel features in SC
adaptive control (via e.g. coherent temporal synthesis39 and tai-
lored pulse superposition31,33), especially within the framework
of fundamental studies associated with extreme event
formation11,13,35,38. Similarly, such an approach is thus expected
to allow the optimal exploitation of complex optical systems
without a priori knowledge of their dynamics. This may include
applications related to advanced nonlinear signal processing51,
the control of frequency comb emission4,5,22, as well as of laser
mode-locking2. In turn, this can pave the way towards the next
generation of self-adjusting lasers40,52 and ‘smart’ integrated
optical systems.

Methods
Integrated pulse-splitter. The on-chip photonic pulse-splitter was formed by
cascading N= 9 balanced interferometers and M= 8 delay lines based on inte-
grated optical waveguides (see Fig. 2), where the associated delays varied according
to the relation ΔτM= 2ΔτM-1. The device was fabricated from a CMOS-compatible,
high-refractive index silica glass (Hydex) produced by chemical vapour deposition
without the need for high-temperature annealing46. Patterning was done using UV
photolithography and reactive ion etching. This material platform is featured by a
refractive index of n= 1.7, along with very low linear (0.06 dB cm–1) and negligible
nonlinear optical losses (no nonlinear losses measured up to 25 GW cm–2). The
waveguide dimensions allowed for single mode TE and TM propagation at telecom
wavelengths, where the dispersion and nonlinear properties were similar to those
reported in Ref.46, as verified by means of optical vector analyser measurements
(Luna OVA 5000). At the central wavelength of the pulses used in our experiments
(i.e. λ= 1550 nm) and for the selected polarization, we estimated the waveguide
dispersion to be extremely low (β2=−2.87 ps2 km−1and β3=−0.0224 ps3 km−1),
yet the effective nonlinearity to be significantly high (γ= 233W−1 km−1).

The input and output bus waveguides featured mode converters and were
pigtailed to 1.2 m fibre patchcords (SMF-28) on each side, resulting in coupling
losses of 1.4 dB per facet. The total propagation length in the sample varies between
5 and 9.5 cm and depends on the selected paths inside the structure. Overall, the
total losses in our pulse-splitter were measured to be between 3.10 and 3.36 dB at
1550 nm, depending on the optical path (including the attenuation from the mode
converters and pigtails).

Gold electrodes were deposited on each arm of the nine balanced
interferometers (the last is dedicated to the output splitting and pulse
recombination but does not introduce any delay), in order to induce a local and
variable thermal modification on the adjacent optical waveguide. Such a
modification was controlled electronically (see below) to produce a phase
difference ΔφN between the two arms of the interferometer (where N is the
interferometer number in the sample). For each of the eight interferometers, the
waveguide thermal control allowed for a tunable switching of the optical output
beam path between the short and the long arm of the following delay line (thus
inducing a path difference equivalent to a delay ΔτM). The two output waveguides
from such elements were then fed into the two input waveguides of the subsequent
balanced interferometer. Via these cascaded blocks, it is possible to generate up to
2M optical pulses with adjustable powers and temporal separation (multiples of
Δτ1). We note that in our integrated pulse-splitter, the minimal delay was Δτ1= 1
ps, and the maximal delay was Δτ8= 128 ps so that we were able to generate up to
256 pulse replicas with adjustable individual powers and tunable temporal
separation (multiples of 1 ps) over the range 1–255 ps. We also note that the
photonic chip supports bidirectional optical propagation and can also be used by
inverting the input and output ports, as illustrated in Fig. 2a (thus leading to a
propagation where the associated delays in the chip decrease according to the
relation ΔτM= 0.5 ΔτM-1).

The splitting ratio of the interferometers was computer controlled, via a push-
pull architecture implemented by custom computer-controlled driving electronics,
used to apply up to the 5.0 ± 0.2 V voltage swing required to completely switch the
beam path from one interferometer output to the other. The splitting ratio
characterization was carried out by measuring the optical power at each
interferometer and we found, for each element, an extinction ratio above 16 dB (i.e.
a cross-talk below 2.5%). From both electronic and optical characterizations, we
estimated that the splitting ratio can be modified with a resolution of 0.01%
(assuming a wavelength independent response) via ~32,000 voltage control levels
per interferometer over the voltage range required for a complete path switching.
For the overall sample, this corresponds to more than 1036 different setting
configurations (i.e. combinations) that can be employed for the versatile generation
of multiple pulse replicas. The wavelength dependence of the interferometer
splitting ratio was characterized using a tunable CW laser (Tunics-Plus). Over the
range 1525–1575 nm (i.e. the bandwidth of the pulses used in our experiments), we
found only negligible differences in the measured splitting ratio (i.e. maximal ± 3%)
and overall losses (~0.2 dB discrepancies in the worst-case scenario, when
propagating along a single waveguide path).

Finally, the response time of the system was estimated by switching one (or
several) interferometer splitting ratios within the sample, and temporally resolving
the subsequent SC spectral modification induced after propagation in the HNLF.
This was done using a fast spectrometer (see Methods below), which was also used
to ensure the long-term stability and excellent repeatability of the pulse-splitter
device. For one interferometer, the switching settling time (to reach thermal
equilibrium) for the maximal voltage swing, was estimated to be below 100 ms,
including the overall lag time of the computer, driving electronics, and detection
system (~30 ms overall). Using simultaneous switching of five interferometers, we
observed slightly longer settling times that were attributed to thermal cross-talk
between adjacent interferometers, as well as longer update times of the sequential
commands sent to the electronic drivers (~160 ms). An overall 500 ms settling time
was estimated to be sufficient for capturing the main spectral modifications in the
experiments performed here while ensuring excellent repeatability. This was
confirmed, in case of the optimization routine, by choosing an extremely
conservative 3 s settling time, yielding equivalent results to those obtained using a
500 ms settling time.

Experimental SC generation and control. The fibre laser used in our experiments
(Menlo C-Fiber) generated femtosecond pulses at a 250MHz repetition rate. The
initial spectrum, measured with an optical spectrum analyser (OSA), was centred at
1550 nm with a 52 nm bandwidth (full width at half maximum—FWHM). After
suitable dispersion management and temporal recompression, the pulse was sent
into our integrated pulse-splitter, allowing for the preparation of multiple pulses.
The optical pulse had an estimated ~ 200 fs duration (FWHM) and peak power of
300W when entering the photonic sample. Subsequently, the optical output of the
sample (i.e. the set of prepared sub-picosecond pulses) was amplified to the desired
power level by using a short length (1.6 m) erbium-doped fibre amplifier (EDFA)
before being injected into 1 km of HNLF. At this wavelength, the fibre operates in
the anomalous dispersion regime, yet close to the zero-dispersion wavelength
(ZDW= 1545 nm, see HNLF parameters below). After propagation in the HNLF,
the broadband SC was characterized using a fast spectrum analyser (Avantes—
AvaSpec NIR512) allowing measurements over a 954–2580 nm window with a
resolution of ~3.5 nm. The spectral intensity(ies) at the wavelength(s) of interest
were extracted from these measurements for each iteration and then used to
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implement the optimization criterion for the GA (see Methods below and Sup-
plementary Discussion). The measurements of the fast spectrum analyser were also
performed over the range 600–1750 nm using the OSA (ANDO AQ6317B), thus
allowing for consistency verification with improved resolution. Measurements of
the initial conditions were carried out at the input of the HNLF: Pulse spectral and
temporal diagnostics were done with the OSA as well as with a custom intensity
autocorrelator and frequency-resolved optical gating setup (FROG)53.

Temporal broadening of the sub-picosecond optical pulses was controlled via
careful dispersion management throughout the setup until injection into the
HNLF. Specifically, we used a combination of single mode fibre (SMF-28) and
dispersion compensating fibre (DCF-38 from Thorlabs) with patchcords of
specifically chosen lengths to (i) minimize the initial chirp of the pulse emitted
from the fibre laser, (ii) temporally recompress the pulse (while limiting nonlinear
effects) before injection into the integrated splitter, as well as, (iii) maintain the
pulse temporal spreading to a minimum during and after propagation in the
sample. This configuration, based on controlled dispersion management and
subsequent amplification after pulse-splitting, allows obtaining ~ 200 fs pulses both
at the HNLF input and throughout propagation in the photonic chip waveguides
(thus avoiding temporal overlap between the adjacent prepared pulses) while
limiting the overall distortions induced via nonlinear effects before injection into
the HNLF.

For the reference experiment using only a single pulse, the pulse-splitter was set
with all splitting ratios to their minimal values (so that only one pulse follows the
shortest possible waveguide path), while the EDFA current was tuned to linearly
sweep the average power with 425 incremental steps over the range 0.1–50 mW.
Note that we used an additional optical attenuator before the HNLF for measuring
SC output spectra with input average powers below 2.5 mW (i.e. the EDFA
amplification threshold). The best result within this ensemble of 425 output spectra
—with respect to the desired optimization criterion—was used as reference for
comparing the results obtained via multiple pulse optimization.

For these experiments, we set the EDFA current to the maximal value used
previously (i.e. leading to 50 mW average output power after amplification). In this
case, the relative powers of the pulses were directly controlled by modifying each
delay interferometer splitting ratio (as well as the output interferometer, for
regulating the overall power).

GA parameters. For the experiments presented, we made use of an optimization
process based on a GA implemented directly from the Matlab dedicated function
which was employed to adjust the integrated pulse-splitter parameters via driving
electronics controlled through a USB connection. Note that no other tuning
parameters were used and all other experimental settings were kept constant. For
assessing the optimization criteria, we used the spectral intensity measured at one
(or two) wavelength(s) in the SC. For the reported experiments, the GA was
configured to enhance the discrete spectral intensity at a selected wavelength (i.e.
single-objective function—as seen in Fig. 3) or both spectral intensities at two
selected wavelengths (i.e. multiple-objective function—as seen in Fig. 4). In the
latter case, the optimization process yields a so-called Pareto front (or frontier)44,
corresponding to the optimum set of parameters leading to the best trade-offs
between the optimization criteria. Note that in Fig. 4, we only illustrate the case
where both spectral intensities at the selected wavelength of interest are similar. A
detailed analysis of the Pareto front clearly indicates that more sophisticated
optimization processes can readily be achieved (e.g. allowing to select the ratio
between the spectral intensity at the desired wavelengths—see Supplementary Fig. 5
for additional details). This, in turn, leads to more versatile output properties.

For proof of principle demonstrations, we kept the parameters of the GA
function to their default values and selected a crossover of 50%, i.e. the ratio of
‘genes’ (the voltage of a single interferometer) from each ‘individual’ (set of all
voltages for the interferometer array) carried from one ‘generation’ to the next44,45.
The number of individuals populating each generation (i.e. each iteration step of
the GA) was adjusted depending on the number of genes for each individual (i.e.
the number of actively-controlled interferometers).

In addition, the maximal number of generations was limited in order to achieve
a meaningful optimization towards the targeted SC output in a reasonable time
frame (~1 h for each optimization process). Specifically, for five active
interferometers (i.e. for generating 16 pulses), we constrained our algorithm to 15
generations with 500 individuals. Correspondingly, when 6 interferometers were
actively adjusted (i.e. for 32 pulses), we expanded the population size to 1,000
individuals in order to obtain a better sampling of the initial parameter space (i.e.
one additional gene per individual), while reducing the number of generations to
10. Note that, with such a limited number of generations, a systematic convergence
(in the strict mathematical definition) of the GA might not be fully reached.
However, we obtained a consistent improvement in the desired SC properties even
using this limited number of iterations. Such optimization has been carefully
verified for various sets of GA parameters (as well as for various settling times—i.e.
the time between setting the system and taking the measurement, see
Supplementary Fig. 4 and Supplementary Discussion), and was also observed in
additional tests for more complex optimization objectives.

Numerical simulations of nonlinear pulse propagation. Our numerical simu-
lations used a split-step Fourier method to solve the generalized nonlinear

Schrödinger equation (GNLSE)3,8 for modelling the pulse evolution in both the on-
chip photonic pulse-splitter and the HNLF:
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Here A(z, T) is the pulse envelope (in W−1/2), evolving in a comoving frame at
the envelope group velocity β1−1, so that T= t− β1z. The model includes higher-
order dispersion (shown on the left-hand side of the equation) and nonlinearity
(on the right-hand side), as well as the presence of loss α and initial broadband
noise (i.e. one photon with random phase per spectral mode)9,10. The overall
nonlinearity is represented by a nonlinear coefficient γ and includes the self-
steepening effect (through a shock timescale τshock = 1/ω0= 0.823 fs). The
nonlinear response function R(T′)= (1−fR)δ(T′)+ fRhR(T′) encompasses both an
instantaneous Kerr effect and a delayed Raman contribution hR(T′), the weight of
which is given by fR= 0.18.

For the HNLF, we used the parameters retrieved from the manufacturer
datasheet (OFS Fitel—HNLF ZDW1546): At a central wavelength of 1550 nm, the
nonlinear parameter is γ= 11.3W−1 km−1, the dispersion is slightly anomalous
with β2=−0.102 ps2 km−1, β3= 0.0278 ps3 km−1 and β4= 4.0 × 10−5 ps4 km−1

and the linear losses are 0.99 dB km−1.
For simulations of the on-chip photonic pulse-splitter, we modelled the pulse

evolution through each waveguide element using a split-step method. This
included the dual waveguide system with balanced and unbalanced interferometric
structures and associated beam splitter transfer functions. The splitting ratio of the
MZI structures, allowing for tuning the pulse path and creating delayed pulse
replicas, was modelled by adding a tunable phase offset on one arm of the
respective balanced interferometer. The parameters of the waveguides at 1550 nm,
assuming a pure TM polarization, were taken as β2=−2.87 ps2 km−1 and β3=
−0.0224 ps3 km−1, with a nonlinear parameter γ= 233W−1 km−1 and linear
losses of 0.06 dB cm–1 (see above and ref. 46).

For the cases shown in Fig. 1, we simulated the evolution of a transform-limited
Gaussian pulse of 200 fs duration (FWHM) with a peak power of 1 kW directly
injected into 10 m of HNLF with the properties shown above (Fig. 1a), or split into
four pulses with different peak powers and 1 ps separation (Fig. 1b). Note that the
same individual properties and overall input energy was used for both cases. The
corresponding spectrograms were constructed using a 50 fs hyperbolic-secant gate
function10,53.

For the proof-of-concept simulations illustrated in Fig. 5, we considered a
simple case where the integrated pulse-splitter was directly connected to 50 m of
HNLF, with coupling losses of 1.4 dB per chip facet. At the input of the pulse-
splitter, we injected a transform-limited Gaussian pulse of 200 fs duration
(FWHM) with a peak power of 2 kW (i.e. the typical values associated with a fibre
laser producing such pulses at 10 MHz repetition rate and 4 mW average output
power). For this analysis, we carried out 10,000 simulations randomly varying the
splitting ratio of 6 (+1 output) interferometers (such as to produce 64 pulses with
1 ps separation and adjustable powers). The extraction of each soliton/pulse
properties at the HNLF output (see Fig. 5c) was carried out using a spectral filter
with a 50 nm bandwidth (FWHM) around the wavelengths of interest. Subsequent
analysis of the pulse relative delay at the HNLF output (see Fig. 5d) was obtained
by discarding the filtered pulses with a peak power below 20W (i.e. below 1% of
the initial pulse peak power). For this diagram, we post-selected cases where only
one pulse was obtained at each wavelength (after filtering) within the ensemble of
10,000 simulations.

The coherence analysis of the supercontinua was carried out by fixing the
splitting ratio used in our model and performing 20 stochastic numerical
simulations with random noise seeds (i.e. adding one photon with random phase
per spectral mode). The degree of spectral coherence |g(1)12 (λ, 0)| was thus
retrieved as the mean value for the modulus of the degree of first-order coherence
calculated at each wavelength λ over this ensemble of 20 simulations, which we
found to be a sufficient number for a meaningful estimation of the SC coherence36.
<g> was computed as the mean spectral coherence over the 20 dB SC spectral
bandwidth. Note that the coherence value mentioned in Fig. 5 was then obtained
by repeating this procedure for 50 different pulse-splitter settings and then
averaging the results.

Compared to a single input pulse with adjustable properties, the use of multiple
and controllable pulses leads to enhanced tunability in the SC properties, which is
illustrated in Fig. 5d. For this comparison, we repeated the previous set of
10,000 stochastic simulations replacing our integrated pulse-splitter by an arbitrary
pulse shaper25. In particular, we modelled the random variation of the pulse
properties by first modifying its peak power P0 and temporal profile asymmetry ε.
The pulse envelope A(T) was constructed from two half-Gaussians with different
widths being respectively T ±

0 ¼ 1 ± εð ÞT0. These half-Gaussians were added so that
their maxima overlap, forming a pulse of duration T0= 200 fs (FWHM) with
variable trailing/leading edge steepness. We then added a random quadratic and
cubic spectral phase of the form exp iην2 þ iκν3ð Þ on top of the pulse spectrum
~AðνÞ, before finally implementing an additional nonlinear phase shift, i.e. a self-
phase modulation with random and tunable nonlinearity of the form
exp iφNL Aj j2=P0

� �
. Each of these parameters was randomly changed for 10,000
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different realizations, and uniformly distributed over the ranges:P0= [0 2] kW; ε=
[−0.5 0.5]; η= [−0.5 0.5] ps2; κ= [−0.05 0.05] ps3; φNL= [−3π 3π]. Although not
exhaustive, such adjustable properties are typical of common optical processing
systems (e.g. extra fibre length, pulse spectral shaping, etc.) and allow for a direct
comparison with our pulse-splitter-based simulations, as the typical SC output
bandwidths and coherence degrees remained quantitatively similar for such pulse
durations3. Note that the SC filtering, processing, and post-selection described
above remained otherwise unchanged.

In order to verify the overall validity of the dynamics observed in our
experiments, we also performed simulations of the evolution of a single pulse
directly injected into 1 km of HNLF with variable input powers (see Supplementary
Fig. 1). In this case, numerical simulations were carried out for propagation in the
HNLF only, using the input conditions measured at the HNLF input from spectral
(OSA) and temporal (autocorrelator/FROG) experimental characterization.

Data availability
The data that support the findings of this study are available from the corresponding
authors upon reasonable request.
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